指数与对数运算练习题

合集下载

指数与对数运算练习题

指数与对数运算练习题

指数与对数运算练习题指数与对数运算练题1.用根式的形式表示下列各式(a>0):1) a^(1/2)2) a^(1/3)3) a^(1/4)4) a^22.用分数指数幂的形式表示下列各式:1) x^(y/3)2) (1/5)^(-3/4)3) (3ab^2)^24) 3a^45) a^33.求下列各式的值:1) 8^(1/3) = 22) 100^(1/2) = 103) (8/14)^(-3/4) = 98/274) (27/64)^(1/3) = 3/45) [(-2)^2] = 46) [(1-3/2)^2] = 1/47) 64^(1/2) = 8选择题:1.以下四式中正确的是(B)log2^1=12.下列各式值为的是(D)-53.log2^1/5^11/24的值是(A)-114.若m=lg5-lg2,则10m的值是(A)55.设N=11+log2^1/5^3,则(A)N=26.在b=loga-2(5-a)中,实数a的范围是(C)2<a<3或3<a<57.若log4[log3(log2x)]=1/2,则x^(1/2)等于(B)1/2填空题:10.用对数形式表示下列各式中的x:10x=25:x=log10(25)/log10(10)=2/1=22x=12:x=log2(12)/log2(2)=4/1=44x=16:x=log4(16)/log4(4)=2/1=211.lg1++=lg(1+1)=lg212.Log15(5)=1/m。

则log15(3)=log3(15)/log3(5)=1/(m*log3(5))13.lg2^2-lg4+1+|lg5-1|=2-2+1+|1-1|=114.(1) log3(2)=log6(3)/log6(2)2) (log6(3))^2+1-a=log6(12/a)log12(3)=log6(3)/log6(12)=log6(3)/[log6(2)+log6(6)]=log3(2 )/(1+1/2)=2log3(2)/3=2log12(3)/(log12(2)+log12(6))6、计算题1.2lg6-2lg5+lg2=lg(6^2/5)+lg2=lg(72/5)2.2lg5+lg2·lg50=2lg5+lg(2·5^2)=2lg5+lg50=lg(5^2·50)=lg12 503.2log3(2)-log3(32)+log3(8)-3log5(5)=2log3(2)-(log3(2^5)-log3(2^2))+log3(2^3)-(log5(5^3))=2log3(2)-log3(2^3)+log3(2^3)-3=2log3(2)-34.lg5·lg20-lg2·lg50-lg25=lg(5·20/2)-XXX(50)-XXX(25)=lg(50/2)-XXX(50)-XXX(25)=lg(1/2)-2lg(5)=log2-2log515.根据换底公式,log5(12)=log2(12)/log2(5)=log2(2^2·3)/log2(5)=2log2(2/5)+log2(3/5)19.根据3a=2,可得a=log2(8/9),代入log3(8)-2log3(6)中,得log3(8)-2log3(6)=log3(2^3)-2log3(2^2·3)=3log3(2)-2log3(2)-2log3(3)=log3(2)-2log3(3)16.根据对数的定义,可得a^m=2,a^n=3,代入a^(2m+n)中,得a^(2m+n)=a^(2loga(2)+loga(3))=a^loga(2^2·3)=621.lg25+lg2lg50+(lg2)^2=2+2lg5+4=6+2lg517.⑴2log2(8)=log2(8^2)=log2(64)=6⑵3log3(9)=log3(9^3)=log3(729)=6⑶2^18=18.⑴lg10-5=1-5=-4⑵⑶log2(8)=3提升题4.化简1)a·a·a/3= a^3/32)a·a/a= a3)3a·(-a)/9= -a^2/34) ba·a^2/a^21= b/a^195)log1(81)/log1(8/27)= log8/27(81)= log3(3^4)= 4log3(3)= 45.计算⑴ 325-125/45= 200/45= 40/9⑵ 23·31.5·612= 23·63·12=⑶ (-1)-4·(-2)^-3+(-9)·2-2·2^-2= -1-1/8-18+1/2= -1453/8⑷ 7/10+0.1-2+π= 37/10+π-1.9⑸ 41/24-32/27= 41/24-32/27·8/8= (41·27-32·24)/648= 5/726.解方程1)x-1/2=1/3,x=5/62)2x^4-1=15,2x^4=16,x^4=8,x=23) (0.5)1-3x=4,(0.5)^1=0.5,0.5·2^-6x=4,2^-7x=8,-7x=log2(8)=-3,x=3/77.解题1)a+a^-1=3,已知a+a^-1=3,两边平方得a^2+a^-2+2=9,所以a^2+a^-2=72)a+a^2=3,已知a+a^-1=3,两边平方得a^2+a^-2+2=9,所以a^2+a^-2=7,两边加1得a^2+a^-2+1=8,即(a+a^-1)^2=8,所以a+a^-1=±2√2,因为a+a^-1=3,所以a+a^-1=2√23)1-2x>0,所以x<1/24)33a-2b=3^3a^3·2^-2b=27/48.lg25+lg2·lg25+lg22=2+2lg5+1=3+2lg51.化简计算:log2 111 ·log3 ·log5 2589 - 3/42.化简:(log2 5+log4 0.2)(log5 2+log25 0.5)3.若XXX(x-y)+XXX(x+2y)=lg2+lgx+lgy,求的值.4.已知log2 3 =a,log3 7 =b,用a,b表示log42 56.5.计算,(1)51-log0.2 3xy;(2)log4 3·log9 2-log1 432;(3)(log2 5+log4 125)2·log3 21.化简计算:log2 111 ·log3 ·log5 2589 - 3/4.将log2 111分解为log2 3和log3 37的和,将log5 2589分解为log5 3和log5 863的和,然后应用对数乘法和对数减法规则,得出结果为log2 3+log3 37+log3-log5-log5 3-log5 863-3/4.2.化简:(log2 5+log4 0.2)(log5 2+log25 0.5)。

