高教版中职数学基础模块上册1.3集合的运算

合集下载

第1章集合课件-高一上学期高教版(2021)中职数学基础模块上册

第1章集合课件-高一上学期高教版(2021)中职数学基础模块上册
数学(基础模块)
第1章 集 合
1.1 • 集合的概念 1.2 • 集合之间的关系 1.3 • 集合的基本运算 1.4 • 充要条件
内容简介:本章主要讲述集合的有关概念及集合的表 示方法、集合之间的关系、集合的运算、充要条件,主要通 过集合语言的学习与运用,培养学生的数学思维能力。
学习目标:理解集合的有关概念,并掌握集合的表示 方法,掌握集合之间的关系和集合的运算,了解充要条件。
1.2.1 子集与真子集
1.子集 一般地,如果集合B中的每一个元素都是集合A的元素, 那么集合B称为集合A的子集,记作B A(或 A B ),读作 “B包含于A”(或“A包含B”).
显然,任何一个集合A的所有元素都属于它本身,所以任 何一个集合都是它自身的子集,即A A .
我们规定,空集是任何集合的子集.也就是说,对于任 何一个集合A,都有 A .
例2 用符号“∈”或“∉”填空: (1) 5_____N, -2_____N, 3.7_____N; (2) 0_____Z, 2.3_____Z, -5_____Z; (3) π_____Q, -1.6_____Q, 9.21_____Q; (4) 3 _____R, -2_____R, 4.7_____R.
给定一个集合A,如果a是集合A的元素,就说a属于A,记 作a A ;如果a不是集合A的元素,就说a不属于A,记作a A .
一个集合可以包含有限个元素,也可以包含无限个元素.我 们把含有有限个元素的集合称为有限集,如方程x2 9 0 的解 集;含有无限个元素的集合称为无限集,如N,N, Z,Q,R等.
g ,o ,d.
(2)解方程x2 2x 3 0 得
所以该方程的解集为
x1 3,x2 1,
3,1 .

高教版中职教材—数学(基础模块)(上册)电子教(学)案

高教版中职教材—数学(基础模块)(上册)电子教(学)案

【课题】1.1 集合的概念【教学目标】知识目标:(1)理解集合、元素及其关系;(2)掌握集合的列举法与描述法,会用适当的方法表示集合.能力目标:通过集合语言的学习与运用,培养学生的数学思维能力.【教学重点】集合的表示法.【教学难点】集合表示法的选择与规范书写.【教学设计】(1)通过生活中的实例导入集合与元素的概念;(2)引导学生自然地认识集合与元素的关系;(3)针对集合不同情况,认识到可以用列举和描述两种方法表示集合,然后再对表示法进行对比分析,完成知识的升华;(4)通过练习,巩固知识.(5)依照学生的认知规律,顺应学生的学习思路展开,自然地层层推进教学.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】},99,正偶数集可以表示为}2,4,6,.0的解集;)所有奇数组成的集合;)由第一象限所有的点组成的集合.用描述法表示集合关键是找出元素的特征性质.0得12x-,1 2⎫-⎬⎭;)奇数集合}∈Z;)第一象限所有的点组成的集合为(){,x y x>的解集.强化思想本次课学了哪些内容?重点和难点各是什么?【课题】1.2 集合之间的关系【教学目标】知识目标:(1)掌握子集、真子集的概念;(2)掌握两个集合相等的概念;(3)会判断集合之间的关系.能力目标:通过集合语言的学习与运用,培养学生的数学思维能力.【教学重点】集合与集合间的关系及其相关符号表示.【教学难点】真子集的概念.【教学设计】(1)从复习上节课的学习内容入手,通过实际问题导入知识;(2)通过实际问题引导学生认识真子集,突破难点;(3)通过简单的实例,认识集合的相等关系;(4)为学生们提供观察和操作的机会,加深对知识的理解与掌握.【教学备品】教学课件.【课时安排】2课时.(90分钟) 【教学过程】}6x<.是用来表示集合与集合之间关系的符号;”是用来表示元素与集合之间关系的符号.首先要分清楚对象,然后再根据关系,正确选用符号.的元素,因此}6x<的元素,}6x<.}2的子集,并且集合叫做集合AB(或B A),读作“.空集是任何非空集合的真子集.对于集合A、B、C,如果C A {1,3,5}*巩固知识典型例题例5 用适当的符号填空:⑴{1,3,5} {1,2,3,4,5,6};⑵2x x={3,-3};{|9}⑶{2} { x| |x|=2 };⑷2 N;⑸a{ a };⑹{0} ;⑺{1,1}-2x x+=.{|10}解⑴{1,3,5}{1,2,3,4,5,6};⑵{x|x2=9}={3,-3};⑶ 因为{|2}{2,2}x x ==-,所以{2}{2}x x =; ⑷ 2∈N ; ⑸ a ∈{a }; ⑹ {0};⑺ 因为2{|10}x x +==,所以{1,1}-2{|10}x x +=.【课题】 1.3集合的运算(1)【教学目标】知识目标:(1)理解并集与交集的概念; (2)会求出两个集合的并集与交集.能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力;(2)通过交集与并集问题的研究,培养学生的数学思维能力.【教学重点】交集与并集.【教学难点】用描述法表示集合的交集与并集.【教学设计】(1)通过生活中的实例导入交集与并集的概念,提高学习兴趣;(2)通过对实例的归纳,针对用“列举法”及“描述法”表示集合的运算的不同特征,采用由浅入深的训练,帮助学生加深对知识的理解;(3)通过学生的解题实践,总结比较,理解交集与并集的特征,完成知识的升华;(4)讲与练结合,教学要符合学生的认知规律.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】过程行为行为意图间B={王燕,李炎,王勇,孙颖};C={王燕,王勇}.那么这三个集合之间有什么关系?问题3 集合A={直角三角形};B={等腰三角形};C={等腰直角三角形}.那么这三个集合之间有什么关系?解决通过上面的三个问题的思考,可以看出集合C中的元素是由既属于集合A又属于集合B中的所有元素构成的,也就是由集合A、B的相同元素所组成的,这时,将C称作是A与B 的交集.引导分析归纳总结自我分析了解式启发学生思考集合元素之间的关系5*动脑思考探索新知一般地,对于两个给定的集合A、B,由集合A、B的相同元素所组成的集合叫做A与B的交集,记作A B,读作“A 交B”.即{}A B x x A x B=∈∈且.集合A与集合B的交集可用下图表示为:求两个集合交集的运算叫做交运算.总结归纳仔细分析讲解关键词语强调图像含义思考理解记忆观察带领学生总结三个问题的共同点得到交集的定义10*巩固知识典型例题过 程行为 行为 意图 间例1 已知集合A ,B ,求A ∩B . (1) A ={1,2},B ={2,3}; (2) A ={a ,b },B ={c ,d , e , f }; (3) A ={1,3,5},B = ∅; (4) A ={2,4},B ={1,2,3,4}.分析 集合都是由列举法表示的,因为 A ∩B 是由集合A 和集合B 中相同的元素组成的集合,所以可以通过列举出集合的所有相同元素得到集合的交集.解 (1) 相同元素是2,A ∩B ={1,2}∩{2,3 }={2};(2) 没有相同元素A ∩B ={a , b }∩{c , d , e , f }=∅; (3) 因为A 是含有三个元素的集合, ∅是不含任何元素的空集,所以它们的交集是不含任何元素的空集,即A ∩B =∅;(4) 因为A 中的每一个元素的都是集合B 中的元素,所以A ∩B =A .例2设(){},|0A x y x y =+=,(){},|4B x y x y =-=,求AB .分析 集合A 表示方程0x y +=的解集;集合B 表示方程4x y -=的解集.两个解集的交集就是二元一次方程组0,4x y x y +=⎧⎨-=⎩的解集. 解 解方程组0,4.x y x y +=⎧⎨-=⎩得2,2x y =⎧⎨=-⎩.所以(){}2,2AB =-.例3 设{}|12A x x =-<,{}|03B x x =<,求AB .分析 这两个集合都是用描述法表示的集合,并且无法列举出集合的元素.我们知道,这两个集合都可以在数轴上表示出来,如下图所示.观察图形可以得到这两个集合的交集.解 {}{}|12|03AB x x x x =-<<{}|02x x =<.说明 强调 引领 讲解说明 引领 强调含义观察 思考 主动 求解 观察 思考 求解 领会通过 例题 进一 步领 会交 集 注意 观察 学生 是否 理解 知识 点 复习 方程 组的 解法 突出 数轴 的作 用 强调 数形 结合B.}y=,求B.23巡视}4x,求A B.指导11名,那么该班有多少名介绍={该班团员};={该班非团B.}2,}4B x,求A B.整体建构思考并回答下面的问题:.集合的并集和交集有什么区别?(含义和符号).在进行集合的并运算和交运算时各自的特点是什么?过 程行为 行为 意图 间B 的所有元素组成的集合叫做集合A 与集合B 的并集{}B x A x x B A ∈∈=或 ;(2)交运算是寻找两个集合都有的公共部分,并运算是将两个集合所有的元素进行合并.(3)列举法求解时要不重不漏,描述法求解时要利用好数轴并注意端点的处理.归纳强调 回答 理解 强化 的形 式强 调重 点突 破难 点70 *巩固知识 典型例题 例5 设{}{}2,1,0,1,5,3,2-==B A ,求B A ,B A . 解 {}{}{}22,1,0,15,3,2=-= B A ;{}{}2,1,0,15,3,2-= B A {}5,3,2,1,0,1-=.例6 设{0{1A x x B x x =<=<≤2},≤3},求B A ,B A . 解 将集合A 、B 在数轴上表示:{1AB x x =<≤2},{0AB x x =<≤3}.引领 分析 讲解 说明 领会 思考 求解进行 并交 的对 比例 题讲 解巩 固所 归纳 的强 化点75 *归纳小结 强化思想本次课学了哪些内容?重点和难点各是什么? *自我反思 目标检测本次课采用了怎样的学习方法?你是如何进行学习的?你的学习效果如何?1.{}{}1,0,1,2,0,2,4,6A B =-=,求B A ,B A .2.{}{}22,04A x xB x x=-<=,求B A ,B A .引导 提问 巡视 指导 回忆 反思 动手 求解 培养 学生 总结 反思 学习 过程 的能 力 85 *继续探索 活动探究(1)读书部分: 教材章节1.3;【课题】1.3集合的运算(2)【教学目标】知识目标:(1)理解全集与补集的概念;(2)会求集合的补集.能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力;(2)通过全集与补集问题的研究,培养学生的数学思维能力.【教学重点】集合的补运算.【教学难点】集合并、交、补的综合运算.【教学设计】(1)通过生活中的实例导入全集与补集的概念,提高学生的学习兴趣;(2)通过对实例的归纳,针对用“列举法”及“描述法”表示集合的运算的不同特征,采用由浅入深的训练,帮助学生加深对知识的理解;(3)通过学生的解题实践,总结比较,理解交集与并集的特征,完成知识的升华;(4)讲练结合,数形结合,教学要符合学生的认知规律.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】B,A B.}2,}4明确=,求A B,A B.B x下面我们将学习另外一种集合的运算.介绍兴趣导入过 程行为 行为 意图 间结论可以看到,P 、Q 都是U 的子集,并且集合Q 是由属于集合U 但不属于集合P 的元素所组成的集合.总结 归纳领会素的 关系15*动脑思考 探索新知 概念如果一个集合含有我们所研究的各个集合的全部元素,在研究过程中,可以将这个集合叫做全集,一般用U 来表示,所研究的各个集合都是这个集合的子集.在研究数集时,常把实数集R 作为全集.如果集合A 是全集U 的子集,那么,由U 中不属于A 的所有元素组成的集合叫做A 在全集U 中的补集. 表示集合A 在全集U 中的补集记作UA ,读作“A 在U 中的补集”.即{}|U A x x U x A =∈∉且.如果从上下文看全集U 是明确的,特别是当全集U 为实数集R 时,可以省略补集符号中的U ,将UA 简记为A ,读作“A 的补集”.集合A 在全集U 中的补集的图形表示,如下图所示:求集合A 在全集U 中的补集的运算叫做补运算.仔细 分析 讲解强调 引导说明思考 理解 记忆 观察 领会特别 注意 讲解 关键 词的 含义 强调 表示 方法 的书 写规 范性 充分 利用 图形 的直 观性20*巩固知识 典型例题通过过 程行为 行为 意图 间例1设{}0,1,2,3,4,5,6,7,8,9U =,{}1,3,4,5A =,{}3,5,7,8B =.求A U及B U .分析 集合A 的补集是由属于全集U 而且不属于集合A 的元素组成的集合. 解{}0,2,6,7,8,9A =U ;{}0,1,2,4,6,9B =U .例2 设U =R ,{}|12A x x =-<,求A .分析 作出集合A 在数轴上的表示,观察图形可以得到A .解 {}|12A x xx =->或.说明 通过观察图形求补集时,要特别注意端点的取舍.本题中,因为端点−1不属于集合A ,所以−1属于其补集A ;因为端点2属于集合A ,所以2不属于其补集A .由补集定义和上面的例题,可以得到: 对于非空集合A :A ∩(UA )=∅,A ∪(UA )=U ,U U=∅,U ∅=U ,U(UA )=A .说明讲解 引领引导 分析 讲解说明 理解观察 思考 主动 求解 观察 思考 理解 自我 总结例题 进一 步领 会补 集的 含义 及其 运算 特点 突出 数轴 的作 用 交给 学生 自我 发现 归纳35*运用知识 强化练习 教材 练习1.3.31.设{}U =小于10的正整数,{}147A =,,,求UA .2.设U R =,{}|24A x x=-,求A .提问巡视 指导互动 求解 交流反馈 学习 效果45*理论升华 整体建构以学A U,B U ,()()ABU U ,)()UU A B,()U A B ,()A B U.分析 这些集合都是用列举法表示的,可以通过列举集合的元素分别得到所求的集合. 解{}0,2,6,7,8,9A =U ;{}0,1,2,4,6,9B =U ()(){}0,2,6,9UU A B =; ()(){}0,1,2,4,6,7,8,9UU A B=因为{}3,5AB =,所以 (){0,1,2,4,6,7,8,9U AB =因为{1,3,4,5,7,8AB =(){0,2,6,9UA B =U A ,U B ,A B ,A B .分析 在理解集合运算的含义基础上,充分运用数轴的表示来进行求解.解 因为全集U =R ,A ={x | x U A ={x | U B ={x | {B x =-A B =R .B ,B ,UA ,U B ,()()U U A B ,()()U U A B .设{}|0180U αα=<<,{}|090A αα=<<,{}|90180αα=<<,求UA ,U B,()()U U A B ,)()U U A B .提问巡视 指导归纳小结 强化思想【课题】1.4 充要条件【教学目标】知识目标:了解“充分条件”、“必要条件”及“充要条件”.能力目标:通过对条件与结论的研究与判断,培养思维能力.【教学重点】(1)对“充分条件”、“必要条件”及“充要条件”的理解.(2)符号“⇒”,“⇐”,“⇔”的正确使用.【教学难点】“充分条件”、“必要条件”、“充要条件”的判定.【教学设计】(1)以学生的活动为主线.在条件与结论的关系的判断上,尽可能多的教给学生在独立尝试解决问题的基础上进行交流;(2)由易到难,具有层次性.从内涵上引导学生体会复合命题中条件和结论的关系. 【教学备品】教学课件.【课时安排】2课时.(90分钟) 【教学过程】【课题】2.1不等式的基本性质【教学目标】知识目标:⑴理解不等式的基本性质;⑵了解不等式基本性质的应用.能力目标:⑴了解比较两个实数大小的方法;⑵培养学生的数学思维能力和计算技能.【教学重点】⑴比较两个实数大小的方法;⑵不等式的基本性质.【教学难点】比较两个实数大小的方法.【教学设计】(1)以实例引入知识内容,提升学生的求知欲;(2)抓住解不等式的知识载体,复习与新知识学习相结合;(3)加强知识的巩固与练习,培养学生的思维能力.【教学备品】教学课件.【课时安排】1课时.(45分钟) 【教学过程】【课题】2.2区间【教学目标】知识目标:⑴掌握区间的概念;⑵用区间表示相关的集合.能力目标:通过数形结合的学习过程,培养学生的观察能力和数学思维能力.【教学重点】区间的概念.【教学难点】区间端点的取舍.【教学设计】⑴实例引入知识,提升学生的求知欲;⑵数形结合,提升认识;⑶通过知识的巩固与练习,培养学生的思维能力;⑷通过列表总结知识,提升认知水平.【教学备品】教学课件.【课时安排】1课时.(45分钟)【教学过程】}4x引导讲解过 程行为 行为 意图 间只含左端点的区间叫做右半开区间,如集合{|24}x x <表示的区间是右半开区间,用记号[2,4)表示;只含右端点的区间叫做左半开区间,如集合{|24}x x <表示的区间是左半开区间,用记号(2,4]表示.引入问题中,新时速旅客列车的运行速度值(单位:公里/小时)区间为(200,350).强调 细节领会强调 各区 间的 规范 书写10*巩固知识 典型例题例1 已知集合()1,4A =-,集合[0,5]B =,求:AB ,A B .解 两个集合的数轴表示如下图所示,(1,5]A B =-, [0,4)A B =.质疑 分析 讲解 思考 理解 复习 相关 集合 运算 知识 15 *运用知识 强化练习 教材练习2.2.11.已知集合(2,6)A =,集合()1,7B =-,求A B ,A B .2.已知集合[3,4]A =-,集合[1,6]B =,求A B ,A B .3. 已知集合(1,2]A =-,集合[0,3)B =,求A B ,A B .巡视辅导 思考 解题 交流 反馈 学习 效果20*动脑思考 明确新知 问题集合{|2}x x >可以用数轴上位于2右边的一段不包括端点的射线表示,如何用区间表示? 解决集合{|2}x x >表示的区间的左端点为2,不存在右端点, 质疑思考过 程行为 行为 意图 间为开区间,用记号(2,)+∞表示.其中符号“+∞”(读作“正无穷大”),表示右端点可以任意大,但是写不出具体的数.类似地,集合{|2}x x <表示的区间为开区间,用符号(,2)-∞表示(“-∞”读作“负无穷大”). 集合{|2}x x 表示的区间为右半开区间,用记号[2,)+∞表示;集合{|2}x x表示的区间为左半开区间,用记号(,2]-∞表示;实数集R 可以表示为开区间,用记号(,)-∞+∞表示. 注意“-∞”与“+∞”都是符号,而不是一个确切的数.讲解 说明 强调 细节领会 记忆 理解 明确学习 各种 区间25*巩固知识 典型例题例2 已知集合(,2)A =-∞,集合(,4]B =-∞,求AB ,A B .解 观察如下图所示的集合A 、B 的数轴表示,得 (1)(,4]AB B =-∞=;(2)(,2)A B A =-∞=.例3 设全集为R ,集合(0,3]A =,集合(2,)B =+∞, (1)求A ,B ;(2)求AB .解 观察如下图所示的集合A 、B 的数轴表示,得 (1) (,0](3,)A =-∞+∞,(,2]B =-∞; (2) (0,2]AB =.质疑 说明 讲解 启发 强调观察 思考 领会 主动 求解通过 例题 巩固 区间 的概 念 注意 规范 书写30*理论升华 整体建构B,A B.(0,3),求A,B,B A.巡视指导*归纳小结强化思想(1)本次课学了哪些内容?(2)通过本次课学习,你会解决哪些新问题了?引导【课题】2.3 一元二次不等式【教学目标】知识目标:⑴了解方程、不等式、函数的图像之间的联系;⑵掌握一元二次不等式的图像解法.能力目标:⑴通过对方程、不等式、函数的图像之间的联系的研究,培养学生的观察能力与数学思维能力;⑵通过求解一元二次不等式,培养学生的计算技能.【教学重点】⑴方程、不等式、函数的图像之间的联系;⑵一元二次不等式的解法.【教学难点】一元二次不等式的解法.【教学设计】⑴从复习一次函数图像、一元一次方程、一元一次不等式的联系入手;⑵类比观察一元二次函数图像,得到一元二次不等式的图像解法;⑶加强知识的巩固与练习,培养学生的数学思维能力;⑷讨论、交流、总结,培养团队精神,提升认知水平.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】教学过程教师行为学生行为教学意图时间*揭示课题2.3 一元二次不等式*回顾思考复习导入问题一次函数的图像、一元一次方程与一元一次不等式之间存在着哪些联系?解决观察函数26y x=-的图像:介绍提出问题了解思考()0或()0(a≠感受新知二次函数的图像、一元二次方程与一元二次不等式之间存过 程行为 行为 意图 间解法利用一元二次函数2y ax bx c=++()0a >的图像可以解不等式20ax bx c ++>或20ax bx c ++<.(1)当240b ac ∆=->时,方程20ax bx c ++=有两个不相等的实数解1x 和2x 12()x x <,一元二次函数2y ax bx c =++的图像与x 轴有两个交点1(,0)x ,2(,0)x (如图(1)所示).此时,不等式20ax bx c ++<的解集是()12,x x ,不等式20a x bx c ++>的解集是12(,)(,)x x -∞+∞;(1) (2) (3) (2)当240b ac ∆=-=时,方程20ax bx c ++=有两个相等的实数解0x ,一元二次函数2y ax bx c =++的图像与x 轴只有一个交点0(,0)x (如图(2)所示).此时,不等式20ax bx c ++<的解集是∅;不等式20ax bx c ++>的解集是00(,)(,)x x -∞+∞.(3)当240b ac ∆=-<时,方程20ax bx c ++=没有实数解,一元二次函数2y ax bx c =++的图像与x 轴没有交点(如图(3)所示).此时,不等式20ax bx c ++<的解集是∅;不等式20ax bx c ++>的解集是R .归纳 总结讲解 分析 强调 讲解思考 观察 理解 领会 记忆引导 学生 经历 由特 殊到 一般 的提 炼过 程 强化 图像 作用 熟练 数形 结合 应用2(,)x +∞0(,)x +∞0([)2,x +∞R 0<12,)x∅]12,x }0x224b ac x =-.典型例题解下列各一元二次不等式:0.首先判定二次项系数是否为正数,再研究对应一元二次方程解的情况,最后对照表格写出不等式的解集.26x --=0的解(3,)+∞.)29x <可化为290-=的解集为)253x x -两边同乘1-,得3。

