数字调制解调实验

合集下载

FSK调制解调原理实验

FSK调制解调原理实验

FSK调制解调原理实验一、实验目的1.了解FSK调制解调的基本原理;2.了解FSK调制解调器的实现过程;3.学习使用软件工具进行FSK调制解调实验。

二、实验原理FSK(Frequency Shift Keying)调制解调是一种常用的数字调制解调技术,它通过改变信号的调制频率来表示不同的数字信号。

FSK调制解调一般分为两个部分:调制器(Modulator)和解调器(Demodulator)。

(一)FSK调制器原理FSK调制器的任务是根据输入信息信号的不同,产生两个不同频率的载波信号。

当输入是数字"0"时,调制器选择低频率载波信号进行调制;当输入是数字"1"时,调制器选择高频率载波信号进行调制。

调制可采用线性调制或非线性调制两种方式。

线性调制实质是将低频调制信号与载波信号作直接叠加得到调制信号。

设载波频率为$f_c$,低频信号频率为$f_0$,则调制后信号可以表示为:$$s(t) = \cos(2\pi f_c t) + A_0 \cos(2\pi f_0 t)$$非线性调制利用逻辑电路切换不同频率的载波信号,常采用矩形脉冲函数进行调制。

设载波频率为$f_c$,低频信号频率为$f_0$,则调制后信号可以表示为:$$s(t)= \begin{cases}\cos(2\pi f_1 t), & \text{当} 0 \leq t \leq T_b \text{且输入为数字"0"时}\\\cos(2\pi f_2 t), & \text{当} 0 \leq t \leq T_b \text{且输入为数字"1"时}\end{cases}$$其中$T_b$为每个码元(bit)的时间长度,$f_1$和$f_2$为两个不同频率的载波频率。

(二)FSK解调器原理FSK解调器的任务是对调制信号进行解调,即还原出原始的数字信号。

普通调制解调实验报告(3篇)

普通调制解调实验报告(3篇)

第1篇一、实验目的1. 了解普通调制解调的基本原理和过程。

2. 掌握模拟调制和解调的基本方法。

3. 学习调制解调设备的使用和调试方法。

4. 培养实际操作能力和分析问题的能力。

二、实验原理调制解调是一种将数字信号转换为模拟信号,或将模拟信号转换为数字信号的通信技术。

调制是将数字信号转换为模拟信号的过程,解调是将模拟信号转换为数字信号的过程。

调制解调的基本原理如下:1. 模拟调制:将数字信号转换为模拟信号的过程称为模拟调制。

模拟调制分为调幅(AM)、调频(FM)和调相(PM)三种。

2. 数字调制:将模拟信号转换为数字信号的过程称为数字调制。

数字调制分为调幅键控(ASK)、调频键控(FSK)和调相键控(PSK)三种。

3. 解调:将模拟信号转换为数字信号的过程称为解调。

解调分为模拟解调和数字解调。

三、实验器材1. 模拟调制解调设备:调幅(AM)、调频(FM)、调相(PM)调制器和解调器。

2. 数字调制解调设备:调幅键控(ASK)、调频键控(FSK)、调相键控(PSK)调制器和解调器。

3. 信号发生器:产生模拟信号和数字信号。

4. 示波器:观察调制解调信号波形。

5. 连接线:连接实验器材。

四、实验步骤1. 调制实验(1)调幅(AM)调制实验1)将信号发生器产生的模拟信号接入AM调制器。

2)调整调制器的调制频率和调制指数。

3)观察示波器上的调制信号波形,记录波形数据。

(2)调频(FM)调制实验1)将信号发生器产生的模拟信号接入FM调制器。

2)调整调制器的调制频率和调制指数。

3)观察示波器上的调制信号波形,记录波形数据。

(3)调相(PM)调制实验1)将信号发生器产生的模拟信号接入PM调制器。

2)调整调制器的调制频率和调制指数。

3)观察示波器上的调制信号波形,记录波形数据。

2. 解调实验(1)调幅(AM)解调实验1)将调制信号接入AM解调器。

2)调整解调器的解调频率和解调指数。

3)观察示波器上的解调信号波形,记录波形数据。

FSK调制解调实验报告

FSK调制解调实验报告

FSK调制解调实验报告实验报告:FSK调制解调实验一、实验目的FSK调制解调是数字通信中常用的调制解调方式之一,通过本次实验,我们学习FSK调制解调的原理、实现方法和实验技巧,理解其在数字通信中的应用。