《指数对数运算》练习题40道及答案

《指数对数运算》练习题40道及答案

6 ,0.7 , log 6A. 0.7 C.0.7 B. 0.7 D.0.7 0.2 , 3 2 2 10.2 0.2指数对数运算练习题1. 已知 a,b = 20.3 , c = 0.30.2 ,则 a ,b ,c 三者的大小关系是()A .b>c>aB .b>a>cC .a>b>cD .c>b>a4212.已知 a = 23, b = 45, c = 253,则(A ) b < a < c(C ) b < c < a(B ) a < b < c(D ) c < a < b0.7 6 3. 三个数0.7 的大小顺序是( )0.76 < log 6 < 60.7log 6 < 60.7< 0.760.76 < 60.7 < log 6log 6 < 0.76 < 60.74.已知a = 20.2,b = 0.42, c = log 4 则()A. a > b > cB. a > c > bC. c > a > bD. b > c > a5.设 a = log 7,b = 21.1,c = 0.83.1 则()A. b < a < cB. c < a < bC. c < b < aD. a < c < b6.三个数 a = 0.32, b = log 0.3,c = 20.3之间的大小关系是()A. a < c < bB. a < b < cC. b < a < cD. b < c < a7.已知a = 21.2, b = 0.50.8, c = log 3 ,则()A. a > b > cB. c < b < aC. c > a > bD. a > c > b-18.已知a = 2 3, b = log 21, c = log 1,则()A. a > b > c3 B. a > c > b 2 3C. c > a > bD. c > b > a9.已知a = 0.20.3, b = log 3 , c = log 4 ,则( ) A. a>b>cB. a>c>bC. b>c>aD. c>b>a10.设 a = 0.60.6,b = 0.61.5,c = 1.50.6则 a ,b ,c 的大小关系是()(A ) a <b <c (B ) a <c <b (C ) b <a <c (D ) b <c <a试卷第 2页,总 8页4 3 10 3 4 11.设 a = ⎛ 3 ⎫ 0.5,b = ⎛ 4 ⎫ 0.4,c =log (log4),则( )⎪ ⎪ 3 3 ⎝ ⎭⎝ ⎭4A .c<b<aB .a<b<cC .c<a<bD .a<c<b-112. 已知 a = 2 3, b = log 21, c = log 1,则()A. a > b > c3 B. a > c > b 2 3C. c > a > bD. c > b > a13.已知a = log 3 4,b = 1 ( ) , c 5= log 1 10 ,则下列关系中正确的是( )3A. a > b > cB. b > a > cC. a > c > bD. c > a > b14.设 a = 2-0.5,b = log π,c = log 2 ,则()A. b > a > cB. b > c > aC. a > b > cD. a > c > b15. 设 y= 40. 9 , y = 80. 48 , y = 1 -1. 5,则( )1 2 3( 2) A. y 3 > y 1 > y 2 B. y 2 > y 1 > y 3 C. y 1 > y 3 > y 2D.y 1 > y 2 > y 3⎛ 1 ⎫0.216.设 a = log 1 5 , b = ⎪1, c = 23 ,则( )2 A. a < b < c⎝ 3 ⎭ B. c < b < aC. c < a < bD. b < a < c1 2 1 2 1117.设 a = ( ) 3 ,b = ( ) 3 , c = ( )3 ,则 a , b , c 的大小关系是()2 5 2A. a > b > cB. c > a > bC. a > c > bD. c > b > a⎛ π π⎫ 18.已知 a = log 0.5sin x , b = log 0.5cos x , c = log 0.5sin x cos x , x ∈ , ⎪ ,⎝ 4 2 ⎭则 a , b , c 的大小关系为( )A. b > a > cB. c > a > bC. c > b > aD. b > c > a19.设 x = 0.820.5, y =, z = sin1,则x 、y 、z 的大小关系为 ( )A. x < y < zB. y < z < xC. z < x < yD. z < y < xlg 10 lg 0.125 9e27 4 1 每天一刻钟,数学点点通20. 若log 2a < 0, ( ) 2b> 1 ,则( )A. a > 1, b > 0B. a > 1, b < 0C . 0 < a < 1, b > 0D . 0 < a < 1, b < 021. 已知log 1 a < log 1 b ,则下列不等式一定成立的是( )22⎛ 1 ⎫aA. ⎪ ⎛ 1 ⎫b< ⎪ B. 1 >1 C. ln (a - b ) > 0D. 3a -b< 1⎝ 4 ⎭ ⎝ 3 ⎭a b22. 计算- 1 1 -3(1) 0.027 3- (- ) 2 + 256 4 - 3-1 + ( 7 -1)0(2)lg 8 + lg125 - lg 2 - lg 523. 计算:1 - 1 ①- ⎛ 8 ⎫3 - (π+ e )0 + ⎛ 1 ⎫ 2; ②2 lg 5 + lg 4 + ln .⎪ ⎪⎝ ⎭ ⎝ ⎭ 2试卷第 2页,总 8页3 2⎛ 2 ⎫3 ⎪ ⎝ 3 ⎭6a • b524. 化简下列各式(其中各字母均为正数):-1⎛ 7 ⎫(1)1.5 3 × - ⎝ ⎪0+80.25× 4 2 +( 6 ⎭× )6- ; 2 -111(a 3 • b -1)2• a-2•b 3(2);4 1 a 3-8a 3b ÷ ⎛1-23 b ⎫⨯ (3) 2 2 a ⎪ 4b 3+2 3 ab +a 3 ⎝⎭25.(12 分) 化简或求值:4 1 - 1 8 1(1) (2 )0 + 2-2 ⨯(2 ) 2 - ( ) 3 ;5 4 27(2) 2(lg 2)2+ lg 2 ⋅ lg 5 +3 2 3 a(lg 2)2 - lg 2 +1每天一刻钟,数学点点通26.(12分)化简、求值:27 - 2 49-2 2(1)( ) 3 -( ) 0.5 + (0.008) 3 ⨯;8 9 25(2)计算lg 5 ⋅ lg 8000 + (lg 2 3 )21 1lg 600 - lg 36 -2 2lg 0.0127.(本小题满分10分)计算下列各式的值:2 27 2(1)()-2+(1-2)0-()3;3 8(2)2 log32 - log332 + log38 -5log5 3试卷第 2页,总 8页2 2 -1 23 7 1- 1 28.计算:(1) 2 2+ (-4)0 + 1 -(2) log 2.5 6.25 + lg 0.001+ ln+ 2log 2 329.(本题满分 12 分)计算以下式子的值:1 1-1 (1- ( )0 + 0.252 ⨯ ( )-4 ; 2(2) log 27 + lg25 + lg 4 + 7log 7 2+ log 1.30.计算(1) log 3lg 25 + lg 4 + 7log 7 2+ (-9.8)0(2) - (π - 1)0- (3 3) 3 + ( 81 -2 ) 364 (1- 5)0 e 3(-4)3 27 6 1 4 ;27 8 (1- 2)22 每天一刻钟,数学点点通⎛ 1 ⎫-10 31.计算: ⎪ ⎝⎭ - 2 c os 300 + + (2 -π) .32.