中职数学基础模块上册知识点归纳

中职数学基础模块上册知识点归纳

中职数学基础模块上册知识点归纳一、集合集合是由若干确定的、互不相同的元素组成的。

集合的表示方法有:列举法、描述法和集合的图示法。

二、集合的运算1. 并集:若A、B是两个集合,A∪B={x|x∈A 或x∈B},读作“A并B”,表示由A和B的所有元素组成的集合。

2. 交集:若A、B是两个集合,A∩B={x|x∈A 且x∈B},读作“A交B”,表示既属于A又属于B的元素组成的集合。

3. 补集:设U是一个集合,A是U的一个子集,由U中所有不属于A 的元素组成的集合叫做A的补集,记作A的·,A'={x|x∈U 且 x∉A}。

三、函数函数是一种对应关系,每一个自变量对应唯一的因变量。

函数的表示方法有:映射图、用公式表示和用表格表示。

四、函数的性质1. 有界性:有上界和下界。

2. 单调性:增函数、减函数和常函数。

3. 奇偶性:奇函数和偶函数。

4. 周期性:以T为周期的周期函数。

五、一元二次方程1. 一元二次方程的解的判别式Δ=b²-4ac,若Δ>0,解为两个不相等的实数;若Δ=0,解为两个相等的实数;若Δ<0,无实根。

2. 一元二次方程的解x=(-b±√Δ)/2a。

3. 一元二次方程的根的性质,与根有关的因式分解。

六、统计1. 统计数据的整理与分析,频率分布表和频率分布直方图。

2. 统计数据的均值、中位数、众数和四分位数。

3. 离均差、方差以及标准差的计算和应用。

七、概率1. 随机事件及其概率。

2. 事件的概率计算,互斥事件和对立事件。

3. 概率的加法定理和乘法定理。

以上是中职数学基础模块上册的知识点归纳。

在学习中职数学基础模块上册的过程中,我们要重视基础知识的掌握,并能够扎实地掌握各种特定概念和解题方法。

只有在建立扎实的基础上,我们才能够更好地掌握数学知识,提高数学解题的能力。

在实际生活中,数学无处不在。

掌握了这些数学基础知识,我们在解决实际问题时能够灵活运用数学方法,更好地理解和应用数学知识。

高教版中职教材—数学(基础模块)上册电子教案

高教版中职教材—数学(基础模块)上册电子教案

【课题】1.1 集合的概念【教学目标】知识目标:(1)理解集合、元素及其关系;(2)掌握集合的列举法与描述法,会用适当的方法表示集合.能力目标:通过集合语言的学习与运用,培养学生的数学思维能力.【教学重点】集合的表示法.【教学难点】集合表示法的选择与规范书写.【教学设计】(1)通过生活中的实例导入集合与元素的概念;(2)引导学生自然地认识集合与元素的关系;(3)针对集合不同情况,认识到可以用列举和描述两种方法表示集合,然后再对表示法进行对比分析,完成知识的升华;(4)通过练习,巩固知识.(5)依照学生的认知规律,顺应学生的学习思路展开,自然地层层推进教学.【上课时间】【课时安排】1课时【教学过程】*新阶段学习导入语介绍中职阶段学习数学的必要性,数学的学习内容、学习方法、学习特点等等.同学们就要开始新的人生阶段了,很高兴可以和大家一起度过这段美好的时光.希望同学们可以通过自己不懈的努力,在毕业后能够找到一个合适的工作,能够独立生存,能够成为为家庭、为企业、为社会做出自我贡献的能工巧匠.当然要达到这样的目的需要你脚踏实地的认真的学做人、学做事,那么现在请让我们从学习开始……1.学习——旅程学习是一段旅程,对知识的探求永无止境,而且这段旅程可以从任何时候开始!未来的成功在现在脚下!2.老师——导游与大家一起开始这一段新的旅程、一起分享学习中的快乐、一起体会成长与进步的滋味. 3.目的——运用我们应当能够理解数学,而且通过运用数学进行沟通和推理,在现实生活中应用数学来解决问题,养成一种数学上的自信心理.请不要害怕学数学,每个人都可以根据自己的能力和实际需要学好自己的数学.4.准备——必需品轻松愉快的心情、热情饱满的精神、全力以赴的态度、踏实努力的行动、科学认真的方法、及时真诚的交流.回答为什么要学数学?学什么样的数学?怎么学数学?*揭示课题缤纷多彩的世界,众多繁杂的现象,需要我们去认识.将对象进行分类和归类,加强对其属性的认识,是解决复杂问题的重要手段之一.例如,按照使用功能分类存放物品,在取用时就十分方便.这就是我们将要研究学习的1.1集合.*创设情景兴趣导入某商店进了一批货,包括:面包、饼干、汉堡、彩笔、水笔、橡皮、果冻、薯片、裁纸刀、尺子.那么如何将这些商品放在指定的篮筐里?显然,面包、饼干、汉堡、果冻、薯片放在食品篮筐,彩笔、水笔、橡皮、裁纸刀、尺子放在文具篮筐.面包、饼干、汉堡、果冻、薯片组成了食品集合,彩笔、水笔、橡皮、裁纸刀、尺子组成了文具集合.而面包、饼干、汉堡、果冻、薯片、彩笔、水笔、橡皮、裁纸刀、尺子就是其对应集合的元素.*动脑思考探索新知由某些确定的对象组成的整体叫做集合,简称集.组成集合的对象叫做这个集合的元素.如大于2并且小于5的自然数组成的集合是由哪些元素组成?一般采用大写英文字母,,,a b c…表示集合的元素.A B C…表示集合,小写英文字母,,,拓展集合中的元素具有下列特点:(1)互异性:一个给定的集合中的元素都是互不相同的;(2)无序性:一个给定的集合中的元素排列无顺序;(3) 确定性:一个给定的集合中的元素必须是确定的.不能确定的对象,不能组成集合.例如,某班跑得快的同学,就不能组成集合.例1下列对象能否组成集合:(1)所有小于10的自然数;(2)某班个子高的同学;(3)方程210x->的所有解.x-=的所有解;(4)不等式20解 (1) 由于小于10的自然数包括0、1、2、3、4、5、6、7、8、9十个数,它们是确定的对象,所以它们可以组成集合.(2)由于个子高没有具体的标准,对象是不确定的,因此不能组成集合.(3)方程210x -=的解是−1和1,它们是确定的对象,所以可以组成集合.(4)解不等式20x ->,得2x >,它们是确定的对象,所以可以组成集合.由方程的所有解组成的集合叫做这个方程的解集.由不等式的所有解组成的集合叫做这个不等式的解集.像方程210x -=的解组成的集合那样,由有限个元素组成的集合叫做有限集.像不等式x -2>0的解组成的集合那样,由无限个元素组成的集合叫做无限集.像平面上与点O 的距离为2 cm 的所有点组成的集合那样,由平面内的点组成的集合叫做平面点集.由数组成的集合叫做数集.方程的解集与不等式的解集都是数集.所有自然数组成的集合叫做自然数集,记作N .所有正整数组成的集合叫做正整数集,记作*N 或+Ζ.所有整数组成的集合叫做整数集,记作Z .所有有理数组成的集合叫做有理数集,记作Q .所有实数组成的集合叫做实数集,记作R .不含任何元素的集合叫做空集,记作∅.例如,方程x 2+1=0的实数解的集合里不含有任何元素,所以这个解集就是空集元素a 是集合A 的元素,记作a A ∈(读作“a 属于A ”), a 不是集合A 的元素,记作a A ∉(读作“a 不属于A ”).集合中的对象(元素)必须是确定的.对于任何的一个对象,或者属于这个集合,或者不属于这个集合,二者必居其一.*运用知识强化练习练习1.1.11.用符号“∈”或“∉”填空:(1)−3 N,0.5 N,3 N;(2)1.5 Z,−5 Z,3 Z;(3)−0.2 Q,πQ,7.21 Q;(4)1.5 R,−1.2 R,πR.2.指出下列各集合中,哪个集合是空集?(1)方程210x+=的解集;(2)方程22x+=的解集.*继续探索活动探究(1)阅读理解:教材1.1,学习与训练1.1;(2)书面作业:教材习题1.1,学习与训练1.1训练题;(3)实践调查:探究生活中集合知识的应用【课题】1.1 集合的概念【教学目标】知识目标:(1)理解集合、元素及其关系;(2)掌握集合的列举法与描述法,会用适当的方法表示集合.能力目标:通过集合语言的学习与运用,培养学生的数学思维能力.【教学重点】集合的表示法.【教学难点】集合表示法的选择与规范书写.【教学设计】(1)通过生活中的实例导入集合与元素的概念;(2)引导学生自然地认识集合与元素的关系;(3)针对集合不同情况,认识到可以用列举和描述两种方法表示集合,然后再对表示法进行对比分析,完成知识的升华;(4)通过练习,巩固知识.(5)依照学生的认知规律,顺应学生的学习思路展开,自然地层层推进教学.【上课时间】【课时安排】1课时【教学过程】*揭示课题缤纷多彩的世界,众多繁杂的现象,需要我们去认识.将对象进行分类和归类,加强对其属性的认识,是解决复杂问题的重要手段之一.例如,按照使用功能分类存放物品,在取用时就十分方便.这就是我们将要研究学习的1.1集合.*动脑思考探索新知集合的表示有两种方法:(1)列举法.把集合的元素一一列举出来,写在花括号内,元素之间用逗号隔开.如不大0,1,2,3,4,5.于5的自然数所组成的集合可以表示为{}当集合为无限集或为元素很多的有限集时,在不发生误解的情况下可以采用省略的写0,1,2,3,,99,正偶数集可以表示为法.例如,小于100的自然数集可以表示为{}{}2,4,6,.(2)描述法.在花括号内画一条竖线,竖线的左侧写出集合的代表元素,竖线的右侧写出元素所具有的特征性质.如小于5的实数所组成的集合可表示为{|5,}x x x<∈R.如果从上下文能明显看出集合的元素为实数,那么可以将x∈R省略不写.如不等式360x ->的解集可以表示为{|2}x x >.为了简便起见,有些集合在使用描述法表示时,可以省略竖线及其左边的代表元素,直接用中文来表示集合的特征性质.例如所有正奇数组成的集合可以表示为{正奇数}. *巩固知识 典型例题例2 用列举法表示下列集合:(1)由大于4-且小于12的所有偶数组成的集合;(2)方程2560x x --=的解集.分析 这两个集合都是有限集.(1)题的元素可以直接列举出来;(2)题的元素需要解方程2560x x --=才能得到.解(1)集合表示为{}2,0,2,4,6,8,10-;(2)解方程2560x x --=得11x =-,26x =.故方程解集为{}1,6-.例3 用描述法表示下列各集合:(1)不等式210x +…的解集;(2)所有奇数组成的集合;(3)由第一象限所有的点组成的集合.分析 用描述法表示集合关键是找出元素的特征性质.(1)题解不等式就可以得到不等式解集元素的特征性质;(2)题奇数的特征性质是“元素都能写成21()k k +∈Z 的形式”.(3)题元素的特征性质是“为第一象限的点”,即横坐标与纵坐标都为正数.解(1)解不等式210x +…得12x -…,所以解集为 12x x ⎧⎫-⎨⎬⎩⎭…; (2)奇数集合{}21,x x k k =+∈Z ;(3)第一象限所有的点组成的集合为(){},0,0x y x y >>.*运用知识 强化练习教材练习1.1.21.用列举法表示下列各集合:(1)方程2340x x--=的解集;(2)方程430x+=的解集;(3)由数1,4,9,16,25组成的集合;(4)所有正奇数组成的集合.2.用描述法表示下列各集合:(1)大于3的实数所组成的集合;(2)方程240x-=的解集;(3)大于5的所有偶数所组成的集合;(4)不等式253x->的解集.*理论升华整体建构本次课重点学习了集合的表示法:列举法、描述法,用列举法表示集合,元素清晰明了;用描述法表示集合,元素特征性质直观明确.因此表示集合时,要针对实际情况,选用合适的方法.例如,不等式(组)的解集,一般采用描述法来表示,方程(组)的解集,一般采用列举法来表示.*巩固知识典型例题例4 用适当的方法表示下列集合:(1)方程x+5=0的解集;(2)不等式3x-7>5的解集;(3)大于3且小于11的偶数组成的集合;(4)不大于5的所有实数组成的集合;解(1){−5};(2){x| x>4} ;(3) {4,6,8,10};(4) {x| x≤5} .*运用知识强化练习选用适当的方法表示出下列各集合:(1)由大于10的所有自然数组成的集合;(2)方程290x-=的解集;(3)不等式465x+<的解集;(4)平面直角坐标系中第二象限所有的点组成的集合;(5)方程243x+=的解集;(6)不等式组330,60xx+>⎧⎨-⎩…的解集.*归纳小结强化思想本次课学了哪些内容?重点和难点各是什么?(1)本次课学了哪些内容?(2)通过本次课的学习,你会解决哪些新问题了?(3)在学习方法上有哪些体会?*继续探索活动探究(1)阅读理解:教材1.1,学习与训练1.1;(2)书面作业:教材习题1.1,学习与训练1.1训练题;(3)实践调查:探究生活中集合知识的应用【课题】1.1 集合的概念【教学目标】知识目标:(1)理解集合、元素及其关系;(2)掌握集合的列举法与描述法,会用适当的方法表示集合.能力目标:通过集合语言的学习与运用,培养学生的数学思维能力.【教学重点】集合的表示法.【教学难点】集合表示法的选择与规范书写.【教学设计】(1)通过生活中的实例导入集合与元素的概念;(2)引导学生自然地认识集合与元素的关系;(3)针对集合不同情况,认识到可以用列举和描述两种方法表示集合,然后再对表示法进行对比分析,完成知识的升华;(4)通过练习,巩固知识.(5)依照学生的认知规律,顺应学生的学习思路展开,自然地层层推进教学.【上课时间】【课时安排】1课时【教学过程】教学过程*揭示课题缤纷多彩的世界,众多繁杂的现象,需要我们去认识.将对象进行分类和归类,加强对其属性的认识,是解决复杂问题的重要手段之一.例如,按照使用功能分类存放物品,在取用时就十分方便.这就是我们将要研究学习的1.1集合.*动脑思考 探索新知集合的表示有两种方法:(1)列举法.把集合的元素一一列举出来,写在花括号内,元素之间用逗号隔开.如不大于5的自然数所组成的集合可以表示为{}0,1,2,3,4,5.当集合为无限集或为元素很多的有限集时,在不发生误解的情况下可以采用省略的写法.例如,小于100的自然数集可以表示为{}0,1,2,3,,99,正偶数集可以表示为{}2,4,6,.(2)描述法.在花括号内画一条竖线,竖线的左侧写出集合的代表元素,竖线的右侧写出元素所具有的特征性质.如小于5的实数所组成的集合可表示为{|5,}x x x <∈R .如果从上下文能明显看出集合的元素为实数,那么可以将x ∈R 省略不写.如不等式360x ->的解集可以表示为{|2}x x >.为了简便起见,有些集合在使用描述法表示时,可以省略竖线及其左边的代表元素,直接用中文来表示集合的特征性质.例如所有正奇数组成的集合可以表示为{正奇数}. *巩固知识 典型例题例2 用列举法表示下列集合:(1)由大于4-且小于12的所有偶数组成的集合;(2)方程2560x x --=的解集.