同时,通过实验验证FSK调制解调的正确性和稳定性,并掌握实验数据的分析和处理方法。

二、实验原理FSK调制在信号传输中广泛应用,其原理是将数字信号调制成两个不同的频率信号,通常用0和1两个数字分别对应两个不同的频率。

在调制端,通过将0和1信号分别转换成相应的频率信号,并通过切换不同的载波波形来实现不同频率信号的调制。

在解调端,通过将接收到的调制信号分别和两个对应的参考频率信号进行相关运算,从而还原出原始的0和1信号。

实验所需材料:1.FSK调制解调器2.函数发生器3.示波器4.电缆和连接线实验步骤:1.将函数发生器的输出信号接入FSK调制器的MOD输入端,调整函数发生器的频率和幅度,使其适配FSK调制器的输入端。

2.调整FSK调制器的MOD输入切换开关,选择合适的调制波形(常用的有正弦波和方波两种)。

3.通过示波器观察和记录已调制的FSK信号波形。

4.将已调制的信号通过电缆传输到解调器端。

5.调整解调器的参考频率和解调器的解调方式。

6.通过示波器观察和记录解调器输出的数字信号波形。

7.将解调输出与调制前的原始信号进行比较,验证FSK调制解调的正确性。

三、实验结果和数据分析根据实验步骤的指导,我们依次完成了FSK调制解调的实验,在观察示波器上的波形时,我们发现调制波形的频率随着输入数据的0和1的变化而变化,已达到我们的预期效果。

在解调端,我们观察到解调输出的数字信号与调制前的原始信号一致,由此可验证FSK调制解调的正确性。

对于实验数据的分析和处理,我们应注意以下几点:1.频率的选择:合适的调制频率和解调频率能够保证调制解调的稳定和正确性,应根据具体情况进行选择。

2.调制波形的选择:正弦波和方波是常见的调制波形,两者各有优缺点,可根据实际需要进行选择。

数字调制与解调实验报告

数字调制与解调实验报告

数字调制与解调实验报告
实验目的:
1.掌握数字信号调制与解调的基本理论和方法。

2.熟悉激励、显示、调制、解调等仪器和设备操作方法。

3.理解不同调制方式的优缺点及适用场合。

实验器材:
数字信号发生器、混频器、低通滤波器、示波器、数字信号处理器、计算机、电缆等。

实验原理:
数字调制与解调是将数字信号变为模拟信号或将模拟信号转换为数字信号的过程。

调制的目的是将讯息信号改为适合传输的信号;而解调则是将传输信号还原为原讯息信号。

实验步骤:
1.基带信号的调制实验
将固定频率的基带信号通过数字信号发生器产生一个频率为f1的固定载波信号,并通过混频器进行调制,产生频率为f1+f2和f1-f2的调制信号。