(本题满分 12 分) 计算(1)5log 5 9 + 1 log 32 - log (log 8) 2 23 2-21(2)(0.027) 3 -⎪ + 2 ⎪ -(-1)-1 ⎛ 1 ⎫ ⎛ ⎝ 7 ⎭ ⎝ 7 ⎫2 09 ⎭133.(1)化简: (a 2b ) 2⋅(ab 2 )-2 ÷(a -2b )-3; (2)计算:lg 8 + lg125 - lg 2 - lg 5.34.计算:(1) π- 4 - 8⨯ 2-2- (2013 -π)0(2) + - 6 cos 45o2 lg 10 ⋅lg 0.1试卷第 2页,总 8页3 7 6 12 2 ⎛ 2 ⎫ 3 ⎪ ⎝ 3 ⎭3 1 35.(1)计算3log 3 2- 2(log 4)(log 27) - 1log 8 + 2 log .3 8 6 161(2) 若 x 2 + x - 12 = ,求 x + x -1x 2 + x -2 - 3的值.21 36.求值: (2 2)3 - ⎛ 6 1 ⎫ 2+ ln e - 4 ⎪ ⎝ ⎭37.(1)求值: 2 3 ⨯ 3 1.5 ⨯ ; (2)已知 x +1= 3 求 x 2 + 1的值 x x 238. 计算:2 - 1 0 ⎛ (1) 8 ⎫3 + ⎛ 3 ⎫ 3 ⨯⎛- 3 ⎫ - - 4⎪ ⎪ ⎪ ⎝ 27 ⎭ ⎝ 2 ⎭ ⎝ 5 ⎭ 9(2) lg 2 5 - lg 2 2 + 2 lg 2 + 3log 3 239. 下列四个命题:① ∃x ∈(0, +∞),( 1 )x > (1)x; ② ∃x ∈ (0, +∞), log 2 32 x < log3 x ;③ ∀x ∈ (0, +∞ 1 ), ( ) 2 x > log 2 x ;④ ∀x ∈ 1 1 (0, ), ( ) 3 2 x< log x .3其中正确命题的序号是 .- 2 40. log(2 -3 )- ⎛ - 27 ⎫ 3 =2+ 38 ⎪ ⎝⎭ 3 3 3 6 3 10.7参考答案1.A【来源】2013-2014 学年福建省三明一中高二下学期期中考试文科数学试卷(带解析) 【解析】试题分析: 由指数函数的单调性可知 y = 0.3x 是单调递减的所以 0.30.5 < 0.30.2即 a<c<1; y = 2x 是单调增的,所以 y = 20.3 > 20= 1,即可知 A 正确考点:指数函数比较大小. 2.A【来源】2016 年全国普通高等学校招生统一考试理科数学(新课标 3 卷精编版) 【解析】422122试题分析:因为a = 23 = 43 > 45 = b , c = 253 = 53 > 43 = a ,所以b < a < c ,故选 A . 【考点】幂函数的性质.【技巧点拨】比较指数的大小常常根据三个数的结构联系相关的指数函数与对数函数、幂函数的单调性来判断,如果两个数指数相同,底数不同,则考虑幂函数的单调性;如果指数不同,底数相同,则考虑指数函数的单调性;如果涉及到对数,则联系对数的单调性来解决. 3.D 【来源】2013-2014 学年广西桂林十八中高二下学期开学考理科数学试卷(带解析) 【解析】试 题 分 析 : 60.7 > 60= 1 ,0 < 0.76 < 0.70= 1 , log 0.7 6 < log 0.7 1 = 0, 所 以log 6 < 0 < 0.76<1 < 60.7 . 考点:用指数,对数函数特殊值比较大小. 4.A .【来源】2014 届安徽“江淮十校”协作体高三上学期第一次联考理数学卷(带解析) 【解析】试题分析:因为 a > 1,0 < b < 1, c < 0 ,所以 a > b > c ,故选 A . 考点:利用指数函数、幂函数、对数函数的单调性比较数式的大小. 5.B【来源】2014 年全国普通高等学校招生统一考试文科数学(安徽卷带解析) 【解析】试题分析:由题意,因为 a = log 3 7 ,则1 < a < 2 ; b = 21.1,则b > 2 ; c = 0.83.1,则c < 0.80 = 1,所以c < a < b考点:1.指数、对数的运算性质. 6.C【来源】2014-2015 学年山东省德州市重点中学高一上学期期中考试数学试卷(带解析) 【解析】2 2 2 1试题分析:∵ 0 < a = 0.32< 1 , b = log 0.3 < log 1 = 0 , c = 20.3> 20= 1 ,∴ b < a < c 考点:根式与分数指数幂的互化及其化简运算. 7.D【来源】2014 届河北省唐山市高三年级第三次模拟考试文科数学试卷(带解析) 【解析】试题分析:∵ a = 21.2> 2 , 0 < 0.50.8< 1 ,1 < log 3 < 2 ,∴ a > c > b . 考点:利用函数图象及性质比较大小. 8.C【来源】2014 年全国普通高等学校招生统一考试文科数学(辽宁卷带解析) 【解析】-1试题分析: 因为 a = 2 3∈(0,1) , b = log 2< log 2 1 = 0 , c = log 1 1 > log 1 = 1 , 故3 c > a > b .考点:指数函数和对数函数的图象和性质. 9.A2 3 2 2【来源】2014 届浙江省嘉兴市高三上学期 9 月月考文科数学试卷(带解析) 【解析】试题分析:由指数函数和对数函数的图像和性质知 a > 0 , b < 0 , c < 0 ,又对数函数f ( x ) = log 0.2 x 在(0, +∞) 上是单调递减的,所以log 0.2 3 > log 0.2 4 ,所以a > b > c .考点:指数函数的值域;对数函数的单调性及应用.10.C【来源】2015 年全国普通高等学校招生统一考试文科数学(山东卷带解析) 【解析】由 y = 0.6x在区间(0, +∞) 是单调减函数可知,0 < 0.61.5< 0.60.6 < 1,又1.50.6 > 1,故选C .考点:1.指数函数的性质;2.函数值比较大小. 11.C【来源】2014 届上海交大附中高三数学理总复习二基本初等函数等练习卷(带解析) 【解析】由题意得 0<a<1,b>1,而 log 34>1,c =log 34(log 34),得 c<0,故 c<a<b. 12.C【来源】2014 年全国普通高等学校招生统一考试理科数学(辽宁卷带解析) 【解析】试题分析:0 < a = 2 -13< 20= 1,b = log 1 < 0, c = log 1 = log 3 > 1, 所以c > a > b , 2 3 1 32 2故选 C.考点:1.指数对数化简;2.不等式大小比较. 13.A.134 3 >> 5 【来源】2015 届湖南省益阳市箴言中学高三第一次模拟考试文科数学试卷(带解析) 【解析】试题分析:∵ a = log 4 > log 3 = 1 ,b =1 0= 1 ,c = log 10 < log= 1 ,∴ a > b > c . 3 3( ) 1 1 33考点:指对数的性质.14.A【来源】2015 届河南省八校高三上学期第一次联考文科数学试卷(带解析) 【解析】试 题 分 析 : ∵1a = 2-0.5,b = log π,c = log 2 , 1>2-0.5= 1 > 1,2 2log 3π>1,log 4 2= 2.∴ b >a >c .故选:A .考点:不等式比较大小. 15.C【来源】2012-2013 学年广东省执信中学高一下学期期中数学试题(带解析) 【解析】试题分析: 根据题意, 结合指数函数的性质, 当底数大于 1 , 函数递增, 那么可知 y = 40. 9 = 21.8 , y = 80. 48 = 21.44 , y = 1 -1. 5 = 21.5 ,结合指数幂的运算性质可知,有123( 2) y 1 > y 3 > y 2 , 选 C.考点:指数函数的值域点评:解决的关键是以 0 和 1 为界来比较大小,属于基础题。