分析 这两个集合都是有限集.(1)题的元素可以直接列举出来;(2)题的元素需要解方程2560x x --=才能得到.解(1)集合表示为{}2,0,2,4,6,8,10-;(2)解方程2560x x --=得11x =-,26x =.故方程解集为{}1,6-.例3 用描述法表示下列各集合:(1)不等式210x +…的解集;(2)所有奇数组成的集合;(3)由第一象限所有的点组成的集合.分析 用描述法表示集合关键是找出元素的特征性质.(1)题解不等式就可以得到不等式解集元素的特征性质;(2)题奇数的特征性质是“元素都能写成21()k k +∈Z 的形式”.(3)题元素的特征性质是“为第一象限的点”,即横坐标与纵坐标都为正数.解(1)解不等式210x +…得12x -…,所以解集为 12x x ⎧⎫-⎨⎬⎩⎭…; (2)奇数集合{}21,x x k k =+∈Z ;(3)第一象限所有的点组成的集合为(){},0,0x y x y >>.*运用知识 强化练习教材练习1.1.21.用列举法表示下列各集合:(1)方程2340x x --=的解集;(2)方程430x +=的解集;(3)由数1,4,9,16,25组成的集合;(4)所有正奇数组成的集合.2.用描述法表示下列各集合:(1)大于3的实数所组成的集合;(2)方程240x -=的解集;(3)大于5的所有偶数所组成的集合;(4)不等式253x ->的解集.*理论升华 整体建构本次课重点学习了集合的表示法:列举法、描述法,用列举法表示集合,元素清晰明了;用描述法表示集合,元素特征性质直观明确.因此表示集合时,要针对实际情况,选用合适的方法.例如,不等式(组)的解集,一般采用描述法来表示,方程(组)的解集,一般采用列举法来表示.*巩固知识典型例题例4 用适当的方法表示下列集合:(1)方程x+5=0的解集;(2)不等式3x-7>5的解集;(3)大于3且小于11的偶数组成的集合;(4)不大于5的所有实数组成的集合;解(1){−5};(2){x| x>4} ;(3) {4,6,8,10};(4) {x| x≤5} .*运用知识强化练习选用适当的方法表示出下列各集合:(1)由大于10的所有自然数组成的集合;(2)方程290x-=的解集;(3)不等式465x+<的解集;(4)平面直角坐标系中第二象限所有的点组成的集合;(5)方程243x+=的解集;(6)不等式组330,60xx+>⎧⎨-⎩…的解集.*归纳小结强化思想本次课学了哪些内容?重点和难点各是什么?(1)本次课学了哪些内容?(2)通过本次课的学习,你会解决哪些新问题了?(3)在学习方法上有哪些体会?*继续探索活动探究(1)阅读理解:教材1.1,学习与训练1.1;(2)书面作业:教材习题1.1,学习与训练1.1训练题;(3)实践调查:探究生活中集合知识的应用【课题】1.2 集合之间的关系【教学目标】知识目标:(1)掌握子集、真子集的概念;(2)掌握两个集合相等的概念;(3)会判断集合之间的关系.能力目标:通过集合语言的学习与运用,培养学生的数学思维能力.【教学重点】集合与集合间的关系及其相关符号表示.【教学难点】真子集的概念.【教学设计】(1)从复习上节课的学习内容入手,通过实际问题导入知识;(2)通过实际问题引导学生认识真子集,突破难点;(3)通过简单的实例,认识集合的相等关系;(4)为学生们提供观察和操作的机会,加深对知识的理解与掌握.【上课时间】【课时安排】1课时【教学过程】*复习知识揭示课题前面学习了集合的相关问题,试着回忆下面的知识点:1.集合由某些确定的对象组成的整体.元素组成集合的对象.2.常用数集有哪些?用什么字母表示?3.集合的表示法(1)列举法:在花括号内,一一列举集合的元素;(2)描述法:{代表元素|元素所具有的特征性质}.4.元素与集合之间有属于或不属于的关系.完成下面的问题:用适当的符号“∈”或“∉”填空:(1) 0 ∅;(2) 0 N;(3) ;(4) 0.5 Z;(5) 1 {1,2,3};(6) 2 {x|x<1};(7)2 {x|x=2k+1, k∈Z}.那么集合与集合之间又有什么关系呢?*创设情景兴趣导入1.设A表示我班全体学生的集合,B表示我班全体男学生的集合,那么,集合A与集合B 之间存在什么关系呢?2.设M={数学,语文,英语,计算机应用基础,体育与健康,物理,化学},N ={数学,语文,英语,计算机应用基础,体育与健康},那么集合M与集合N之间存在什么关系呢?3.自然数集Z与整数集N之间存在什么关系呢?显然,问题1中集合B的元素(我班的男学生)肯定是集合A的元素(我班的学生);问题2中集合N的元素肯定是集合M的元素;问题3中集合N的元素(自然数)肯定是集合Z的元素(整数).当集合B的元素肯定是集合A的元素时称集合A包含集合B.两个集合之间的这种关系叫做包含关系.*动脑思考 探索新知一般地,如果集合B 的元素都是集合A 的元素,那么称集合A 包含集合B ,并把集合B 叫做集合A 的子集.将集合A 包含集合B 记作A B ⊇或B A ⊆(读作“A 包含B ”或“B 包含于A ”). 可以用下图表示出这两个集合之间的包含关系.拓展由子集的定义可知,任何一个集合A 都是它自身的子集,即A A ⊆.规定:空集是任何集合的子集,即A ∅⊆.*巩固知识 典型例题例1 用符号“⊆”、“⊇”、“∈”或“∉”填空:(1){},,,a b c d {},a b ;(2) ∅ {}1,2,3; (3) N Q ; (4) 0 R ;(5) d {},,a b c ; (6) {}|35x x << {}|06x x <….分析 “⊆” 与“⊇”是用来表示集合与集合之间关系的符号;而“∈”与“∉”是用来表示元素与集合之间关系的符号.首先要分清楚对象,然后再根据关系,正确选用符号.解 (1)集合{},a b 的元素都是集合{},,,a b c d 的元素,因此 {},,,a b c d ⊇{},a b ;(2)空集是任何集合的子集,因此∅⊆{}1,2,3;(3)自然数都是有理数,因此N ⊆ Q ;(4)0是实数,因此0∈R ;(5)d 不是集合{},,a b c 的元素,因此d ∉{},,a b c ;(6)集合{}|35x x <<的元素都是集合{}|06x x <…的元素,因此{}{}|35|06x x x x <<⊆<….*运用知识 强化练习教材练习1.2.1用符号“⊆”、“⊇”、“∈”或“∉”填空:(1)*N Q ;(2){}0 ∅; (3)a {},,a b c ;(4){}2,3 {}2;(5)0 ∅;(6){}|12x x <… {}|14x x -<<.*继续探索 活动探究(1)阅读: 教材章节1.2;学习与训练1.2;(2)书写: 习题1.2,学习与训练1.2训练题;(3)实践:寻找集合和集合关系的生活实例.【课题】1.2 集合之间的关系【教学目标】知识目标:(1)掌握子集、真子集的概念;(2)掌握两个集合相等的概念;(3)会判断集合之间的关系.能力目标:通过集合语言的学习与运用,培养学生的数学思维能力. 【教学重点】集合与集合间的关系及其相关符号表示.【教学难点】真子集的概念.【教学设计】(1)从复习上节课的学习内容入手,通过实际问题导入知识;(2)通过实际问题引导学生认识真子集,突破难点;(3)通过简单的实例,认识集合的相等关系;(4)为学生们提供观察和操作的机会,加深对知识的理解与掌握.【上课时间】【课时安排】1课时【教学过程】*复习知识揭示课题前面学习了集合的相关问题,试着回忆下面的知识点:1.集合由某些确定的对象组成的整体.元素组成集合的对象.2.常用数集有哪些?用什么字母表示?3.集合的表示法(1)列举法:在花括号内,一一列举集合的元素;(2)描述法:{代表元素|元素所具有的特征性质}.4.元素与集合之间有属于或不属于的关系.完成下面的问题:用适当的符号“∈”或“∉”填空:(1) 0 ∅;(2) 0 N;(3) ;(4) 0.5 Z;(5) 1 {1,2,3};(6) 2 {x|x<1};(7)2 {x|x=2k+1, k∈Z}.那么集合与集合之间又有什么关系呢?*动脑思考探索新知如果集合B 是集合A 的子集,并且集合A 中至少有一个元素不属于集合B ,那么把集合B 叫做集合A 的真子集.记作A B Ý (或B A Ü), 读作“A 真包含B ”(或“B 真包含于A ”).空集是任何非空集合的真子集.对于集合A 、B 、C ,如果A ÜB ,B ÜC ,则A ÜC .*巩固知识 典型例题例2选用适当的符号“Ü”或“Ý”填空:(1){1,3,5}_ _{1,2,3,4,5};(2){2}_ _ {x | |x |=2}; (3){1} _∅.解 (1) {1,3,5}Ü{1,2,3,4,5};(2) {2}Ü{x | |x |=2};(3) {1}Ý∅.例3 设集合{}0,1,2M =,试写出M 的所有子集,并指出其中的真子集.分析 集合M 中有3个元素,可以分别列出空集、含1个元素的集合、含2个元素的集合、含3个元素的集合.解 M 的所有子集为{}{}{}{}{}{}{},0,1,2,0,1,0,2,1,20,1,2∅.除集合{}0,1,2外,所有集合都是集合M 的真子集.*运用知识 强化练习练习1.2.21.设集合{},A c d =,试写出A 的所有子集,并指出其中的真子集.2.设集合{|6}A x x =<,集合{|0}B x x =<,指出集合A 与集合B 之间的关系. *创设情景 兴趣导入设集合A ={x |x 2-1=0},B ={-1,1},那么这两个集合会有什么关系呢?由于方程x 2-1=0的解是x 1= -1,x 2=1,所以说集合A 中的元素就是1,-1,可以看出集合A 与集合B 中的元素完全相同,集合A 与集合B 相等.集合A 与集合B 中的元素完全相同,只是表示方法不同,我们就说集合A 与集合B 相等,即A =B .*动脑思考 探索新知一般地,如果两个集合的元素完全相同,那么就说这两个集合相等.将集合A 与集合B 相等记作A B =.如果A B ⊇,同时B A ⊇,那么集合B 的元素都属于集合A ,同时集合A 的元素都属于集合B ,因此集合A 与集合B 的元素完全相同,由集合相等的定义知A B =.*巩固知识 典型例题例4 判断集合{}2A x x ==与集合{}240B x x =-=的关系.分析 要通过研究两个集合的元素之间的关系来判断这两个集合之间的关系.解 由2x =得2x =-或2x =,所以集合A 用列举法表示为{}2,2-;由240x -=得2x =-或2x =,所以集合B 用列举法表示为{}2,2-;可以看出,这两个集合的元素完全相同,因此它们相等,即A B =.*运用知识 强化练习判断集合A 与B 是否相等?(1) A ={0},B = ∅;(2) A ={…,-5,-3,-1,1,3,5,…},B ={x| x =2m+1 ,m ∈Z } ;(3) A ={x| x =2m-1 ,m ∈Z },B ={x| x =2m+1 ,m ∈Z }.*理论升华 整体建构元素与集合关系:属于与不属于(∈、∉);集合与集合关系:子集、真子集、相等(⊆、Ü、=);首先要分清楚对象,然后再根据关系,正确选用符号.*巩固知识 典型例题例5 用适当的符号填空:⑴ {1,3,5} {1,2,3,4,5,6};⑵ 2{|9}x x = {3,-3};⑶ {2} { x | |x |=2 }; ⑷ 2 N ;⑸ a { a }; ⑹ {0} ∅;⑺ {1,1}- 2{|10}x x +=.解 ⑴ {1,3,5}{1,2,3,4,5,6}Ü;⑵ {x |x 2=9}={3,-3};⑶ 因为{|2}{2,2}x x ==-,所以{2}{2}x x =Ü;⑷ 2∈N ; ⑸ a ∈{a }; ⑹ {0}Ý∅;⑺ 因为2{|10}x x +==∅,所以{1,1}-Ý2{|10}x x +=.*运用知识 强化练习用适当的符号填空:(1) 2.5- Z ; (2)1 {}3|1x x =;(3){ {}2|2x x =; (4){}a {},,a b c ;(5)Z N ; (6)∅ {|40}x x +<;(7)∅ Q ; (8){}1,3,5 {}3,5.*归纳小结 强化思想本次课学了哪些内容?重点和难点各是什么?*自我反思 目标检测本次课采用了怎样的学习方法?你是如何进行学习的?你的学习效果如何?*继续探索 活动探究(1)阅读: 教材章节1.2;学习与训练1.2;(2)书写: 习题1.2,学习与训练1.2训练题;(3)实践:寻找集合和集合关系的生活实例.【课题】1.3集合的运算(1)【教学目标】知识目标:(1)理解并集与交集的概念;(2)会求出两个集合的并集与交集.能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力;(2)通过交集与并集问题的研究,培养学生的数学思维能力.【教学重点】交集与并集.【教学难点】用描述法表示集合的交集与并集.【教学设计】(1)通过生活中的实例导入交集与并集的概念,提高学习兴趣;(2)通过对实例的归纳,针对用“列举法”及“描述法”表示集合的运算的不同特征,采用由浅入深的训练,帮助学生加深对知识的理解;(3)通过学生的解题实践,总结比较,理解交集与并集的特征,完成知识的升华;(4)讲与练结合,教学要符合学生的认知规律.【上课时间】【课时安排】1课时【教学过程】*揭示课题1.3集合的运算*创设情景 兴趣导入在运动会上,某班参加百米赛跑的有4名同学,参加跳高比赛的有6名同学,既参加百米赛跑又参加跳高比赛的同学有2名同学,那么这些同学之间有什么关系?某班第一学期的三好学生有李佳、王燕、张洁、王勇;第二学期的三好学生有王燕、李炎、王勇、孙颖,那么该班哪些同学连续两个学期都是三好学生?用我们学过的集合来表示:A ={李佳,王燕,张洁,王勇};B ={王燕,李炎,王勇,孙颖};C ={王燕,王勇}.那么这三个集合之间有什么关系?集合A ={直角三角形};B ={等腰三角形};C ={等腰直角三角形}.那么这三个集合之间有什么关系?通过上面的三个问题的思考,可以看出集合C 中的元素是由既属于集合A 又属于集合B 中的所有元素构成的,也就是由集合A 、B 的相同元素所组成的,这时,将C 称作是A 与B 的交集.*动脑思考 探索新知一般地,对于两个给定的集合A 、B ,由集合A 、 B 的相同元素所组成的集合叫做A 与B 的交集,记作A B ,读作“A 交B ”.即{}A B x x A x B =∈∈且.集合A 与集合B 的交集可用下图表示为:求两个集合交集的运算叫做交运算.。