通过低通滤波器滤除掉高频成分,以得到目标信号。

在示波器上观察波形和频谱,并用数字信号处理器检测和还原基带信号。

2.幅度调制实验
实验数据:
输入基带信号:
载波信号:
调制信号:
实验结论:
数字调制与解调是将数字信号变为模拟信号或将模拟信号转换为数字信号的过程。

通过本次实验,我们实现并了解了不同调制方式的基本原理及其优缺点。

在幅度调制和频率调制实验中,我们掌握了两种数字调制方式的原理和实现方法,通过数字信号发生器制作载波和基带信号,完成幅度调制和频率调制实验。

通过示波器观察得到了不同调制方式的调制信号波形和频谱,并用数字信号处理器检测和还原出原基带信号。

总之,数字调制解调技术在数据传输、通信等方面应用广泛,其优点是抗干扰、可靠性高、传输速度快,具有重要的意义。

数字基带信号实验及数字调制与解调实验

数字基带信号实验及数字调制与解调实验

硬件实验一一、实验名称数字基带信号实验及数字调制与解调实验二、实验目的(1)了解单极性码,双极性码,归零码,不归零码等基带信号波形特点。

(2)掌握AMI,HDB3的编码规则。

(3)掌握从HDB3码信号中提取位同步信号的方法。

(4)掌握集中插入帧同步码时分复用信号的帧结构特点。

(5)了解HDB3(AMI)编译码集成电路CD22103。

(6)掌握绝对码,相对码概念及他们之间的变换关系。

(7)掌握用键控法产生2ASK,2FSK,2PSK,2DPSK信号的方法。

(8)掌握相对码波形与2PSK信号波形之间的关系,绝对码波形与2DPSK信号波形之间的关系。

(9)了解2ASK,2FSK,2PSK,2DPSK信号的频谱与数字基带信号频谱之间的关系。

(10)掌握2DPSK相干解调原理。

(11)掌握2FSK过零检测解调原理。

三、实验仪器1. 双踪示波器一台2. 通信原理Ⅵ型实验箱一台3. M6信号源模块、M4数字调制模块四、实验容与实验步骤(一)数字基带信号实验1.熟悉信源模块,AMI&HDB3编译模块(有可编程逻辑器件模块实现)和HDB3编译码模块的工作原理。

2.接通数字信号源模块的电源。

用示波器观察熟悉信源模块上的各种信号波形。

(1)示波器的两个通信探头分别接NRZ-OUT和BS-OUT,对照发光二级管的发光状态,判断数字信源单元是否已正常工作(1码对应的发光管亮,0码对应的发光管熄);(2)用K1产生代码*1110010(*为任意代码,1110010为7位帧同步码),K2,K3产生任意信息代码,观察本实验给定的集中插入帧同步码时分复用信号帧结构,和NRZ码特点。

3.关闭数字信号源模块的电源,按照下表连线,打开数字信号源模块和AMI(HDB3)编译码模块电源。

用示波器观察AMI(HDB3)编译单元的各种波形。

(1)示波器的两个探头CH1和CH2分别接NRZ-OUT和(AMI)HDB3,将信源模块K1,K2,K3的每一位都置1,观察并记录全1码对应的AMI码和HDB3码;再将K1,K2,K3置为全0,观察全0码对应的AMI和HDB3码。

实验指导书(实验2-数字调制解调Ⅱ)

实验指导书(实验2-数字调制解调Ⅱ)

实验二数字调制解调实验Ⅱ1、实验目标本实验的目的是使用USRP来实现发射和接收射频信号,并且通过LabVIEW 来实现对不同调制信号的同步性能的对比,由于你在实验一中已经完成了数字调制的实验,所以在做这部分实验时,需要用到之前的调制解调模块。

该实验将通过配置USRP的参数来使你了解把基带信号上变频到射频信号以及把射频信号下变频到基带信号的过程,并熟悉LabVIEW中的各种USRP模块的配置方法。

2、实验环境与准备软件环境:LabVIEW 2012(或以上版本);硬件环境:一套USRP和一台计算机;实验基础:了解LabVIEW编程环境和USRP的基本操作;知识基础:了解常见的数字调制解调技术以及相关概念。

3、实验介绍本实验发送端主程序的前面板如图所示,首先是USRP的基本参数设置,包括IP地址、载波频率、IQ采样率等;接下来是PN序列的参数设置,包括保护间隔、信息序列长度、同步比特长度和PN序列的类型;然后是采样数和滤波器参数;之后是输出的PN序列以及调制前的信号时域图,频域图;最后是不同调制方式的不同调制结果。