专题25:指数、对数的运算专项练习(解析版)

专题25:指数、对数的运算专项练习(解析版)

专题25:指数、对数的运算专项练习(解析版)一、解答题 1.化简下列各式. (1211113322a b ---;(2)111222m m mm--+++;(3)10.5233277(0.027)21259-⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭.【答案】(1)1a;(2)1122m m -+;(3)0.09. 【分析】(1)利用指数幂的运算性质即可求解; (2)根据完全平方关系即可求解; (3)利用指数幂的运算性质即可求解. 【详解】(1)原式21111()11111532322132623615661ab a baba aa b⨯-----+--⋅====; (2)2112211122111122222m m m m m m m m m m -----⎛⎫+ ⎪++⎝⎭==+++ (3)10.5233277(0.027)21259-⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭255=0.0933++-2.计算:(1)2(lg 2)lg 2lg 5lg 5+⨯+;(2)210231(27)3(2)2-⎛⎫--⨯+- ⎪⎝⎭.【答案】(1)1;(2)0. 【分析】(1)根据对数的运算性质计算可得结果; (2)根据指数幂的运算性质可得结果. 【详解】(1)2(lg 2)lg 2lg 5lg 5+⨯+lg 2(lg 2lg5)+lg5=+lg 2lg(25)+lg5=⨯⨯ lg 2+lg5= lg10=1=.(2)()()21023127322-⎛⎫--⨯+- ⎪⎝⎭2133141()2=--⨯+ 3434=--+ 0=.3.(1)化简:3232324b b a a a b -⎛⎫⎛⎫⎛⎫÷⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. (2)计算:56512log 5log 24log 4lg 20lg50⎛⎫⨯+-- ⎪⎝⎭.【答案】(1)432b a-;(2)1-.【分析】(1)根据指数幂的运算法则,直接计算,即可得出结果; (2)根据对数的运算法则,直接计算,即可得出结果. 【详解】(1)原式323663816b b b a a a ⎛⎫=÷⨯- ⎪⎝⎭ 363623168b a b a b a ⎛⎫=⨯⨯- ⎪⎝⎭432b a=-;(2)原式65512log 5log 24log (lg 20lg 50)4⎛⎫=⨯+-+ ⎪⎝⎭652log 5log 6lg1000=⨯-23=-1=-.4.求下列各式x 的取值范围. (1)(1)log (2)x x -+; (2)(3)log (3)x x ++.【答案】(1){x |x > 1且x ≠2};(2){x |x >﹣3且x ≠﹣2}. 【分析】(1)根据对数的定义进行求解即可; (2)根据对数的定义进行求解即可 【详解】(1)由题意可得:201011x x x +>⎧⎪->⎨⎪-≠⎩,解得x > 1且x ≠2;∴x 的取值范围是{x |x > 1且x ≠2}; (2)由题意可知:3031x x +>⎧⎨+≠⎩,解得x >﹣3且x ≠﹣2;∴x 的取值范围是{x |x >﹣3且x ≠﹣2}.5.(1)求值:2130228(6.25)()(1.5)27π-⎛⎫----+ ⎪⎝⎭;(2)解不等式:1263177xx-⎛⎫< ⎪⎝⎭.【答案】(1)32;(2){}x x >4. 【分析】(1)利用分数指数幂的运算性质求解即可; (2)由指数函数的单调性解不等式【详解】解:(1)原式12223258314272-⎛⎫⎛⎫⎛⎫=--+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭22522312332⎛⎫⎛⎫=--+= ⎪ ⎪⎝⎭⎝⎭; (2)原不等式可化为:361277x x -<,由函数7xy =在R 上单调递增可得3612x x <-,解得4x >;故原不等式的解集为{}x x >4. 6.计算下列各式的值:(1)0113410.064167-⎛⎫-+ ⎪⎝⎭;(2)2ln 2145log 2lg 4lg82e +++. 【答案】(1)52-;(2)92.【分析】(1)根据指数幂的运算法则,直接计算,即可得出结果; (2)根据对数的运算性质,逐步计算,即可得出结果. 【详解】 (1)()011114334431550.064160.422147221⎛⎫-⨯⨯- ⎪⎝⎭⎛⎫-+ ⎪⎝⎭=-+=-+-=-;(2)22ln 22ln 41245log 2lg 4lg log 22lg 2lg 5lg882e e -+++=++-+ 177794lg 2lg53lg 24lg 2lg5lg10122222=-++-+=++=+=+=.7.计算: (1)5122log 231354-⎛⎫+ ⎪⎝⎭;(2)()()226666log 3log 2log 9log 2++⋅+ 【答案】(1)9;(2)32. 【分析】(1)由根式与指数幂的运算,以及对数运算性质,逐步计算,即可得出结果; (2)由对数运算法则,逐步计算,即可得出结果. 【详解】(1)原式24133243322929=++⨯--==; (2)原式()()2266661log 3log 22log 3log 22=++⋅+()226611log 3log 231222=++=+=. 8.计算:(1)2lg25lg2lg50(lg2)++;(2)2ln33(0.125)e-++.【答案】(1)2;(2)11. 【分析】(1)根据对数的运算法则,逐步计算,即可得出结果;(2)根据指数幂的运算法则,以及对数的运算法则,直接计算,即可得出结果. 【详解】(1)原式()()22lg5lg 2lg100lg 2lg 2=+⨯-+()()22lg5lg 22lg 2lg 2=+⨯-+()2lg5lg2=⨯+2lg10=2=.(2)原式()1223235=3log 50.5-⎡⎤++⎣⎦()252=3log 50.512-++ ()21=342--++2=342++=11.9.求值:(1)()92log 4lg 2lg 20lg53+⨯+;(2)()60.25π38-+.【答案】(1)3;(2)107. 【分析】(1)利用对数的运算以及换底公式求解即可;(2)利用指数的运算法则求解即可. 【详解】(1)()92log 4lg 2lg 2lg5lg53+⋅++()lg2lg2lg5lg52=+++lg 2lg52=++3=.(2)()60.25π38-+136644122=+⨯-⨯321322=+⨯-11082=+-107=.10.计算:(1)1111010.253342727(0.081)[3()][81()]100.02788------⨯⨯+-⨯;(2)已知x +y =12,xy =9,且x <y ,求11221122x y x y+-.【答案】(1)0;(2). 【分析】(1)直接利用指数的运算性质求解即可;(2)由原式=.【详解】(1)原式11442112101[(0.3)]()100.33033333--=-+-⨯=--=.(2)原式====11.不用计算器,计算: (1)927log 32log 128(2)23463log 3log 4log 5log 64⋅⋅⋅⋯⋅ 【答案】(1)1514;(2)6. 【分析】根据对数的运算性质可得答案. 【详解】(1)235393727335log 2log 2log 321527log 128log 214log 23===. (2)23463log 3log 4log 5log 64⋅⋅⋅⋯⋅131415lg 64lg 646lg 26lg 21314lg 63lg 2lg 2g g g g g =⋅⋅⋅⋯⋅===. 12.计算:(1)75223log (42)log 3log 4⨯+⋅. (2)若33lg 2lg 53lg 2lg5a b +=++⋅,求333ab a b ++. 【答案】(1)2215;(2)1. 【分析】(1)根据对数的运算法则及性质计算可得;(2)根据对数的运算法则求出+a b ,再根据乘法公式计算可得; 【详解】解:(1)原式=75223log (42)log 3log 4⨯+⋅214552223log 2log 2lg10log 3log 4=+++⋅2223214log 25log 2lg102log 3log 25=+++⋅2214522155=+++=,(2)22(lg 2lg5)(lg 2lg 2lg5lg 5)3lg 2lg5a b +=+-++22lg 22lg 2lg5lg 5=++()2lg 2lg51=+=即1a b +=33223()()3a b ab a b a ab b ab ∴++=+-++=()21a b +=。