中职数学(基础模块)上册教案

中职数学(基础模块)上册教案

中职数学(基础模块)上册教案1.1集合的概念知识目标:(1)理解集合、元素及其关系;(2)掌握集合的列举法与描述法会用适当的方法表示集合.能力目标:通过集合语言的学习与运用,培养学生的数学思维能力.教学重点:集合的表示法.教学难点:集合表示法的选择与规范书写.课时安排:2课时.1.2集合之间的关系知识目标:(1)掌握子集、真子集的概念;(2)掌握两个集合相等的概念;(3)会判断集合之间的关系.能力目标:通过集合语言的学习与运用,培养学生的数学思维能力.教学重点:集合与集合间的关系及其相关符号表示.教学难点:真子集的概念.课时安排:2课时.1.3集合的运算(1)知识目标:(1)理解并集与交集的概念;(2)会求出两个集合的并集与交集.能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力;(2)通过交集与并集问题的研究,培养学生的数学思维能力.教学重点:交集与并集.教学难点:用描述法表示集合的交集与并集.课时安排:2课时.1.3集合的运算(2)知识目标:(1)理解全集与补集的概念;(2)会求集合的补集.能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力;(2)通过全集与补集问题的研究,培养学生的数学思维能力.教学重点:集合的补运算.教学难点:集合并、交、补的综合运算.课时安排:2课时.1.4充要条件知识目标:了解“充分条件”、“必要条件”及“充要条件”.能力目标:通过对条件与结论的研究与判断,培养思维能力.教学重点:(1)对“充分条件”、“必要条件”及“充要条件”的理解.(2)符号“”,“”,“”的正确使用.教学难点:“充分条件”、“必要条件”、“充要条件”的判定.课时安排:2课时.2.1不等式的基本性质知识目标:⑴理解不等式的基本性质;⑵了解不等式基本性质的应用.能力目标:⑴了解比较两个实数大小的方法;⑵培养学生的数学思维能力和计算技能.教学重点:⑴比较两个实数大小的方法;⑵不等式的基本性质.教学难点:比较两个实数大小的方法.课时安排:1课时.2.2区间知识目标:⑴掌握区间的概念;⑵用区间表示相关的集合.能力目标:通过数形结合的学习过程,培养学生的观察能力和数学思维能力.教学重点:区间的概念.教学难点:区间端点的取舍.课时安排:1课时.2.3一元二次不等式式的图像解法.观察能力与数学思维能力;⑵通过求解一元二次不等式,培养学生的计算技能.2.4含绝对值的不等式知识目标:(1)理解含绝对值不等式或的解法;(2)了解或的解法.能力目标:(1)通过含绝对值不等式的学习;培养学生的计算技能与数学思维能力;(2)通过数形结合的研究问题,培养学生的观察能力.教学重点:(1)不等式或的解法.(2)利用变量替换解不等式或.教学难点:利用变量替换解不等式或.课时安排:2课时.3.1函数的概念及其表示法知识目标:(1)理解函数的定义;(2)理解函数值的概念及表示;(3)理解函数的三种表示方法;(4)掌握利用“描点法”作函数图像的方法.能力目标:(1)通过函数概念的学习,培养学生的数学思维能力;(2)通过函数值的学习,培养学生的计算能力和计算工具使用技能;(3)会利用“描点法”作简单函数的图像,培养学生的观察能力和数学思维能力.教学重点:(1)函数的概念;(2)利用“描点法”描绘函数图像.教学难点:(1)对函数的概念及记号的理解;(2)利用“描点法”描绘函数图像.课时安排:2课时.3.2函数的性质知识目标:⑴理解函数的单调性与奇偶性的概念;⑵会借助于函数图像讨论函数的单调性;⑶理解具有奇偶性的函数的图像特征,会判断简单函数的奇偶性.能力目标:⑴通过利用函数图像研究函数性质,培养学生的观察能力;⑵通过函数奇偶性的判断,培养学生的数学思维能力.教学重点:⑴函数单调性与奇偶性的概念及其图像特征;⑵简单函数奇偶性的判定.教学难点:函数奇偶性的判断.(某函数单调性的判断)课时安排:2课时.3.3函数的实际应用举例知识目标:(1)理解分段函数的概念;(2)理解分段函数的图像;(3)了解实际问题中的分段函数问题.能力目标:(1)会求分段函数的定义域和分段函数在点处的函数值;(2)掌握分段函数的作图方法;(3)能建立简单实际问题的分段函数的关系式.教学重点:(1)分段函数的概念;(2)分段函数的图像.教学难点:(1)建立实际问题的分段函数关系;(2)分段函数的图像.课时安排:2课时.4.1实数指数幂(1)知识目标:⑴复习整数指数幂的知识;⑵了解n次根式的概念;⑶理解分数指数幂的定义.能力目标:⑴掌握根式与分数指数幂之间的转化;⑵会利用计算器求根式和分数指数幂的值;⑶培养计算工具使用技能.教学重点:分数指数幂的定义.教学难点:根式和分数指数幂的互化.课时安排:2课时.4.1实数指数幂(2)知识目标:⑴掌握实数指数幂的运算法则;⑵通过几个常见的幂函数,了解幂函数的图像特点.能力目标:⑴正确进行实数指数幂的运算;⑵培养学生的计算技能;⑶通过对幂函数图形的作图与观察,培养学生的计算工具使用能力与观察能力.教学重点:有理数指数幂的运算.教学难点:有理数指数幂的运算.课时安排:2课时.4.2指数函数知识目标:⑴理解指数函数的图像及性质;⑵了解指数模型,了解指数函数的应用.能力目标:⑴会画出指数函数的简图;⑵会判断指数函数的单调性;⑶了解指数函数在生活生产中的部分应用,从而培养学生分析与解决问题能力.教学重点:⑴指数函数的概念、图像和性质;⑵指数函数的应用实例.教学难点:指数函数的应用实例.课时安排:2课时.4.3对数知识目标:⑴理解对数的概念,理解常用对数和自然对数的概念;⑵掌握利用计算器求对数值的方法;⑶了解积、商、幂的对数.能力目标:⑴会进行指数式与对数式之间的互化;⑵会运用函数型计算器计算对数值;⑶培养计算工具的使用技能.教学重点:指数式与对数式的关系.教学难点:对数的概念.课时安排:2课时.4.4对数函数知识目标:⑴了解对数函数的图像及性质特征;⑵了解对数函数的实际应用.能力目标:⑴观察对数函数的图像,总结对数函数的性质,培养观察能力;⑵通过应用实例的介绍,培养学生数学思维能力和分析与解决问题能力.教学重点:对数函数的图像及性质.教学难点:对数函数的应用中实际问题的题意分析.课时安排:2课时.5.1角的概念推广知识目标:⑴了解角的概念推广的实际背景意义;⑵理解任意角、象限角、界限角、终边相同的角的概念.能力目标:(1)会判断角所在的象限;(2)会求指定范围内与已知角终边相同的角;(3)培养观察能力和计算技能.教学重点:终边相同角的概念.教学难点:终边相同角的表示和确定.课时安排:2课时.5.2弧度制知识目标:⑴理解弧度制的概念;⑵理解角度制与弧度制的换算关系.能力目标:(1)会进行角度制与弧度制的换算;(2)会利用计算器进行角度制与弧度制的换算;(3)培养学生的计算技能与计算工具使用技能.教学重点:弧度制的概念,弧度与角度的换算.教学难点:弧度制的概念.课时安排:2课时.5.3任意角的正弦函数、余弦函数和正切函数知识目标:⑴理解任意角的三角函数的定义及定义域;⑵理解三角函数在各象限的正负号;⑶掌握界限角的三角函数值.能力目标:⑴会利用定义求任意角的三角函数值;⑵会判断任意角三角函数的正负号;⑶培养学生的观察能力.教学重点:⑴任意角的三角函数的概念;⑵三角函数在各象限的符号;⑶特殊角的三角函数值.教学难点:任意角的三角函数值符号的确定.课时安排:2课时.5.4同角三角函数的基本关系知识目标:理解同角的三角函数基本关系式.能力目标:⑴已知一个三角函数值,会利用同角三角函数的基本关系式求其他的三角函数值;⑵会利用同角三角函数的基本关系式求三角式的值.教学重点:同角的三角函数基本关系式的应用.教学难点:应用平方关系求正弦或余弦值时,正负号的确定.课时安排:2课时.5.5诱导公式知识目标:了解“”、“”、“180°”的诱导公式.能力目标:(1)会利用简化公式将任意角的三角函数的转化为锐角的三角函数;(2)会利用计算器求任意角的三角函数值;(3)培养学生的数学思维能力及应用计算工具的能力.教学重点:三个诱导公式.教学难点:诱导公式的应用.课时安排:2课时.5.6三角函数的图像和性质知识目标:(1)理解正弦函数的图像和性质;(2)理解用“五点法”画正弦函数的简图的方法;(3)了解余弦函数的图像和性质.能力目标:(1)认识周期现象,以正弦函数、余弦函数为载体,理解周期函数;(2)会用“五点法”作出正弦函数、余弦函数的简图;(3)通过对照学习研究,使学生体验类比的方法,从而培养数学思维能力.教学重点:(1)正弦函数的图像及性质;(2)用“五点法”作出函数y=sin某在上的简图.教学难点:周期性的理解.课时安排:2课时.5.7已知三角函数值求角知识目标:(1)掌握利用计算器求角度的方法;(2)了解已知三角函数值,求指定范围内的角的方法.能力目标:(1)会利用计算器求角;(2)已知三角函数值会求指定范围内的角;(3)培养使用计算工具的技能.教学重点:已知三角函数值,利用计算器求角;利用诱导公式求出指定范围内的角.教学难点:已知三角函数值,利用计算器求指定范围内的角.。