接收端主程序的前面板如图所示,一开始的设置与发送端一样。

在解调部分,是解调信号以及它的时域图、频域图、星座图和误码数,你可以通过这些来判断你的程序是否正确。

图1 数字调制解调实验发送端前面板图2数字调制解调实验接收端前面板1、发送端介绍本实验发送端的调制主程序包含4个功能模块,其功能分别如下所述。

(1)TX_init本模块主要实现USRP的初始化,是配置一些基本USRP参数的模块。

(2)transmitter本模块是调制程序的核心,实现的是基带信号的产生,包括信源编码,调制,脉冲成形等重要功能。

(3)TXRF_prepare_for_transmit本模块的作用是对调制完的信号幅度进行归一化。

(4)TXRF_send本模块实现的功能是把调制完的数据写入USRP,实现发送。

2、接收端介绍本实验接收端端的解调主程序包含5个功能模块,其功能分别如下所述。

数字解调实验实验报告

数字解调实验实验报告

一、实验目的1. 理解数字解调的基本原理和方法。

2. 掌握数字解调实验的基本步骤和操作技巧。

3. 分析数字解调过程中的信号波形和性能指标。

4. 熟悉数字通信系统中的调制解调技术。

二、实验原理数字解调是数字通信系统中的关键环节,其主要任务是从接收到的数字信号中恢复出原始信息。

本实验主要涉及以下几种数字解调技术:1. 相干解调:利用接收到的信号与本地产生的参考信号进行相位同步,从而恢复出原始信息。

2. 非相干解调:不依赖接收信号与参考信号的相位同步,直接从信号中提取信息。

3. 锁相环解调:利用锁相环技术实现相位同步,从而提高解调性能。

三、实验仪器与设备1. 数字信号发生器:用于产生实验所需的数字信号。

2. 双踪示波器:用于观察信号波形。

3. 数字解调器:用于实现数字解调功能。

4. 计算机及实验软件:用于数据处理和分析。

四、实验内容与步骤1. 相干解调实验(1)设置数字信号发生器,产生一个基带信号(例如:2KHz的方波信号)。

(2)将基带信号调制为BPSK信号,载波频率为1MHz。

(3)将已调信号输入数字解调器,设置相干解调参数。

(4)观察解调后的信号波形,分析解调性能。

2. 非相干解调实验(1)设置数字信号发生器,产生一个基带信号(例如:2KHz的方波信号)。

(2)将基带信号调制为FSK信号,两个载波频率分别为1MHz和1.1MHz。

(3)将已调信号输入数字解调器,设置非相干解调参数。

(4)观察解调后的信号波形,分析解调性能。

3. 锁相环解调实验(1)设置数字信号发生器,产生一个基带信号(例如:2KHz的方波信号)。

(2)将基带信号调制为BPSK信号,载波频率为1MHz。

(3)将已调信号输入数字解调器,设置锁相环解调参数。

(4)观察解调后的信号波形,分析解调性能。

五、实验结果与分析1. 相干解调实验结果通过观察解调后的信号波形,可以发现相干解调能够有效地恢复出原始信息。

同时,相干解调对信号的相位同步要求较高,若相位差较大,解调性能会受到影响。

信号的调制与解调实验报告-数字信号处理

信号的调制与解调实验报告-数字信号处理
uVthANDiORiANDuVth=≥=≤ Vth
u
i0
结合上面电路图,有sRi
Sus
=?
?=+?,所以,可以推出,
0,
sSVthwhenSVth
swhenSVth
=?≥?
?=≤?
⑵ 实验波形图:
E=1
E=1.2
E=2
Eα=2ACmEα==
2
20
1/10ACm
Eα===故有,110ACAC
DCDCEE
m
EEα
α==
++
(0.1α=)
若5ACE
=,2DCE=,则5
0.5
102
m=≈
+
假设二极管是理想的,有如下特性 (0)(0)
ACE=2
ACE=7
⑵ 由图示可以观察出,改变ACE的值,调制后的波形仅在幅值上有差异,其他均相同。
⑶ 不可能产生过调状态的原因:
整理得:
假设要产生一个过调制状态,必须有:
结合实际情况,以上情况不可能发生,因为信号发生器中电压最大值一般要与数字系统
αααα
απαπ=+=+
=++22
0()(1)cos2[1cos2]DCFsStEEftmftααππ=++1AC
DCE
m
E
α=
+22
0
2
0
2
0
2
0()(1)cos2[1cos2]
(1)
(1cos2(2))[1cos2]
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

武汉大学教学实验报告
电子信息学院 ** 专业 2016 年 ** 月 ** 日
实验名称数字调制解调实验指导教师 *** 姓名 *** 年级 14级学号 20143012***** 成绩
图1 FSK调制电路原理框图
代表信号载波的恒定偏移。

FSK 的信号频谱如图2 所示。

图2 FSK 的信号频谱
公式给出:,其中B 为数字基带信号的带宽。

假设信号带宽限制在主
FSK 的传输带宽变为:。

图3 FSK锁相环解调器原理示意图
锁相解调的工作原理是十分简单的,只要在设计锁相环时,
此时对应的环路滤波器输出电压为零,而对另一载频失锁,则对应的环路滤波器输出电压不为零,那末在锁相环路滤波器输出端就可以获得原基带信号的信息。

FSK锁相环解调器原理图如图3所示。

FSK。

其中,压控振荡器的频率是由5C2.5R3.5R4.5U3等元件参数确定,中心频率设计在
电位器进行微调。

当输入信号为32KHz时,环路锁定,经形成电路后,输出高电平;当输入信号为
失锁,经形成电路后,输出低电平,则在解调器输出端就得到解调的基带信号序列。

图4 PSK、DPSK调制电路原理框图
,通过4P5和4P6两个铆孔输入到FPGA中,FPGA软件完成
解调器电路采用科斯塔斯环(Constas环)解调,其原理如图5所示。