(完整版)指数与对数运算(含答案),推荐文档

(完整版)指数与对数运算(含答案),推荐文档

指数与对数运算1.的大小关系是( )0.90.7 1.1log 0.8,log 0.9, 1.1a b c ===A . B . C . D .c a b >>a b c >>b c a >>c b a>>【答案】A【解析】因为,,,所以,故选A .0.70log 0.81a <=< 1.1log 0.90b =<0.91.11c =>c a b >>2.三个数20.60.6,ln 0.6,2a b c ===之间的大小关系是( )A .b c a <<B .c b a <<C .c a b <<D .ac b <<【答案】C【解析】,故选C .20.600.61,ln 0.60,21c a b <<<>∴>>3.设0.012log 3,lna b c ===,则( )A .c a b << B .a b c << C .a c b << D .b a c<<【答案】A【解析】先和0比较,0.0122log log 10,30,ln10a b c =>==>=<= 得到c 最小;再与1比较0.01022log log 21,33a b =<==>,得到b 最大.故选A .4.若4log 3a =,则22a a -+= . 【答案】334【解析】,3log 213log 24==a 3log 2=33431322=+=+-a a 5.已知,那么等于( )0)](log [log log 237=x 21-xA .B .C .D .31633342【答案】D 【解析】根据,可得,即,解得,所以0)](log [log log 237=x ()32log log 1x=2log 3x =328x ==,故选择D 11228x --==6.若且则 , .1,1,a b >>lg()lg lg ,a b a b +=+11a b +=lg(1)lg(1)a b -+-=【答案】1,0【解析】得lg()lg lg ,a b a b +=+,111a b ab a b+=∴+=lg(1)lg(1)a b -+-=lg(1)(1)lg(1)lg10a b ab a b --=--+==7. 已知是方程01422=+-x x 的两个根,则2(lg ba 的值是 .lg ,lg ab 【答案】2【解析】由是方程01422=+-x x 的两个根可得:,,lg ,lg a b lg lg 2a b +=1lg lg 2a b ⋅=所以2)(lg ba ()()22lg lg lg lg 4lg lg 2ab a b a b =-=+-⋅=8.解方程:122log (44)log (23)x x x ++=+-【答案】.2x =【解析】解方程则:则:122log (44)log [2(23)]x x x ++=-1442(23)x x x ++=-43240x x -⋅-=则:或(舍)∴.经检验满足方程.24x =21x =-2x =2x =9.解方程(1) (2)231981-=x x 444log (3)log (21)log (3)-=+++x x x 【答案】(1)或;(2)2=x 1=x 0x =【解析】(1) 解得,或2322299,32,320--=∴-=--+=x x x x x x 2=x 1=x (2)440.25log (3)log (21)log (3)x x x -=+++44log (3)log (21)(3)3(21)(3)x x x x x x -=++∴-=++得或,经检验为所求.4=-x 0x =0x =10.计算下列各式的值(1) (2)210321(0.1)2()4--++3log lg 25lg 4+【答案】(1)5(2)72【解析】(1)210321(0.1)2()4--++5221=++=(2)3log lg 25lg 4++27223=+=11.化简求值:(1);313373329a a a a ⋅÷--(2);22)2(lg 20lg 5lg 8lg 325lg +++(3).13063470.001(168--++【答案】(1)1;(2)3;(3)89.【解析】(1)因为有意义,所以,所以原式3-a0>a =。

指数对数计算题50道

指数对数计算题50道

指数对数计算题50道指数和对数是数学中重要的概念和运算符号,它们在各个领域都有着广泛的应用。

下面列举了50道与指数和对数计算有关的题目,并提供相应的参考内容。

1. 计算2^3的值。

参考答案:2^3 = 8。

2. 计算10^(-2)的值。

参考答案:10^(-2) = 1/10^2 = 1/100 = 0.01。

3. 计算2^(1/2)的值。

参考答案:2^(1/2) = √2 ≈ 1.414。

4. 计算log(100)的值。

参考答案:log(100) = 2,因为10^2 = 100。

5. 计算log(1/1000)的值。

参考答案:log(1/1000) = log(10^(-3)) = -3,因为10^(-3) =1/1000。

6. 计算log2(8)的值。

参考答案:log2(8) = 3,因为2^3 = 8。

7. 计算log4(16)的值。

参考答案:log4(16) = 2,因为4^2 = 16。

8. 计算ln(e)的值。

参考答案:ln(e) = 1,因为e^1 = e。

9. 计算ln(1)的值。

参考答案:ln(1) = 0,因为e^0 = 1。

10. 计算log5(25)的值。

参考答案:log5(25) = 2,因为5^2 = 25。

11. 计算log(x^2)的值,其中x = 10。

参考答案:log((10^2)) = log(100) = 2。

12. 计算log(2x)的值,其中x = 5。

参考答案:log(2(5)) = log(10) = 1。

13. 计算log3(9) + log3(27)的值。

参考答案:log3(9) + log3(27) = 2 + 3 = 5,因为3^2 = 9,3^3 = 27。

14. 计算log2(4) * log2(16)的值。

参考答案:log2(4) * log2(16) = 2 * 4 = 8,因为2^2 = 4,2^4 = 16。

15. 计算10^(log10(100))的值。

高中数学第四章指数函数与对数函数典型例题(带答案)

高中数学第四章指数函数与对数函数典型例题(带答案)