中职教材数学(基础模块 高教版)上册电子教案:1.3 集合的运算(1)

中职教材数学(基础模块 高教版)上册电子教案:1.3 集合的运算(1)

【课题】 1.3集合的运算(1)【教学目标】知识目标:(1)理解并集与交集的概念;(2)会求出两个集合的并集与交集.能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力;(2)通过交集与并集问题的研究,培养学生的数学思维能力.【教学重点】交集与并集.【教学难点】用描述法表示集合的交集与并集.【教学设计】(1)通过生活中的实例导入交集与并集的概念,提高学习兴趣;(2)通过对实例的归纳,针对用“列举法”及“描述法”表示集合的运算的不同特征,采用由浅入深的训练,帮助学生加深对知识的理解;(3)通过学生的解题实践,总结比较,理解交集与并集的特征,完成知识的升华;(4)讲与练结合,教学要符合学生的认知规律.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】过程行为行为意图间第二学期的三好学生有王燕、李炎、王勇、孙颖,那么该班哪些同学连续两个学期都是三好学生?用我们学过的集合来表示:A={李佳,王燕,张洁,王勇};B={王燕,李炎,王勇,孙颖};C={王燕,王勇}.那么这三个集合之间有什么关系?问题3 集合A={直角三角形};B={等腰三角形};C={等腰直角三角形}.那么这三个集合之间有什么关系?解决通过上面的三个问题的思考,可以看出集合C中的元素是由既属于集合A又属于集合B中的所有元素构成的,也就是由集合A、B的相同元素所组成的,这时,将C称作是A与B 的交集.引导分析归纳总结自我分析了解引导式启发学生思考集合元素之间的关系5*动脑思考探索新知一般地,对于两个给定的集合A、B,由集合A、B的相同元素所组成的集合叫做A与B的交集,记作A B,读作“A 交B”.即{}A B x x A x B=∈∈且.集合A与集合B的交集可用下图表示为:求两个集合交集的运算叫做交运算.总结归纳仔细分析讲解关键词语强调图像含义思考理解记忆观察带领学生总结三个问题的共同点得到交集的定义10*巩固知识典型例题例1已知集合A,B,求A∩B.(1) A={1,2},B={2,3};(2) A={a,b},B={c,d , e , f };(3) A={1,3,5},B= ∅;说明观察通过例题进一步领会交过 程行为 行为 意图 间(4) A ={2,4},B ={1,2,3,4}.分析 集合都是由列举法表示的,因为 A ∩B 是由集合A 和集合B 中相同的元素组成的集合,所以可以通过列举出集合的所有相同元素得到集合的交集.解 (1) 相同元素是2,A ∩B ={1,2}∩{2,3 }={2};(2) 没有相同元素A ∩B ={a , b }∩{c , d , e , f }=∅;(3) 因为A 是含有三个元素的集合, ∅是不含任何元素的空集,所以它们的交集是不含任何元素的空集,即A ∩B =∅; (4) 因为A 中的每一个元素的都是集合B 中的元素,所以A ∩B =A .例2设(){},|0A x y x y =+=,(){},|4B x y x y =-=,求A B . 分析 集合A 表示方程0x y +=的解集;集合B 表示方程4x y -=的解集.两个解集的交集就是二元一次方程组0,4x y x y +=⎧⎨-=⎩的解集. 解 解方程组0,4.x y x y +=⎧⎨-=⎩得2,2x y =⎧⎨=-⎩.所以(){}2,2A B =-.例3 设{}|12A x x =-<,{}|03B x x =<,求A B .分析 这两个集合都是用描述法表示的集合,并且无法列举出集合的元素.我们知道,这两个集合都可以在数轴上表示出来,如下图所示.观察图形可以得到这两个集合的交集.解 {}{}|12|03AB x xx x=-<<{}|02x x =<.由交集定义和上面的例题,可以得到: 对于任意两个集合A ,B ,都有 (1)A B B A =;(2)A A A = ,∅=∅ A ; (3)B B A A B A ⊆⊆ ,;强调 引领讲解说明引领强调 含义 说明 启发 引导思考 主动 求解 观察 思考 求解 领会 思考 求解 了解集 注意 观察 学生 是否 理解 知识 点 复习 方程 组的 解法 突出 数轴 的作 用 强调 数形 结合 可以 交给 学生 自我 发现 归纳25B.}23y=,求B.}4x,求A B.巡视指导11名,那么该班有多少名该班团员};={该班非团那么这三个集合之间有什么关系?介绍B.}2,}4B x,求A B.过 程行为 行为 意图 间*理论升华 整体建构 思考并回答下面的问题:1.集合的并集和交集有什么区别?(含义和符号) 2.在进行集合的并运算和交运算时各自的特点是什么? 3.集合用列举法和描述法表示时进行运算需要注意的问题是什么?(1)由集合A 和集合B 的公共元素组成的集合叫做集合A 与集合B 的交集{}B x A x x B A ∈∈=且 .由集合A 和集合B 的所有元素组成的集合叫做集合A 与集合B 的并集{}B x A x x B A ∈∈=或 ;(2)交运算是寻找两个集合都有的公共部分,并运算是将两个集合所有的元素进行合并.(3)列举法求解时要不重不漏,描述法求解时要利用好数轴并注意端点的处理. 质疑 归纳 强调 小组 讨论 回答 理解 强化 以学 生的 小组 讨论 教师 归纳 的形 式强 调重 点突 破难 点70 *巩固知识 典型例题 例5 设{}{}2,1,0,1,5,3,2-==B A ,求B A ,B A .解 {}{}{}22,1,0,15,3,2=-= B A ;{}{}2,1,0,15,3,2-= B A {}5,3,2,1,0,1-=.例6 设{0{1A x x B x x =<=<≤2},≤3},求B A ,B A . 解 将集合A 、B 在数轴上表示:{1A B x x =<≤2},{0A B x x =<≤3}. 引领 分析 讲解 说明领会 思考 求解进行 并交 的对 比例 题讲 解巩 固所 归纳 的强 化点75 *归纳小结 强化思想本次课学了哪些内容?重点和难点各是什么? *自我反思 目标检测本次课采用了怎样的学习方法?你是如何进行学习的?你的学习效果如何?1.{}{}1,0,1,2,0,2,4,6A B =-=,求B A ,B A .引导 提问 巡视回忆 反思 动手培养 学生 总结 反思 学习 过程 的能 力}{}x B x x=,求A 2,04活动探究教材章节1.3;学习与训练1.3;举出交集和并集的生活实例.。