图5 解调器原理方框图
输入电路由射随器和比较器组成,射随器是为了发送(调制器)和接收(解调器)电路之间的隔离,从而使它们工作互不影响。

比较电路是将正弦信号转换为脉冲信号,目的是便于控制科斯塔斯特环中的乘法器。

由于跟随器电源电压已调波信号幅度不能太大,一般控制在1.8V左右,否则会产生波形失真。

)科斯塔斯环提取载波原理(原理中标号参见原理图)
采用科斯塔斯特环解调,科斯塔斯特环方框原理如图6所示。

图6 科斯塔斯特环电路方框原理如图
解调输入电路的输出信号被加到模拟门5U6C和5U6D构成的乘法器,前者为正交载波乘法器,相当于图
,后者为同相载波乘法器,相当于框图中乘法器1。

5U7A,5U7B周边电路为低通滤波器。

的作用是将低通滤波后的信号整形,变成方波信号。

PSK解调信号从5U8的7脚经5U11B.C
,若5U10A两输入信号分别为A和B,因(A、B同为
5E2用来稳压,以便提高VCO的频率稳定度。

VCO信号从7脚经5C21输出至移相90º90º移
根据触发器工作原理和电路连接关系,数字90º移相电路的相位波形图如7
图7 90度数字移相器的波形图
从图看出,载波一超前载波二90度,并且频率为1024KHZ,因此载波一为同相载波,载波二为正交载波。

由于科斯塔斯特环存在相位模糊,解调器可能会出现反向工作。

调制解调
图8 QPSK信号的矢量图表示
信号可以表示为:,其中I(t)称为同相分量,
正交调制器的方框图,如图9所示。

图9 QPSK系统调制器原理框图
调制器可以看作为两个BPSK调制器构成,输入的二进制信息序列经过串并转换,分成两路Q(t),然后对cosωt和sinωt进行调制,相加后即可得到QPSK信号。

经过串并变换之后的两个支路,一路为单数码元,另一路是偶数码元,这两个支路为正交,一个称为同相支路,即I支路,另一个称为正交支
图10 QPSK相干解调框图
)是另外一种四相相移键控。

将QPSK调制框图中的正交支路信号偏移信号。

将正交支路信号偏移TS/2 的结果是消除了已调信号中突然相移π的现象。

每个
OQPSK信号的相位转移图如图11所示。

图11 相位转移图
调制后,相位转移图中的信号点只能沿着正方形四边移动,故相位只能发生π
QPSK 的好。

图12 OQPSK调制器和相干解调器框图
三.主要仪器设备
RZ9681实验平台
.实验模块:
主控模块●基带信号产生与码型变换模块A2
纠错译码与频带解调模块A5
a.基带数据设置与观测
b.ASK调制信号观测
c.载波频率为16kHz
d.载波频率为20kHz
e.载波频率为48kHz
f.全0时信号频率32kHz
g.全1时信号频率16kHz
h.FSK调制信号时域观测 i. FSK调制信号频域观测 j. FSK解调观测
实验二:PSK/DPSK调制解调
k.DPSK调制信号观测 l.DPSK解调 m.相位反转实验三:QPSK/OQPSK调制解调
n.QPSK调制相位观察 o.OQPSK调制相位观察
二.实验操作过程
* 测量点说明
1.主控模块 4.纠错译码与频带解调模块
2.基带产生与码型变换模块 5P1:解调信号输入
2P1:基带数据输出; 5P6:解调数据输出
2P3:基带时钟输出; 5TP3:本地载波输出
3.信道编码与频带调制模块 5. 信道编码与调制模块状态指示
4P5:调制数据输入; 6.纠错译码与解调模块状态指示
4P6:调制数据时钟输入;
4P9:FSK(ASK)调制输出;
实验一:ASK/FSK调制解调
1.实验模块在位检查
在关闭系统电源的情况下,确认下列模块在位:
●基带产生与码型变换模块A2;
●信道编码与频带调制模块A4;
●纠错译码与频带解调模块A5;
2.信号线连接:
用鼠标在液晶上选择“数字调制解调实验”中“ASK/FSK调制解调”,按图连线。

注:流程图中:
“基带设置”用于改变调制数据
“载波频率”用于改变FSK调制的中心频率,默认fc=24KHZ,;
“频率分离”用于改变FSK频偏,默认Δf=8KHZ;。

相关文档
最新文档