高中数学第四章指数函数与对数函数典型例题单选题1、已知a=lg2,10b=3,则log56=()A.a+b1+a B.a+b1−aC.a−b1+aD.a−b1−a答案:B分析:指数式化为对数式求b,再利用换底公式及对数运算性质变形. ∵a=lg2,0b=3,∴b=lg3,∴log56=lg6lg5=lg2×3lg102=lg2+lg31−lg2=a+b1−a.故选:B.2、函数f(x)=|x|⋅22−|x|在区间[−2,2]上的图象可能是()A.B.C.D.答案:C分析:首先判断函数的奇偶性,再根据特殊值判断即可;解:∵f(−x)=|x|⋅22−|x|=f(x),∴f(x)是偶函数,函数图象关于y轴对称,排除A,B选项;∵f(1)=2=f(2),∴f(x)在[0,2]上不单调,排除D选项.故选:C3、式子√m⋅√m 43√m 56m >0)的计算结果为( )A .1B .m 120C .m 512D .m 答案:D分析:由指数运算法则直接计算可得结果.√m⋅√m 43√m 56=m 12⋅m 43m 56=m 12+43−56=m .故选:D.4、若f(x)={(6−a)x −a,x <1log a x +3,x ≥1是定义在R 上的增函数,实数a 的取值范围是( )A .[1,5]B .[32,5) C .(32,5)D .(1,5) 答案:B分析:由题意得{6−a >1a >1log a 1+3≥(6−a)−a ,解不等式组可求得答案因为f(x)={(6−a)x −a,x <1log a x +3,x ≥1是定义在R 上的增函数,所以{6−a >1a >1log a 1+3≥(6−a)−a ,解得32≤a <5,故选:B5、函数f (x )=√3−x +log 13(x +1)的定义域是( )A .[−1,3)B .(−1,3)C .(−1,3]D .[−1,3] 答案:C分析:由题可得{3−x ≥0x +1>0,即得.由题意得{3−x ≥0x +1>0,解得−1<x ≤3, 即函数的定义域是(−1,3].故选:C.6、下列函数中是增函数的为( )A .f (x )=−xB .f (x )=(23)xC .f (x )=x 2D .f (x )=√x 3答案:D分析:根据基本初等函数的性质逐项判断后可得正确的选项. 对于A ,f (x )=−x 为R 上的减函数,不合题意,舍. 对于B ,f (x )=(23)x为R 上的减函数,不合题意,舍.对于C ,f (x )=x 2在(−∞,0)为减函数,不合题意,舍. 对于D ,f (x )=√x 3为R 上的增函数,符合题意, 故选:D.7、下列计算中结果正确的是( ) A .log 102+log 105=1B .log 46log 43=log 42=12C .(log 515)3=3log 515=−3D .13log 28=√log 283=√33答案:A分析:直接根据对数的运算性质及换底公式计算可得;解:对于A :log 102+log 105=log 10(2×5)=log 1010=1,故A 正确; 对于B :log 46log 43=log 36,故B 错误;对于C :(log 515)3=(log 55−1)3=(−log 55)3=−1,故C 错误; 对于D :13log 28=13log 223=13×3log 22=1,故D 错误; 故选:A8、荀子《劝学》中说:“不积跬步,无以至千里;不积小流,无以成江海.”所以说学习是日积月累的过程,每天进步一点点,前进不止一小点.我们可以把(1+1%)365看作是每天的“进步”率都是1%,一年后是1.01365≈37.7834;而把(1−1%)365看作是每天“退步”率都是1%,一年后是0.99365≈0.0255.若“进步”的值是“退步”的值的100倍,大约经过(参考数据:lg101≈2.0043,lg99≈1.9956) ( )天.A .200天B .210天C .220天D .230天 答案:D分析:根据题意可列出方程100×0.99x =1.01x ,求解即可.设经过x 天“进步”的值是“退步”的值的100倍,则100×0.99x=1.01x,即(1.010.99)x =100,∴x =log 1.010.99100=lg lg 1.010.99=lg lg 10199=2lg−lg≈22.0043−1.9956=20.0087≈230.故选:D . 多选题9、已知函数f(x)=1−2x 1+2x,则下面几个结论正确的有( )A .f(x)的图象关于原点对称B .f(x)的图象关于y 轴对称C .f(x)的值域为(−1,1)D .∀x 1,x 2∈R ,且x 1≠x 2,f (x 1)−f (x 2)x 1−x 2<0恒成立答案:ACD分析:利用奇函数的定义和性质可判断AB 的正误,利用参数分离和指数函数的性质可判断CD 的正误. 对于A ,f(x)=1−2x1+2x ,则f(−x)=1−2−x1+2−x =2x −11+2x =−f(x), 则f(x)为奇函数,故图象关于原点对称,故A 正确.对于B ,计算f(1)=−13,f(−1)=13≠f(1),故f(x)的图象不关于y 轴对称,故B 错误. 对于C ,f(x)=1−2x1+2x =−1+21+2x ,1+2x =t,t ∈(1,+∞),故y =f(x)=−1+2t ,易知:−1+2t ∈(−1,1),故f(x)的值域为(−1,1),故C 正确. 对于D ,f(x)=1−2x1+2x =−1+21+2x ,因为y =1+2x 在R 上为增函数,y =−1+21+t 为(1,+∞)上的减函数, 由复合函数的单调性的判断法则可得f (x )在R 上单调递减,故∀x 1,x 2∈R ,且x 1≠x 2,f(x 1)−f(x 2)x 1−x 2<0恒成立,故D 正确.故选:ACD.小提示:方法点睛:复合函数的单调性的研究,往往需要将其转化为简单函数的复合,通过内外函数的单调性结合“同增异减”的原则来判断.10、设函数f (x )=ax 2+bx +c (a,b,c ∈R,a >0),则下列说法正确的是( ) A .若f (x )=x 有实根,则方程f(f (x ))=x 有实根 B .若f (x )=x 无实根,则方程f(f (x ))=x 无实根 C .若f (−b 2a)<0,则函数y =f (x )与y =f(f (x ))都恰有2个零点D .若f (f (−b 2a))<0,则函数y =f (x )与y =f(f (x ))都恰有2零点答案:ABD分析:直接利用代入法可判断A 选项的正误;推导出f (x )−x >0对任意的x ∈R 恒成立,结合该不等式可判断B 选项的正误;取f (x )=x 2−x ,结合方程思想可判断C 选项的正误;利用二次函数的基本性质可判断D 选项的正误.对于A 选项,设f (x )=x 有实根x =x 0,则f(f (x 0))=f (x 0)=x 0,A 选项正确; 对于B 选项,因为a >0,若方程f (x )=x 无实根,则f (x )−x >0对任意的x ∈R 恒成立, 故f(f (x ))>f (x )>x ,从而方程f(f (x ))=x 无实根,B 选项正确;对于C 选项,取f (x )=x 2−x ,则f (12)=−14<0,函数y =f (x )有两个零点, 则f(f (x ))=[f (x )]2−f (x )=0,可得f (x )=0或f (x )=1,即x 2−x =0或x 2−x =1. 解方程x 2−x =0可得x =0或1,解方程x 2−x −1=0,解得x =1±√52. 此时,函数y =f(f (x ))有4个零点,C 选项错误;对于D 选项,因为f (f (−b2a ))<0,设t =f (−b2a ),则t =f (x )min , 因为f (t )<0且a >0,所以,函数f (x )必有两个零点,设为x 1、x 2且x 1<x 2, 则x 1<t <x 2,所以,方程f (x )=x 1无解,方程f (x )=x 2有两解,因此,若f(f(−b))<0,则函数y=f(x)与y=f(f(x))都恰有2零点,D选项正确.2a故选:ABD.小提示:思路点睛:对于复合函数y=f[g(x)]的零点个数问题,求解思路如下:(1)确定内层函数u=g(x)和外层函数y=f(u);(2)确定外层函数y=f(u)的零点u=u i(i=1,2,3,⋯,n);(3)确定直线u=u i(i=1,2,3,⋯,n)与内层函数u=g(x)图象的交点个数分别为a1、a2、a3、⋯、a n,则函数y=f[g(x)]的零点个数为a1+a2+a3+⋯+a n.11、(多选题)某市出租车收费标准如下:起步价为8元,起步里程为3km(不超过3km按起步价付费);超过3km 但不超过8km时,超过部分按每千米2.15元收费;超过8km时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.下列结论正确的是()A.出租车行驶4km,乘客需付费9.6元B.出租车行驶10km,乘客需付费25.45元C.某人乘出租车行驶5km两次的费用超过他乘出租车行驶10km一次的费用D.某人乘坐一次出租车付费22.6元,则此次出租车行驶了9km答案:BCD分析:根据题意分别计算各个选项的情况,即可得答案.对于A选项:出租车行驶4km,乘客需付费8+1×2.15+1=11.15元,故A错误;对于B选项:出租车行驶10 km,乘客需付费8+2.15×5+2.85×(10-8)+1=25.45元,故B正确;对于C选项:乘出租车行驶5km,乘客需付费8+2×2.15+1=13.30元,乘坐两次需付费26.6元,26.6>25.45,故C正确;对于D选项:设出租车行驶x km时,付费y元,由8+5×2.15+1=19.75<22.6,知x>8,因此由y=8+2.15×5+2.85(x-8)+1=22.6,解得x=9,故D正确.故选:BCD.小提示:本题考查函数模型的应用,解题要点为认真审题,根据题意逐一分析选项即可,属基础题.12、若log2m=log4n,则()A.n=2m B.log9n=log3mC.lnn=2lnm D.log2m=log8(mn)答案:BCD分析:利用对数运算化简已知条件,然后对选项进行分析,从而确定正确选项.依题意log2m=log4n,所以m>0,n>0,log2m=log22n=12log2n=log2n12,所以m=n 12,m2=n,A选项错误.log9n=log32m2=22log3m=log3m,B选项正确.lnn=lnm2=2lnm,C选项正确.log8(mn)=log23m3=33log2m=log2m,D选项正确.故选:BCD13、在平面直角坐标系中,我们把横纵坐标相等的点称之为“完美点”,下列函数的图象中存在完美点的是()A.y=﹣2x B.y=x﹣6C.y=3xD.y=x2﹣3x+4答案:ACD分析:横纵坐标相等的函数即y=x,与y=x有交点即存在完美点,依次计算即可.横纵坐标相等的函数即y=x,与y=x有交点即存在完美点,对于A,{y=xy=−2x,解得{x=0y=0,即存在完美点(0,0),对于B,{y=xy=x−6,无解,即不存在完美点,对于C,{y=xy=3x,解得{x=√3y=√3或{x=−√3y=−√3,即存在完美点(√3,√3),(−√3,−√3)对于D,{y=xy=x2−3x+4,x2−3x+4=x,即x2−4x+4=0,解得x=2,即存在完美点(2,2).故选:ACD.填空题14、化简(√a−1)2+√(1−a)2+√(1−a)33=________.答案:a-1分析:根据根式的性质即可求解.由(√a−1)2知a-1≥0,a≥1.故原式=a-1+|1-a|+1-a=a-1.所以答案是:a-115、对数型函数f(x)的值域为[0,+∞),且在(0,+∞)上单调递增,则满足题意的一个函数解析式为______.答案:f(x)=|log2(x+1)|(答案不唯一,满足f(x)=|log a(x+b)|,a>1,b≥1即可)分析:根据题意可利用对数函数的性质和图像的翻折进行构造函数.∵函数f(x)的值域为[0,+∞),且在(0,+∞)上单调递增,∴满足题意的一个函数是f(x)=|log2(x+1)|.所以答案是:f(x)=|log2(x+1)|(答案不唯一)16、函数y=log a(x+1)-2(a>0且a≠1)的图象恒过点________.答案:(0,-2)分析:由对数函数的图象所过定点求解.解:依题意,x+1=1,即x=0时,y=log a(0+1)-2=0-2=-2,故图象恒过定点(0,-2).所以答案是:(0,-2)解答题17、(1)计算0.027−13−(−16)−2+810.75+(19)0−3−1;(2)若x 12+x−12=√6,求x 2+x −2的值.答案:(1)-5;(2)14.分析:(1)由题意利用分数指数幂的运算法则,计算求得结果. (2)由题意两次利用完全平方公式,计算求得结果. (1)0.027−13−(−16)−2+810.75+(19)0−3−1=0.3﹣1﹣36+33+1−13=103−36+27+1−13=−5.(2)若x 12+x −12=√6,∴x +1x +2=6,x +1x =4,∴x 2+x ﹣2+2=16,∴x 2+x ﹣2=14.18、已知函数f (x )=2x −12x +1.(1)判断并证明f (x )在其定义域上的单调性;(2)若f (k ⋅3x )+f (3x −9x +2)<0对任意x ≥1恒成立,求实数k 的取值范围. 答案:(1)f (x )在R 上单调递增;证明见解析 (2)(−∞,43)分析:(1)设x 2>x 1,可整理得到f (x 2)−f (x 1)=2(2x 2−2x 1)(2x 2+1)(2x 1+1)>0,由此可得结论;(2)利用奇偶性定义可证得f (x )为奇函数,结合单调性可将恒成立的不等式化为k <g (x )=3x −23x −1,由g (x )单调性可求得g (x )≥43,由此可得k 的取值范围.(1)f (x )在R 上单调递增,证明如下: 设x 2>x 1,∴f (x 2)−f (x 1)=2x 2−12x 2+1−2x 1−12x 1+1=(2x 2−1)(2x 1+1)−(2x 2+1)(2x 1−1)(2x 2+1)(2x 1+1)=2(2x 2−2x 1)(2x 2+1)(2x 1+1);∵x 2>x 1,∴2x 2−2x 1>0,又2x 2+1>0,2x 1+1>0,∴f (x 2)−f (x 1)>0, ∴f (x )在R 上单调递增. (2)∵f (−x )=2−x −12−x +1=1−2x1+2x =−f (x ),∴f (x )为R 上的奇函数,由f(k⋅3x)+f(3x−9x+2)<0得:f(k⋅3x)<−f(3x−9x+2)=f(9x−3x−2),由(1)知:f(x)在R上单调递增,∴k⋅3x<9x−3x−2在[1,+∞)上恒成立;当x≥1时,3x≥3,∴k<3x−23x−1在[1,+∞)上恒成立;令g(x)=3x−23x−1,∵y=3x在[1,+∞)上单调递增,y=23x在[1,+∞)上单调递减,∴g(x)在[1,+∞)上单调递增,∴g(x)≥g(1)=3−23−1=43,∴k<43,即实数k的取值范围为(−∞,43).。