高教版中职数学基础模块上册练习册答案

高教版中职数学基础模块上册练习册答案

参考答案第1章集合1.1 集合及其表示【要点梳理】1. 确定,整体,元素2.集合,元素3. 属于,a A∈,不属于,a A∉4.有限个,无限集,任何元素的集合,∅5. R,Q,Z,N6.略【闯关训练】1.1.1 集合的概念一、用符号“∈”或“∉”填空1. ∈提示:3.14是有限小数,有限小数是有理数;2.∉3. ∉提示:12是分数,分数不是自然数;4.∉提示:2−是负整数,不是自然数;5. ∈6. ∈提示:π是无理数,无理数都是实数.二、选择题1. B 提示:个子高没有具体标准,不是确定的对象,不能组成集合.2. C 提示:熟练掌握常用数集的符号表示.3. B提示:N∗表示正整数集,0既不是正数,也不是负数.4. C提示:小于2的正偶数不存在,0是偶数,但不是正数.5. C提示:大于0小于4的有理数有无穷多个.三、判断题1. × 提示:0表示元素,∅表示不含任何元素的集合,两者不是同一个概念.2. √ 提示:数轴上到原点O 的距离等于2的点有两个,因此该集合是有限集. 四、解答题1. 解方程2450x x −−=,利用求根公式x =462±=解得11x =−,25x =元素5−不是方程2450x x −−=的解,因此5−不属于方程2450x x −−=的解集.2.(1)解不等式360x −>,得2x >,不等式360x −>的解集是由大于2的所有实数组成的集合,因此是无限集;(2)解方程290x −=,得3x =±,因此方程的解集是有限集; (3)不大于5的整数有5,4,3,2,1,0,1,2,−− ,因此该集合为无限集.1.1.2 集合的表示方法一、 用符号“∈”或“∉”填空1. ∈ 提示:2是集合{1,2,3,4,5}中的元素;2. ∉ 提示:m 不是集合{,,,}a b c d 中的元素;3. ∉ 提示:方程21x =−无解,因此集合2{|1}x x =−为空集,不含任何元素;4. ∈ 提示:解方程||1x =,得1x =±,因此1−是{|||1}x x =中的元素;5. ∈ 提示:{|03}x x <<表示由大于0且小于3的实数组成的集合,12是其中的元素;6. ∉ 提示:{(0,5)}中只含有一个元素,是有序实数对(0,5),因此0不是其中的元素. 二、选择题1. B 提示:小于7的正整数有1,2,3,4,5,6,这些数组成的集合要用花括号{}括1. 解方程2320起来.2.D 提示:{0}中含有一个元素0,∅不含任何元素.3.A 提示:大于0小于10的所有实数有无穷多个,且没有规律,不能用列举法表示.4. D 提示:如果集合的元素是实数,那么“∈R ”一般略去不写.5.D 提示:第二象限的点的横坐标是负数,纵坐标是正数.三、用适当的方法表示下列集合x x ++=,得11x =−,22x =−,因此解集用列举法表示为{1,2}−−. 2. 大于0小于10的所有奇数有1,3,5,7,9,因此集合用列举法表示为{1,3,5,7,9}. 3. 绝对值小于9的实数有无穷多个,因此集合用描述法表示{|||9}x x <. 4. 在平面直角坐标系中,y 轴正半轴上所有的点有无穷多个,因此集合用描述法表示{(,)|0,0}x y x y =>.5. 解方程组5,21x y x y += −= ,得2,3x y = = ,因此解集可以用列举法表示为{(2,3)}.【学海探津】0表示元素;∅表示不含任何元素的集合;{0}表示集合,其中的元素是0;{}∅表示集合,其中的元素是∅.1.2 集合之间的关系【要点梳理】1.每一个,A B ⊆,B A ⊇,B 包含A2. 它本身,A A ⊆3. 完全相同,A B =4. A B ⊆,B A ⊆5. 子集,至少有一个元素,A B ,B A ,B 真包含A6. 任何,⊆,非空 【闯关训练】 一、判断题1.× 提示:若A B ⊆,则可能A B =.2. √3. √4. ×5. × 提示:空集是任何非空集合的真子集.二、用符号“∈”、“∉”、“ ”、“ ”、“=”填空1. 2. 3. ∉ 4. 5. 提示:锐角三角形都是三角形.6. = 提示:解||5x =,得5x =±;解225x =,得5x =±. 三、选择题1. B 提示:空集是它本身的子集.2. A3. C 提示:集合中的元素具有互异性.4. D 提示:小于2的实数都小于5,可画数轴表示. 四、解答题1.解:集合{|13}N A x x ∈−<<用列举法可表示为{0,1,2}A =,则集合A 的所有子集为∅,{0},{1},{2},{0,1},{0,2},{1,2},{0,1,2}.集合A 的所有非空真子集为{0},{1},{2},{0,1},{0,2},{1,2}.2.解:集合{|3,}N M x x k k ==∈用列举法可表示为{0,3,6,9,12,}M = ,集合{|6,}P x x k k ==∈N 用列举法可表示{0,6,12,18,}P = ,集合P 中的元素都是集合M 中的元素,因此P M.【学海探津】(1)B A C A【要点梳理】1. 属于,属于,A B ,交, ,x A ∈且x B ∈2. 所有,A B ,并, ,x A ∈或x B ∈3. 子集,U4. 子集,不属于,所有,U A ,U A ,x A ∉5.(1)B A ,B A (2)A ,A (3)∅,A (4)⊆,⊇ (5)∅,U (6)A【闯关训练】1.3.1 交集一、判断题1.× 提示:{|A B x x A =∈ 且}x B ∈. 2. √ 3. × 提示:若A B ⊆,则A B A = . 4. √ 二、选择题1. D2. B 提示:解方程249x =,得7x =±,集合A 与集合B 的相同元素是7,故{7}A B = .3. B 提示:画数轴.4. C 提示:解方程组20,25x y x y −=+=− ,结果用点集表示.三、解答题1.解:{|04}{|12}A Bx x x x =<<−<< {|02}x x =<<.2.解:解方程2560x x −−=,得11x =−,26x =,则集合{1,6}A −;解方程21x =,得1x =±,则集合{1,1}B −,因此22{|560}{|1}A B x x x x x =−−=={1,6}{1,1}=−− {1}−.1.3 集合的运算1.3.2 并集一、判断题1. √2. √ 提示:求两个集合的并集时,重复的元素只写一次.3. √4. × 提示:{1,2,3}{1,2,3}∅=5. √ 提示:整数包括偶数和奇数 二、选择题1. B2. C 提示:在数轴上分别表示集合A 与集合B ,则A B = {|0x x <或1}x >.3. B 提示:画数轴. 三、解答题1.解:在数轴上分别表示集合A 与集合B ,则R A B = .2.解:解方程20x x −=,得10x =,21x =,则集合{0,1}A =;解方程235x −=,得4x =,则集合{4}B =,因此{0,1,4}A B = .1.3.3 补集一、填空题1. {0,2,4}2. {,,e}b d3. {|1}x x 提示:注意端点的归属,由于1{|1}x x ∉>,则1U A ∈ .4. Q 提示:实数包括有理数和无理数5. N (或者U )二、选择题1. C 提示:{N |6}{0,1,2,3,4,5,6}U x x =∈= 2. B 3. C 提示:全集U 表示整个实数轴,在数轴上表示集合A ,如下图示,则阴影部分表示U A ,注意端点的归属,3A ∉,则3U A ∈ ,因此{|310}U A x x =< .三、解答题1.解:将集合{|05}A x x =< 在数轴上表示出来,可以看出阴影部分为U A ,则{|0U A x x = 或5}x >. 2. 解:全集{|010}{1,2,3,4,5,6,7,8,9}N U x x =∈<<=,{2,3,5,7}{1,3,5,7,9}A B = {3,5,7}=,则(){1,2,4,6,8,9}U A B = . 【学海探津】因为A ={费俊龙,聂海胜},B ={聂海胜,张晓光,王亚平},集合C ={聂海胜,刘伯明,汤洪波},所以A B C = {聂海胜};又因为U ={杨利伟,费俊龙,聂海胜,翟志刚,刘伯明,景海鹏,刘旺,刘洋,张晓光,王亚平,陈冬,汤洪波},A B C = {费俊龙,聂海胜,张晓光,王亚平,刘伯明,汤洪波},所以()U A B C = {杨利伟,翟志刚,景海鹏,刘旺,刘洋,陈冬}.第1章 自我检测一、选择题3. 1.B 提示:集合是由确定的对象组成的. 2.A 提示:集合中元素是无序的.D4. C5. D 提示:由0xy >,可得0,0x y >> 或者0,0x y < < ,因此满足该条件的点在第一象限或第三象限. 6. B 提示:方程||3x =−无解,集合B 为空集,因此A B .7. C 提示:集合{0,4}的子集有∅,{0},{4},{0,4},非空真子集是{0},{4}. 8. A 提示:集合A 与集合B 没有相同元素. 9. B 提示:正方形是特殊的菱形.10. C 提示:从自然数中除去大于5的自然数,剩下的元素有0,1,2,3,4,5. 二、填空题 1.1{1,}2−− 提示:利用求根公式314x −±=.2. {|21,}N x x k k =+∈ .3. 无限 提示:集合{|04}A x x = 表示大于等于0且小于等于4的所有实数组成的集合.4. (1)∉ 提示:解方程29x =,得3x =±;(2) 提示:解方程(3)0x x −=,得0x =或3x =; (3) 提示:在数轴上表示集合{|3}x x >与集合{|1}x x >,由图可知,{|3}{|1}x x x x >> ; (4)∈ ; (5)=.5. {(3,4)}− 提示:解方程组7,1x y x y −+= += ,得3,4x y =− = ,因此{(3,4)}A B =− .6. {0,1,2} 提示:由{2}A B = ,知集合{1,}A a =与集合{2,0}B =的相同元素是2,因此2a =,{1,2}A =,则{0,1,2}A B = . 三、解答题1. {1,2,3,4,5}{3,5,7,9}A B = {1,2,3,4,5,7,9}=,2.解:在数轴上分别表示集合A 与集合B ,图中阴影部分表示A B ,即{|13}{|12}A B x x x x =<<−< {|12}x x =< .3.解方程210x x ++=,由224141130b ac ∆=−=−××=−<,可知方程无解,因此集合A =∅;解不等式9x <且12x >,不等式无解,因此集合B =∅;所以集合A B =.4.解:全集{1,2,3,4,5,6,7,8,9}U =,因为集合{1,2,3,6}A =,集合{3,4,5,6}B =,根据补集的概念,可求{4,5,7,8,9}U A = , {1,2,7,8,9}U B = 因此{7,8,9}U U A B = .5.由全集R U =,{|4}A x x = ,得{|4}U A x x =< ,将U A 与集合B 在数轴上表示出来,如图示则{|4}{|3}U A B x x x x =<< ={|4}x x <.第2章 不等式2.1 不等式的性质【要点梳理】1.a >b ,a <b ,a -b =0.2.两个实数的差,0.3.略4.> . 【闯关训练】2.1.1 实数的大小一、用符号><“”或“”填空1.<;2.>;3.>. 二、判断题1. ×;2. × 提示:若a b 、两数为负数则不成立;3. √ 提示:若1212−<−m n ,则22m n −<−,则m n >. 三、. 解答题1.(1)解:因为4316151054202020−−>,所以4354>; (2)解:因为008.083.175.183.1431<−=−=−,所以31 1.834<;(3)解:因为252516151()03838242424−−−=−+=−+=−<,所以2538−<−.2. 解:由a b >,得0a b −>,因此(32)(32)32323()0a b a b a b +−++−−−>所以3232a b +>+.3. 解:)(22b a ab ab b a −=−,由0<<b a ,可得0,0<−>b a ab ,则0)(<−b a ab ,所以22ab b a <.4. 解:由2>x 可得222(44)44(2)0x x x x x −−=−+=−>,所以244x x >−.2.1.2不等式的性质一、用符号><“”或“”填空1. <,>;2. >,>;3. <,>,>;4. <,提示:3a >−,所以30a +>,而2b <,所以20b −<,因此(3)(2)0a b +−<; 5. >,提示:a b <,所以0a b −<,那么()a a b −>()b a b −.二、选择题 1. B . 2. C .3. D .提示:A 、B 选项如果是负数则不成立,C 选项两边同时乘以-1,不等式要变号,不成立.4. B .提示:A 选项,由22am bm <可知20m >,所以成立,C 选项0a b +>0b <,,所以0a >,所以0a b −>是显然成立的,D 选项也是成立的,只有B 选项2a a >不一定1a >,0a <也成立,所以是错误的. 三、解答题1. 解:根据已知条件(23)(2)1x x +−−≤,解之得4x −≤,所以当4x −≤时,代数式23x +与2x −的差不大于1.2. 解:(1)原不等式可以化为2(21)13x x −−≥,即4213x x −−≥,73x ≥,37x ≥,所以3{|}7x x ≥; (2)原不等式可以化为6453x x −<−,解之得1x <,所以{|1}<x x . (3)证明:因为,b a >0>ab 且,所以a b ab b aba 11,11>⋅>⋅即,也就是b a 11<.另外,也可以用作差比较法来证明. 【学海探津】常用的还有作商比较法和取中间值间接比较法.此题用作商比较法即可,54455454⋅>⋅.2.2 区间【要点梳理】1.实数,不等式2.略3.书写方便、简单、直观 【闯关训练】 一、完成表表2-3.二、判断题1.× 提示:应该表示为(,1]−∞;2. × 提示:应该表示为(1,)+∞;3. √ 提示:因为B A ⊆,所以A B B = ;4. × 提示:应该是[0,)+∞. 三、填空题1. ]2,1[),3,1(−;2. ]4,1(),,3[−+∞−;3. ]1,(−−∞. 四、解答题1. 解:原不等式可化为352(51)x x −>+,即35102x x −>+,解得1x <−,所以不等式的解集为)1,(−−∞.2. 解:由52132x x +> − ≥ 得21x x >− ≤,即21x −<≤,所以不等式组的解集为(2,1]−.3. 解:①(,1)[5,),(,2]A B −∞−+∞−∞ ; ②[1,2]A B − . 【学海探津】第一档:[0,180],第二档:(180,280],第三档:(280,)+∞.2.3 一元二次不等式的解法【要点梳理】1.一个,二,ax 2+bx +c <0(0 )或ax 2+bx +c >0(0 )(a≠0) .2.略 【闯关训练】 一、填空题1.1x =或2x =−,[2,1]−,(,2)(1,)−∞−+∞ ;2.2x =或2x =−,(2,2)−,(,2][2,)−∞−+∞ ;3.1x =−或3x =,(1,3)−,(,1)(3,)−∞−+∞ ;4.2340x x +−<,1x =或4x =−,(4,1)−;5.(,2]−∞−,提示:{|23},{|}A x x B x x m ==< ,若A B =∅ ,画数轴可以看出2m ,所以实数m 的取值范围为(,2]−∞−. 二、选择题1.C2.C3.D 提示:方程2260x x ++=的0∆<,因此二次函数226y x x =++与x 轴没有交点,所以任意实数x 都满足2260x x ++ . 三、解答题1.(1)解:不等式可以化为23520x x −+>,解方程23520x x −+=得:23x =或1x =,所以不等式的解集为2(,)(1,)3−∞+∞ .(2)解:不等式可以化为260x x +− ,解方程260x x +−=得:3x =−或2x =,所以不等式的解集为[3,2]−.(3)解:解方程24410x x −+=,可得12x =,所以不等式的解集为1{|,}2x x R x ∈≠且.(4)解:不等式可以化为26100x x −+ ,解方程26100x x −+= ,0∆<,所以不等式的解集为∅.2.解:要使代数式322−−x x 有意义,需要2230x x −− ,解方程2230x x −−= 得32x =或1x =−,因此3(,1][,)2x ∈−∞−+∞ .3.解:若要方程有实根,需要0∆ ,即2(2)440m +−× ,可以化为24120m m +− 解之得62m m −或 ,因此(,6][2,)m ∈−∞−+∞ . 【学海探津】(1) (10005005001000)30(108)50+++÷÷−=,所以每天至少要销售51件商品.(2)设定价为x 元,则230(8)[5010(10)]1000200010230130001013x x x x x −−−−>−−+<<<,所以若想月利润超过2000元,每件定价应在10至13元之间.2.4 含绝对值的不等式的解法【要点梳理】1. 它本身,相反数,0.2.与原点之间的距离.3.(-a ,a ),(,)(,)a a −∞−+∞ ,大于,中间.4.变量替换,ax+b ,m c <和m c >(0c >). 【闯关训练】 一、填空题1.(3,3)−;2.(,2][2,)−∞−+∞ ;3.(,)−∞+∞提示:任何数的绝对值都大于负数;4.{4}−提示:任何数的绝对值都不会小于零,所以此题与40x +=同解. 二、选择题1.C 3.D 提示:不等式可以化为2||4,||2x x >>. 3.B 4.C 提示:不等式可以先化为|23|1x −<再求解. 三、解下列不等式1.解:不等式可以化为3||1x >,1||3x >解得:1133x x <−>或,所以不等式的解集为11(,)(,)33−∞−+∞ .2.解:不等式可以化为1114||1,||,444x x x −≤≤≤≤,所以不等式的解集为11[,]44−. 3.解:不等式可以化为2453153155x x x x −−−≤或≥,解得≤或≥,所以不等式的解集为24(,][,)55−∞+∞ .4.解:不等式可以化为13|21|2,2212,123,22x x x x −<−<−<−<<−<<,所以不等式的解集为13(,)22−.5.解:不等式可以化为15|33|2,|33|2,2332,33x x x x −−−−≤≤≤≤≤≤,所以不等式的解集为15[,]33.6.解:不等式可以化为|43|1,|34|3,3x x +>+>71343343,33x x x x +<−+><−>−或,解得或所以,不等式的解集为71(,)(,)33−∞−−+∞ .【学海探津】10,1,30,3x x x x −==−==,分1,13,3x x x <<<>三种情况对不等式进行去绝对值化简,再求解,解集为19(,)22−.2.5 不等式应用举例【闯关训练】 一、选择题 1.B 2.B3.D 提示:2760x x −−>,即2670x x −<+,(7)(1)0x x +−<,71x −<<.4.A 提示:22()4280,08n n n n n n ∆=−−⋅=−≥≤或≥. 二、填空题 1.v ≤40 km/h.2.根据题意可以列式|2|5x −≥,即2525x x −−−≤或≥,37x x −≤或≥,因此,实数x 的取值范围为(,3][7,)−∞−+∞ . 三、解答题 1.解:4%2007%5%6%200x x ⋅+⋅<<+,解得x 的范围是(100,400),所以需加入含盐4%的食盐水质量为100到400克之间.2.解:设草坪带的宽度为x m (0150x <<), 则中间花坛的长为(400-2x )m ,宽为(300-2x )m . 根据题意可得(400-2x )(300-2x )≥12×400×300,整理得2350150000x x −+≥即(50)(300)0x x −−≥, 所以0<x ≤50或x ≥300,x ≥300不符合题意,舍去. 故所求草坪带宽度的范围为(0,50]m .3.解:设销售价定为每件x 元,利润为y 元,则(8)[10010(10)]y x x =−−−, 依题意有,(8)[10010(10)]320x x −−−>, 即2281920x x −+<, 解得12<x <16,所以每件销售价应为12元到16元之间. 【学海探津】已知该班参加活动的学生有n 人(n ∈N *),全票价为a 元,坐甲车需花y 1元,坐乙车需花y 2元,则y 1=a +34a ·(n -1)=14a +34an ,y 2=45na . 所以y 1-y 2=14a +34an -45na =14a -120na=1(1)45n a −. 当n =5时,y 1=y 2;当n >5时,y 1<y 2;当n <5时,y 1>y 2.因此当去的人数为5人时,两车队收费相同;多于5人时,甲车队更优惠;少于5人时,乙车队更优惠.第2章 自我检测一、选择题 1.D 2.C 3.C4.C 提示:原不等式可以变形为21(1)02x −>,解得1102x −≠,即2x ≠.5.B 提示:原不等式可以变形为2||2x −−≤,解得||1x ≥,11x x −≤或≥.6.A7.A 提示:原不等式可以变形为|21|5x −<,5215,426,23x x x −<−<−<<−<<. 8.D 提示:一元二次方程无实数解,则0∆<,即 2(2)4(32)0m m −−<,解得12m <<. 9.D10.D 提示:设墙垂直的围栏长度为x 米,则花圃的面积(242)70S x x =⋅−≥,即22224700,12350x x x x −+−−+≥≤,解得 57x ≤≤. 二、填空题1.(1)> (2)> (3)>2.(,1][3,)−∞−+∞ 提示:要想使代数式322−−x x 有意义,实数x 需要满足2230,(3)(1)0,13x x x x x x −−−+−≥≥≤或≥.3.R 提示:原不等式可以化为22210,210x x x x −−−<++>即,方程2210x x ++=无实数解,所以根据函数221y x x =++的图像可知,不等式2210x x ++>的解集为R.4.(,1)(2,)−∞+∞5.[1,5]6.[4.29,4.31] 提示:由已知可得| 4.3|0.01,4.29 4.31.l l −≤≤≤ 三、解答题1.解:22(9)6(3)x x x +−=−,因为3x <,所以2(3)0x −>,因此296x x +>.2.解:解不等式23280,(4)(7)0,47x x x x x −−+−−≤≤≤≤,故[4,7]M −, 解不等式5|32|>−x ,可得14−<>x x 或,故(,1)(4,)N −∞−+∞ , 所以[4,1)(4,7].M N =−−3.解:根据二次函数的图像可知,00k > ∆<,即22000,,,11124010k k k k k k k k k >>> > <−>−⋅⋅<−>或,因此, k 的取值范围是(1,)+∞.[300(10.75)250(1)]2000(10.6)(01)4.解:(1)根据已知“年利润=(出厂价-投入成本)×年销售量”,可以列出本年度预计的年利润y 与投入成本增加的比例x 的关系式:y x x x x =⋅+−⋅+⋅⋅+<<, 整理得(5025)(20001200)(01)y x x x =−+<<.(2)要想使本年度的年利润比上年度有所增加,则需本年度的利润大于上年度的利润,即(5025)(20001200)(300250)2000y x x =−+>−×,化简整理得,230x x −<,解得103x <<,根据已知01x <<,故投入成本增加的比例x 应在1(0,)3范围内.第3章 函数3.1 函数的概念【要点梳理】1. 非空,每一个,唯一确定,y ,x ,(),y f x x D =∈,自变量,定义域, 0x ,0y ,0x ,00()y f x =,{}(),y y f x x D =∈,值域.2. 定义域,对应法则,定义域,对应法则.3. 有意义,自变量. 【闯关训练】 一、 填空题1.{}3≠x x . 提示:要使得函数有意义,需要满足30−≠x ,即3≠x .2.{}0y y . 提示:自变量x 取任意实数,都有20x ,所以函数的值域为{}0y y .3.{}3,1,1,3−−.提示:因为(0)3,(1)1,(2)1,(3)3f f f f =−=−==,所以函数值的集合为{}3,1,1,3−−.二、选择题1. C .提示:因为2(1)(1)12f −=−+=.2.D .提示:要使得函数有意义,需要满足10−x ,同时0x ≠,所以函数的定义域是{}{}{}10010−≠=≠ 且x x x x x x x .3. B .提示:由(0)02(3)34f a b f a b =⋅+=− + ,得22a b = =− ,所以(2)2222f =×−=.三、判断题1. 正确. 提示:由函数的概念可知:定义域与对应法则是函数的两个要素,它们一旦确定,函数的值域也就随之确定.2. 正确. 提示:由函数的概念可知:自变量x 的取值范围D 叫做函数的定义域,是一个非空数集.3. 错误. 提示:根据自变量与函数值的对应关系,函数的值域也是非空的数集. 四、解答题1.(1)解:要使得函数有意义,需要满足20x −≠,所以函数的定义域是{}2x x ≠. (2)解:要使得函数有意义,需要满足30−x ,同时10x −≠, 所以函数的定义域是{}{}{}301031−−≠=≠ 且x x x x x x x .2.(1)2(2)322216f =×+×=, 2(2)3(2)2(2)8f −=×−+×−=, (2)(2)24f f +−=. (2)22()3232f a a a a a =×+×=+,22()3()2()32f a a a a a −=×−+×−=−,2()()6f a f a a +−=.【学海探津】(1)y 是n 的函数;定义域是*N ,值域是{}0,1,2,3,4,5,6,7,8,9.3.2 函数的表示方法【要点梳理】1.解析法,列表法,图像法.2.利用解析式表示函数的方法称为解析法.3.通过列出自变量的值与对应函数值的相应表格来表示函数的方法称为列表法.4.利用图像表示函数的方法称为图像法.5.不同范围内,解析式,并集,并集,一个,取值范围,解析式,各段不同取值范围, 相应解析式. 【闯关训练】 一、 填空题1.{}5,10,15,20,25. 提示:将函数定义域中自变量x 的每一个值代入解析式即可求出对应的函数值.2.4. 提示:这是一个分段函数题,因为2x 时,()4f x =,所以(3)4f =.3.{}()1,4,9,16,25,36f x x =−∈.提示:因为(4)11,(9)12,f f =−===(25)13,f =−=(36)15f ==,所以{}()1,4,9,16,25,36f x x =∈.4. 3−或6. 提示:由题意得211=10x x < +或12210x x −= ,即3x =−或6x =.二、选择题1. A .提示:因为一次函数的图像是一条直线,D 选项中受定义域的限制,图像由几个孤立的点组成,所以A 选项正确.2. B .提示:将2(1,1)M 的坐标代入,满足函数解析式,所以该点在函数的图像上.3. B .提示:根据分段函数解析式可知B 选项正确.4. A .提示:观察函数图像,四个函数的定义域都是(,0)(0,)−∞+∞ ,所以A 选项正确. 三、解答题1. 解:由图像可得()1(0)f x x x =−≠. 2. 解:化简函数解析式得1,0()1,0x x f x x x −< = +>图像如右图所示.【学海探津】用x 表示记忆天数,用y 表示记忆的单词总量,那么5050y x =+,x A ∈,其中A ={1,2,3,4,5,6,7,8,9,10}.3.3 函数的性质【要点梳理】1. (1)任意,12()()f x f x <,增函数,增区间.(2)任意,12()()f x f x >,减函数,减区间. 单调性,单调区间 2. 定义法,图像法.3. (1)(),Q a b − (2)(),Q a b − (3)(),Q a b −−4. (1)任意,x D −∈,()()f x f x −=−,奇函数. (2)任意,x D −∈,()()f x f x −=,偶函数.5. 原点,y 轴,原点.6. 定义法,图像法.7. 一条直线(1)R ,()−∞+∞, (2)R ,()−∞+∞,(3)增,减 (4)0b =,0b ≠ (5)(,0)bk− ,(0,)b8. (1)()()00+−∞∞ ,, (2)()()00+−∞∞ ,, (3)0k >,(,0)−∞,(0,)+∞; 0k <, (,0)−∞,(0,)+∞ (4)原点,奇9.(1)()−∞+∞, (2)24[,)4ac b a −+∞ (3)(,]2ba −∞−,[,)2b a −+∞ (4)0b =,0b ≠ (5)(0,)c 想一想:略 【闯关训练】3.3.1 函数的单调性一、 填空题1.减. 提示:对于一次函数y =kx +b (k ≠0),当k <0时,函数在()−∞+∞,上是减函数.2.增. 提示:根据增函数的定义可知,已知函数()y f x =对于任意的()12,,x x a b ∈,当12x x <时,都有()()120f x f x −<,即()()12f x f x <成立,所以是增函数.3.(,0)−∞和(0,)+∞.提示:根据反比例函数的图像和减函数的定义可知,减区间有两个.4. (,1)−∞,(1,)+∞. 提示:二次函数开口朝下,对称轴是1x =,所以增区间(,1)−∞,减区间是(1,)+∞.5.0a <. 提示:反比例函数ky x=,当0k <时,在()(),0,0,−∞+∞上为增函数,可知0a <. 二、选择题1. C .提示:因为函数()y f x =在区间(2,7)−上是减函数,所以对任意的()12,2,7x x ∈−,当12x x <时,都有()()12f x f x >成立,那么,因为34<,则()()34f f >,所以C 选项正确.2. C .提示:对于二次函数2y ax bx c ++,当0a <时,在(,)2ba−∞−上为增函数,在(,)2ba−+∞上为减函数,所以C 选项正确. 3. A .提示:因为二次函数241y x bx =−+−在区间(),4−∞上是增函数,在(4)+∞,上是减函数,所以对称轴428bb x a=−==,解得32b =,所以A 选项正确. 4. C . 提示:因为函数7y x=在区间()0,+∞上是减函数,则在区间()2,+∞上也是减函数,所以C 选项正确. 三、解答题1.(1)解:增区间[]0,1,[]3,4;减区间[]1,3. (2)解:定义域[]0,4,值域[]1,1−.2. 解: 6f x x在(),5−∞−上是减函数.证明如下:任取()12,,5x x ∈−∞−,且12x x <,则()()()21121212666x x f x f x x x x x −−=−=,因为125x x <<−,所以211200x x x x −>>,, 所以()()()()12120f x f x f x f x −>>即.所以函数 6f x x在(),5−∞−上是减函数.3.3.2 函数的奇偶性一、 填空题1.(4,3)−. 提示:点(),P a b 关于x 轴对称的点的坐标是(),a b −.所以答案是(4,3)−.2.(1,6). 提示:点(),P a b 关于原点对称的点的坐标是(),a b −−.所以答案是(1,6).3.(1,9). 提示:因为偶函数的图像关于y 轴对称,点(1,9)−关于y 轴对称的点的坐标是(1,9).所以答案是(1,9)4. 偶 提示:对于任意的x R ∈,都有()()423==6f f x x x x −+−,所以函数()y f x =是偶函数.5.7− 提示:因为函数()y f x =是奇函数,所以()()=f x f x −−,所以(18)(18)7f f −=−=.所以答案是7−. 二、 选择题1.A .提示:对于一次函数()=f x kx b +,因为()=x b f x k −+−,()=x f x k b −−−,若为奇函数,则一定有=0b .而且二次函数不可能是奇函数,所以正确答案是A .2.B . 提示:根据偶函数定义()=()f x f x −可知,偶函数图像关于y 轴对称,所以正确答案是B .3.C .提示:对于一次函数()=f x kx b +,当=0b 时为奇函数,当0k >时在R 上为增函数,所以正确答案是C .4.D .提示:函数0y 的图像既关于x 轴对称也关于y 轴对称,所以既是奇函数也是偶函数,当然也可以用定义进行验证,所以正确答案是D .数既不是奇函数,也不是偶函数,所以正确答案是C . 三、 解答题1. 解:(1)由题可知函数的定义域是R ,对于任意的x ∈R ,都有x −∈R ,且()=2=()f x x f x −−−,所以函数()2f x x =在R 上是奇函数. (2)由题可知函数的定义域是R ,对于任意的x ∈R ,都有x −∈R ,且22()=3()+2=32()f x x x f x −−−−+=,所以函数2()32f x x =−+在R 上是偶函数.2. 解:(1)因为(1)5f =,所以32(1)1=51af =+,解得4a =. (2)由(1)可知函数的解析式为324()f x x x=+,因为分式分母不为零,所以函数的定义域为()()00+−∞∞ ,,,对于任意的()()00+x ∈−∞∞ ,,,都有()()00+x −∈−∞∞ ,,,且332244()()f x x x x x −=−+=−+−,324()f x x x −=−−,所以()()f x f x −≠且()()f x f x −≠−,函数324()f x x x =+在()()00+−∞∞ ,,上是非奇非偶函数.3.3.3 几种常见的函数一、 填空题1. (),0−∞. 提示:对于反比例函数=ky x,当0<k 时,函数在(,0)−∞上是增函数,所以k 的取值范围是(),0−∞.2. (),2−∞. 提示:由一次函数()(2)3f x m x =−−在定义域内是减函数,可得2m −<0,也就是m <2.3.224x x −+. 提示:设2()(1)2f x a x =−+,由于图像过原点(0,0),故02=+a ,由此得到2=−a .所以,2()2(1)2f x x =−−+,所以答案是224x x −+. 4.[)5,−+∞. 提示:因为二次函数图像开口向上,所以函数的最小值是2440548−=−=−ac b a .所以答案是[)5,−+∞. 5. 1. 提示:因为反比例函数1()=−f x x在()0−∞,上单调递增,所以函数[]1(),2,1=−∈−−f x x x 的最大值为1(1)11−=−=−f .所以答案是1. 二、 选择题1.A .提示:当0>k 时,一次函数=+y kx b 在R 上是增函数;当0<k 时,一次函数=+y kx b 在R 上是减函数;当0k =时,一次函数=+y kx b 在R 上没有单调性.所以A 选项正确.2.A .提示:当0<k 时,反比例函数图像在第二、四象限,并且在(0,)+∞上是增函数.所以A 选项正确.3.C .提示:二次函数的顶点坐标是24(,)24−−b ac b a a,因为1,2,0==−=a b c ,所以它的顶点坐标是(1,1)−.所以C 选项正确. 三、 解答题1. 解:∵()f x 为偶函数,∴()f x 的对称轴为y 轴,∴0=m ,2()3=−+f x x , 又∵()f x 的图像开口向下, ∴()f x 在(-5,-2)上是增函数.2. 解:函数2()(1)5=−−+f x x a x 的图像开口朝上,对称轴为x =a -12.∵函数在区间1(,1)2上是增函数,a -12≤12, ∴a ≤2.3.4 函数的应用【要点梳理】1.函数模型,函数,一次函数模型,二次函数模型,分段函数模型.2.分段函数. 4.定义域,取整. 【闯关训练】 一、 判断题1.错误. 提示:二次函数的图像关于直线2=−bx a对称,只有当0=b 时,函数图像才关于y 轴对称,所以表述错误.2.错误. 提示:分段函数在自变量的不同取值范围内,有不同的对应法则,需要用不同的解析式来表示,在整个定义域上仍然是一个函数,而不是几个函数,所以表述错误.3.正确. 提示:由函数解析式可知:当0<x 时,()1=−f x ,当0x 时,()1=f x ,所以(1)1f −=−,(1)1f =. 所以表述正确. 4. 错误. 提示:题意中的函数是一次函数y kx b =+,其中3k =,常数28b =,其中自变量年数x 的取值应该是正整数,所以表述错误. 二、选择题1. C . 提示:从内向外计算,因为0>x 时()1=−f x ,所以(2)1=−f ,又因为0<x 时()1=f x ,所以[](2)(1)1=−=f f f ,所以C 选项正确.2.D .提示:因为飞机从着陆到停下来的滑行距离是其函数的最大值,所以由2260 1.5 1.5(20)600S t t t =−=−−+知,当20t =时,max 600S =,即飞机着落后滑行600米才能停下来.所以D 选项正确. 3. C .提示:由图像知,甲的速度是2054=km/h ,乙的速度是20201=km/h ,乙比甲晚出发一个小时,甲比乙晚到两个小时,所以C 选项正确. 三、解答题1. 解:由题意得:当0<x ≤3时,10=y ;当3>x 时,10(3)224=+−×=+y x x .所以车费y 元与路程x km 之间的函数关系式为:10,03,24, 3.x y x x < =+> ≤ 2. 解:设产品的单价提高(0)x x >元时,月收入为y 元,则22(10)(1505)510015005(10)2000y x x x x x =+⋅−=−++=−−+ 所以,当10x =时,2000y =最大.第3章 自我检测一、 选择题1. C. 提示:因为{}{}{}10010+≠=−≠ 且x x x x x x x ,所以C 选项正确.2. B. 提示:此题考查一次函数、反比例函数、二次函数的奇偶性.结合这三种函数的图像特征,只有反比例函数3y x=是奇函数.所以B 选项正确. 3. B. 提示:因为()10,2∈,所以(1)1f =.所以B 选项正确.4. C. 提示:因为一次函数21(13)y x x +−< 是增函数,并且(1)1−=−f ,(3)7=f ,所以C 选项正确.5. B. 提示:在B 选项中,反比例函数3y x=−的图像在第二、四象限,关于原点对称,并且在()0,+∞单调递增.所以B 选项正确.6. C. 提示:因为()33()()()22x x x xf x f x −+−+−==−=−,所以函数()32x x f x +=为奇函数,因此图像关于原点对称.故C 选项正确.7. A . 提示:因为二次函数23y x mx =+−的图像关于直线1=−x 对称,所以12=−=−mx 得2=m .所以A 选项正确.上,并且在(),0−∞是减函数,由对称性知,(1)f =(1)8.C. 提示:因为该二次函数的对称轴是y 轴,又有最小值,所以其图像开口向f −<(2)f −.所以C 选项正确. 9. B. 提示:观察函数的图像,A 、C 的函数图像关于y 轴对称,它们是偶函数;D 的函数图像关于原点对称,它是奇函数;B 函数的图像不对称.10. D. 提示:因为函数()f x 为偶函数,所以()()f x f x −=,即()()22f f −=,()()33f f −=.又因为函数()f x 在(),0−∞上是减函数,而3<2−−,所以()()()()33 > 22f f f f =−−=,也就是()()2 < 3f f −.所以D 选项正确.二、填空题1. 3−. 提示:因为(2)2(2)13−=×−+=−f .2. (),1−∞−. 提示:对于二次函数2y ax bx c ++,当0a >时,在(,)2ba∞−-上为减函数,对于函数2()=361f x x x +−,=12ba−−,则减区间为(),1−∞−. 3. 41()33f x x =−+. 提示:已知b kx y +=,由于图像过点(1,-1),(-2,3),故b k +=−1,b k +−=23,由此得到31,34=−=b k .所以,函数解析式为41()33f x x =−+.4. 2133−+x . 提示:因为偶函数的定义域关于原点对称,所以120++=a a ,计算得13=−a .所以()=f x 2133−+x . 5. 0. 提示:函数()f x ax b =+的图像关于y 轴对称,说明函数是偶函数,由()()=f x f x −可得ax b ax b −+=+,解得0a =.6.(,1]−∞. 提示:二次函数顶点式()2y a x h k =−+,当0a <时,函数在区间(),h −∞上为增函数,函数()2()+5f x x m =−+在区间(),1−∞−上为增函数,则需1m −−≥,得1m .三、解答题1. 解:(1)要使得函数有意义,需要满足30+x ,同时20x −≠所以函数的定义域是{}{}{}302032+−≠=−≠ 且x x x x x x x .(2)(1)f −3(6)4f . 2. 解:(1)函数的定义域为R ,对于任意的x ∈R ,都有x −∈R ,即定义域关于原点对称.而且()()()3322−=−=−=−f x x x f x ,所以()32=f x x 是奇函数.(2)函数的定义域为R ,对于任意的x ∈R ,都有x −∈R ,即定义域关于原点对称.而且()()()()2424−=−−−=−=f x x x x x f x ,所以()24=−f x x x 是偶函数.(3)函数的定义域为R ,对于任意的x ∈R ,都有x −∈R ,即定义域关于原点对称.但是()()1−=−−≠−f x x f x ,且()()1−=−−≠f x x f x ,所以()1=−f x x 是非奇非偶函数.3. 解:任取1x ,2(0)x ∈−∞,,且12x x <,即120x x <<,12()()f x f x −221122(3)(3)=−++−−++x x x x222112=−+−x x x x212112()()=−++−x x x x x x []2121()()1=−+−x x x x由于210x x −>,120+<x x , 所以2110+−<x x ,故12()()f x f x −[]2121()()10=−+−<x x x x ,即()()12<f x f x .故2()3=−++f x x x 在区间(0)−∞,上是增函数.4. 解:设长为x 米,则宽为2423x−米,面积为y 平方米,由题意得, 22242228(6)24333x y x x x x −=⋅=−+=−−+所以,当长为6米,宽为4米时,窗户的透光面积最大,最大面积为24平方米.第4章 三角函数4.1 角的概念推广【要点梳理】1.绕着端点从一个位置旋转到另一位置 顶点 始边 终边 逆时针 顺时针 没有做任何旋转2.原点 x 轴的非负半轴 终边3.{}=+360k k ββα⋅∈Z,【闯关训练】4.1.1 任意角的概念一、填空题1. 360− ,30− 提示:时钟表针顺时针转动,转过的角是负角.2.一,三,二3.四4. 180 ,180− ,540 (答案不唯一) 二、选择题1. B2. D 提示:270− 角终边落在y 轴的非负半轴3.D4.C 三、解答题1.解 (1)210− 角的终边在第二象限.(2)1080=3603× ,所以1080 角的终边在x 轴的非负半轴.(3)450=360+90 ,所以450 角的终边在y 轴的非负半轴. (4)370− 角的终边在第四象限.2.解 因为090α<< ,90180β<< ,所以90+270αβ<< ,即+αβ是第二或第三象限的角或终边在x 轴的非正半轴的角.4.1.2 终边相同的角一、填空题1. {}=100+360k k αα⋅∈Z ,2. 330− 提示:30360=330−−3.3204. {}36090+360k k k αα⋅−<<⋅∈Z ,(答案不唯一) 二、选择题1. C2. D3. D 提示:因为角α是锐角,所以090α<< ,即900α−<−< ,因此角α−是第四象限的角,即角+360k k α−⋅∈Z()也是第四象限的角4.B 提示:当()=4k m m ∈Z 时,角α的终边在x 轴的非负半轴;当()=4+1k m m ∈Z 时,角α的终边在y 轴的非负半轴;当()=4+2k m m ∈Z 时,角α的终边在x 轴的非正半轴;当()=4+3k m m ∈Z 时,角α的终边在y 轴的非正半轴. 三、解答题1.解 (1)与450 角终边相同的角的集合是{}=450+360k k αα⋅∈Z ,,其中在0~360 范围内的角是90 角(2)与220− 角终边相同的角的集合是{}=22+360k k αα⋅∈Z -0,,其中在0~360 范围内的角是140 角(3)与510− 角终边相同的角的集合是{}=51+360k k αα⋅∈Z -0,,其中在0~360范围内的角是210 角(4)与900 角终边相同的角的集合是{}=90+360k k αα⋅∈Z 0,,其中在0~360 范围内的角是180 角2. 解 如果角α是第三象限的角,则有180+360270+360k k k α⋅<<⋅∈Z ,,不等式两边同时除以2,得到90+180135+1802k k k α⋅<<⋅∈Z ,,因此,当k 取奇数时,角2α是第四象限的角;当k 取偶数时,角2α是第二象限的角.【学海探津】提示:上午8点整时,分针与时针相差240− ,分针每分钟转6− ,时针每分钟转0.5− .设从早上8点整开始,经过x 分钟后分针与时针重合,即()()60.5=240x −−−⋅− ,解得4807==431111x ,所以分针与时针第一次重合时间是8点74311分,此时分针转动48028806=1111 −×−,时针转动4802400.5=1111 −×−.4.2 弧度制【要点梳理】1.弧长等于半径 1rad 弧度制2.正数 负数 零3.lr4. r α 12lr 或212r α5.【闯关训练】 一、填空题1.(1)π8(2)7π6 (3)7π4− (4)25π3(5)5π2− (6)π12− 2.(1)12 (2)420− (3)5 (4)36− (5)150 (6)543.π=+π,2k k αα∈Z 4. π4,50π 二、选择题1.D2.B3.B4.A 提示:点(1,在第四象限 三、解答题1.解 与5π3−弧度的角终边相同的角的集合为:5π=+2π,3k k αα−∈Z ,5π3−弧度的角是第一象限的角.2.解(1)飞轮每分钟转过弧度数为:2π120=240π×(2)此点每秒钟转过弧度数为:240π=4π60,由2d =,可知1r =,所以此点经过弧长为4π1=4π×cm . 【学海探津】提示:由于扇形的周长为20 m ,所以当扇形的半径为r m 时,圆心角所对的弧长为()202m r −,此时花坛面积为。