100道指数和对数运算

100道指数和对数运算

指数和对数运算一、选择题1.的值为( ).A .- B.C .-D .2.A .52a -B .2a -C3.的 值为A .1B .2C .3D .44.已知,则( )A.B.C.D.5.设,则的大小系关为( ) A.B.C.D.6.设,则的大小系是()关A . B . C . D .二、填空题7.=.8.2 log 510+log 50.25=_________.9..10.若lg2 = a ,lg3 = b ,则. 11.若,则的12.化果为__________.13.计.三、解答题14.(本小分题满12分)算计(Ⅰ);(Ⅱ).15.lg(x 2+1)-2lg(x+3)+lg2=016.(1)算计(2)解方程:17. (Ⅰ)算:计715log 2043210.064(70.250.5----++⨯知用示18.算:(Ⅰ)计(Ⅱ).19.求:(值1)(2)20.(1)算计221log 3482()27--+(2)解方程:1122log (95)2log (32)x x ---=+-.21.(1)算:计(2)已知,算计的。

值20.算:(计1);(2).23. (1)求:值(2)解方程:24.算:计0.027﹣(﹣)﹣2+256﹣3﹣1+(﹣1)0;(2).25.算:计(1)(﹣﹣9.6)0﹣+(1.5)﹣2; (2)log3+lg25+lg4+7log72.26.化求:简值(1);(2).27. (1) ;(2);28.算:(Ⅰ)计; (Ⅱ).29.算:计(1);(2).30.算求:计值(1)64﹣(﹣)0++lg2+lg50+2(2)lg14﹣2lg+lg7﹣lg18.31.算下列各式:计(1)(2a b)(﹣6a b)÷(﹣3a b )(a>0,b>0)(2).32.算:计(1)(2)33.求:值(1)(2)log 25.34.算:计(1)+;(2)+0.1﹣2+﹣3π0+.35.算:计(1)()0.5+(0.1)﹣2+()﹣3π0+;(2)2log32﹣log 3+log38﹣3log55.36.(1)求:(值0.064)(﹣﹣)﹣2÷160.75+(﹣2017)0;(2)求:值.37.算下列各式:计(1)38.算下列各式:计(1);(2.39.(10分)不使用算器,算下列各:计计题(1);(2)+lg25+lg4++(﹣9.8)0.40.(1)算计81﹣()﹣1+30;(2)算计.41.(12分)算下列各式的.计值(1);(2)lg5+(lg2)2+lg5·lg2+ln+lg·lg1000.42.化求.简值(1)(2)(lg2)2+lg20×lg5+log92•log43.43.化或求:简值(1)()+(0.008)×(2)+log 3﹣3.44.化求:简值(1);(2).45.算:计(1)log232﹣log2+log26(2)8×(﹣)0+(×)6.46.算计(1)(2)﹣9.60﹣(﹣3)+(1.5)﹣2(2)log225•log32•log59.47.算:计(1)(2).48.不用算器求下列各式的计值(1)(2)49.算下列各式:计;(2).50.算:计().()化:简51.求下列各式的值(1)0.001﹣()0+16+(•)6(2)(3)设x +x=3,求x+x﹣1的.值52.算:计0.027﹣(﹣)﹣2+256﹣3﹣1+(﹣1)0;(3).53.化求:简与值(1)(x>0,y>0)(2).54.算下列各式的计值(1)(2)(﹣)0+0.25×()﹣4.55.(1)算:(计﹣)0+8+.(2)化:简log 3.56.算下列各式:计(1)(×)6+()﹣4()﹣×80.25﹣(﹣2017)0(2)log2.56.25+lg0.01+ln.57.算:(计1)0.027﹣(﹣)﹣2+256﹣3﹣1+(﹣1)0(2)(3).58.算下列各式的:计值(1)0.064﹣(﹣)0+160.75+0.01;(2).59.算:计(1);(2)lg ﹣lg +lg.60.算下列各式的:计值(1);(2).61.(1)算:计8+()(﹣﹣1)0;(2)算:计9+log68﹣2log.62.不用算器求下列各式的计值(1)(2)(﹣﹣9.6)0﹣(3)+(1.5)﹣2(2)lg5+lg2﹣(﹣)﹣2+(﹣1)0+log28.试卷答案1.D2.B略3.B4.C5.A6.A。

指数函数与对数函数练习题(含详解)

指数函数与对数函数练习题(含详解)

指数函数1.指数函数概念一般地,函数叫做指数函数,其中是自变量,函数的定义域为。

2。

指数函数函数性质:函数名称指数函数定义函数且叫做指数函数图象定义域值域过定点图象过定点,即当时,.奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,从逆时针方向看图象,逐渐增大;在第二象限内,从逆时针方向看图象,逐渐减小.对数函数及其性质1.对数函数定义一般地,函数叫做对数函数,其中是自变量,函数的定义域.2。

对数函数性质:函数名称对数函数定义函数且叫做对数函数图象定义域值域过定点图象过定点,即当时,。

奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,从顺时针方向看图象,逐渐增大;在第四象限内,从顺时针方向看图象,逐渐减小。

指数函数习题一、选择题1.定义运算a⊗b=错误!,则函数f(x)=1⊗2x的图象大致为()2.函数f(x)=x2-bx+c满足f(1+x)=f(1-x)且f(0)=3,则f(b x)与f(c x)的大小关系是( )A.f(b x)≤f(c x)B.f(b x)≥f(c x)C.f(b x)>f(c x)D.大小关系随x的不同而不同3.函数y=|2x-1|在区间(k-1,k+1)内不单调,则k的取值范围是()A.(-1,+∞) B.(-∞,1)C.(-1,1) D.(0,2)4.设函数f(x)=ln[(x-1)(2-x)]的定义域是A,函数g(x)=lg(错误!-1)的定义域是B,若A⊆B,则正数a的取值范围( )A.a〉3 B.a≥3C.a〉 5 D.a≥错误!5.已知函数f(x)=错误!若数列{a n}满足a n=f(n)(n∈N*),且{a n}是递增数列,则实数a的取值范围是()A.[错误!,3) B.(错误!,3)C.(2,3) D.(1,3)6.已知a〉0且a≠1,f(x)=x2-a x,当x∈(-1,1)时,均有f(x)<错误!,则实数a的取值范围是( )A.(0,错误!]∪[2,+∞) B.[错误!,1)∪(1,4]C.[错误!,1)∪(1,2] D.(0,错误!)∪[4,+∞)二、填空题7.函数y=a x(a>0,且a≠1)在[1,2]上的最大值比最小值大错误!,则a的值是________.8.若曲线|y|=2x+1与直线y=b没有公共点,则b的取值范围是________.9.(2011·滨州模拟)定义:区间[x1,x2](x1〈x2)的长度为x2-x1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

指数运算练习题
1、用根式的形式表示下列各式)0(>a (1)5
1a = (2)34
a = (3)35
a -= (4)32
a
-
=
2、用分数指数幂的形式表示下列各式: (1)34
y x = (2)
)0(2>=m m
m
(3
= (4
= ; (5)a a a = ;
3、求下列各式的值
(1)2
38= ;(2)12
100-
= ; (3)3
1()4
-= ;(4)3
416()81-=
(5)12
2
[(]-
= (6)(1
2
2
1⎡⎤⎢⎥⎣⎦
= (7)=3
264
4.化简
(1)=••12
74331a
a a (2)=֥654323
a a a (3)=÷-•a a a 9)(34
323
(4)322
a
a a •= (5)3
1
63)278(--b a = (7)()0,053542
15
658≠≠÷⋅⎪⎪⎭
⎫ ⎝

-
-b a b a b
a =
5.计算 (1)
43
512525÷
-
(2) (3)21
0319)4
1
()2(4)21(----+-⋅-
()5
.02
1
2001.04122432-⎪⎭

⎝⎛⋅+⎪⎭⎫ ⎝⎛-
- (5)48
37
3271021.097203
225
.0+
-⎪


⎝⎛++⎪

⎫ ⎝⎛-
-π (6)241
30.75
3323(3)0.04[(2)]168
----++-+
(7)(
)
3
263
425.00
3
1323228765
.1⎪⎭
⎫ ⎝⎛--⨯+⨯+⎪⎭

⎝⎛-⨯-
6.解下列方程
(1)13
1
8
x
-
= (2)151243
=-x (3)1321(0.5)4x x --= 7.(1).已知112
2
3a a -+=,求下列各式的值(1)1a a -+= ;(2)22
a a -+=
(2).若1
3a a
-+=,求下列各式的值:(1)1
12
2
a a -
+= ;
(2)22
a a -+= ; (3).使式子34
(12)
x --有意义的x 的取值范围是 _.
(4).若32a
=,1
35b -=,则323
a b
-的值= .
对数运算练习题
一、选择题
1、以下四式中正确的是( )
A 、log 22=4
B 、log 21=1
C 、log 216=4
D 、log 221=4
1 2、下列各式值为0的是( )
A 、10
B 、log 33
C 、(2-3)°
D 、log 2∣-1∣ 3、2
5
1
log 2
的值是( )
A 、-5
B 、5
C 、
51 D 、-5
1 4、若m =lg5-lg2,则10m
的值是( ) A 、
2
5
B 、3
C 、10
D 、1 5、设N =
3log 12+3
log 1
5,则( ) A 、N =2 B 、N =2 C 、N <-2 D 、N >2 6、在)5(log 2a b a -=-中,实数a 的范围是( )
A 、 a >5或a <2
B 、 25<<a
C 、 23<<a 或35<<a
D 、 34<<a
7、 若log [log (log )]4320x =,则x -12
等于( ) A 、
1
4
2 B 、
1
2
2 C 、 8
D 、 4
8、3
3
4
log
的值是( ) A 、 16 B 、 2 C 、 3 D 、 4
9、 n
n ++1log
(n n -+
1)等于( ) A 、1 B 、-1 C 、2 D 、-2
二、填空题
10、用对数形式表示下列各式中的x
10x
=25:____; 2x
=12:____;4x
=6
1
:____ 11、lg1++=_____________
12、Log 155=m,则log 153=________________
13、14lg 2lg 2+-+∣lg5-1∣=_________ 14.(1).
12a a -=, 则 log 12 3= (2).6log 18log )3(log 2
62
6+= .
(3)
____________50lg 2lg 5lg 2
=⋅+; (4)5log 38log 9
32
log 2log 2533
3-+- =________ (5)25lg 50lg 2lg 20lg 5lg -⋅-⋅=__________
15 、若lg2=a ,lg3=b ,则log 512=________ 19、 3a
=2,则log 38-2log 36=________ 16、 若2log 2,log 3,m n
a a m n a +===_______ 21、 lg25+lg2lg50+(lg2)2=
三、解答题 17、求下列各式的值
⑴2log 28 ⑵3log 39 ⑶252
log 1
⑷3
73
log 1
18、求下列各式的值
⑴lg10-5
⑵ ⑶log 2
81
⑷log 27
181 19、求lg 25+lg2·lg25+lg 2
2的值 20、化简计算:log 2
251·log 381·log 59
1
21. 化简:()()24525log 5+log 0.2log 2+log 0.5.
22. 若()()lg lg 2lg 2lg lg x y x y x y -++=++,求
x
y
的值. 23.已知 2log 3 = a , 3log 7 = b ,用 a ,b 表示42log 56.
24计算,(1)0.21log 3
5
-; (2)4912
log 3log 2log ⋅- (3)(log 25+log 4125)5
log 2
log 33⋅
25.计算:7log 35log )13(3log )9
71(551
lg 4321
-+--+-。

相关文档
最新文档