高教版中职数学基础模块上册:1.3《集合的运算》优秀教案(全站免费)

高教版中职数学基础模块上册:1.3《集合的运算》优秀教案(全站免费)

高教版中职数学基础模块上册:1.3《集合的运算》优秀教案(全站免费)中职数学教学设计:集合的基本运算(1)一、教学目标1、知识与技能(1)理解并集和交集的含义,会求两个简单集合的交集与并集。

(2)能够使用Venn图表达两个集合的运算,体会直观图像对抽象概念理解的作用。

2、过程与方法(1)进一步体会类比的作用。

(2)进一步树立数形结合的思想。

3、情感态度与价值观集合作为一种数学语言,让学生体会数学符号化表示问题的简洁美。

二、教学重点与难点教学重点:并集与交集的含义。

教学难点:理解并集与交集的概念,符号之间的区别与联系。

三、教学过程1、创设情境(1)通过师生互动的形式来创设问题情境,把学生全体作为一个集合,按学科兴趣划分子集,让他们亲身感受,激起他们的学习兴趣。

(2)用Venn图表示。

2、探究新知(1)通过Venn图,类比实数的加法运算,引出并集的含义:一般地,由所有属于集合A 或集合B 的元素组成的集合,称为集合A 和集合B 的并集。

记作:A ∪B ,读作:A 并B ,其含义用符号表示为:AUB={x |x ∈A ,或x ∈B }。

(2)解剖分析1)“所有”:不能认为A ∪B 是由A 的所有元素和B 的所有元素组成的集合,即简单平凑,要满足集合的互异性,相同的元素即A 和B 的公共元素只能算作并集中的一个元素。

两个集合求并集,结果还是一个集合,是由集合A 与B 的所有元素组成的集合(重复元素只看成一个元素)。

2)“或”:“x ∈A 或x ∈B ”这一条件,包括下列三种情况:B x A x ?∈但;A B ?∈x x 但;B x A x ∈∈且3)用Venn 图表示A ∪B :3、讲授教材例4和例5。

4、思考:求集合的并集是集合间的一种运算,那么,集合间还有其他运算吗(具体画出A 与B 相交的Venn 图)?5、交集的含义:一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中职数学教学设计:
集合的基本运算(1)
一、教学目标
1、 知识与技能
(1)理解并集和交集的含义,会求两个简单集合的交集与并集。

(2)能够使用Venn 图表达两个集合的运算,体会直观图像对抽象概念理解的作用。

2、过程与方法
(1)进一步体会类比的作用 。

(2) 进一步树立数形结合的思想。

3、情感态度与价值观
集合作为一种数学语言,让学生体会数学符号化表示问题的简洁美。

二、教学重点与难点
教学重点:并集与交集的含义 。

教学难点:理解并集与交集的概念,符号之间的区别与联系。

三、教学过程
1、 创设情境
(1)通过师生互动的形式来创设问题情境,把学生全体作为一个集合,按学科兴趣划分子集,让他们亲身感受,激起他们的学习兴趣。

(2)用Venn 图表示。

2、探究新知
(1)通过Venn 图,类比实数的加法运算,引出并集的含义:
一般地,由所有属于集合A 或集合B 的元素组成的集合,称为集合A 和集合B 的并集。

记作:A ∪B ,读作:A 并B ,其含义用符号表示为:AUB={x |x ∈A ,或x ∈B }。

(2)解剖分析 1)“所有”:不能认为A ∪B 是由A 的所有元素和B 的所有元素组成的集合,即简单平凑,要满足集合的互异性,相同的元素即A 和B 的公共元素只能算作并集中的一个元素。

两个集合求并集,结果还是一个集合,是由集合A 与B 的所有元素组成的集合(重复元素只看成一个元素)。

2)“或”:“x ∈A 或x ∈B ”这一条件,包括下列三种情况:
B x A x ∉∈但; A B ∉∈x x 但; B x A x ∈∈且
3)用Venn 图表示A ∪B :
3、讲授教材 例4和例5。

4、思考:求集合的并集是集合间的一种运算,那么,集合间还有其他运算吗(具体画出A 与B 相交的Venn 图)?
5、交集的含义:
一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集。

A B
B A A=B A 与B 相交(有公共元素) A 与B 分离(无公共元素)
记作:A ∩B ,读作:A 交B ,其含义用符号表示为{|,}.A B x x A x B =∈∈且
解剖分析: 1)“且”:两个集合求交集,结果还是一个集合,是由集合A 与B 的公共元素组成的集合。

2)用Venn 图表示A ∩B :
6、讲授教材的例6。

7
、巩固练习:教材P9的例7;教材P11 :1 、2。

8、拓展:求下列各图中集合A 与B 的并集与交集:
说明:当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集。

9、小结:并集和交集的含义及其符号表示;并集与交集的区别。

10、作业:教材P12:6 、7。

四、教学反思
A B B A A=B A 与B 相交(有公共元素) A 与B 分离(无公共元素) A B A B A(B) A B B A B A。

相关文档
最新文档