六年级数学:分数混合运算
六年级上册数学分数混合运算

六年级上册数学分数混合运算六年级上册数学分数混合运算___________________________________________________________________________在学习分数混合运算之前,我们首先要了解一下什么是混合运算?混合运算就是指在一道数学题中,同时出现加减乘除四种运算,需要我们根据运算顺序进行计算。
### 分数混合运算的解题步骤1. 把整数和分数分开计算2. 先算乘除,然后再算加减3. 用括号把分开的计算式组合起来4. 在最后的计算中,把分数化为最简形式### 混合运算的实例演示假设我们要解决的问题是:2\frac{2}{3} + 3\frac{3}{7} - 4\frac{1}{2} = ?1. 首先,我们将整数和分数分开计算:2 + 3 - 4 = 1;2\frac{2}{3} + 3\frac{3}{7} = 5\frac{5}{7}2. 先进行乘除运算:4\frac{1}{2} \times 5\frac{5}{7} = 20\frac{5}{14}3. 用括号把分开的计算式组合起来:(1 + 5\frac{5}{7}) - 20\frac{5}{14} = -15\frac{3}{14}4. 在最后的计算中,将分数化为最简形式:-15\frac{3}{14} = -1\frac{1}{2}### 如何避免出错在解决混合运算问题时,要注意以下几点:1. 要认真审题,不要出错2. 注意运算顺序,先乘除再加减3. 注意四则运算的优先级,必要时要用括号将计算式分开4. 注意最后的计算时要将分数化为最简形式### 举一反三在解决混合运算问题时,我们可以做到举一反三:把原来的问题中的数字换成其它的数字,然后通过对比原来的问题和新的问题来总结出一般的解法。
通过举一反三的方法,我们可以快速而准确地解决混合运算问题。
### 总结通过以上介绍,我们可以看出,学习分数混合运算要注意几个方面:要审题准确、注意运算优先级、用括号将计算式分开、将最后的分数化为最简形式、用举一反三的方法总结出一般的解法。
六年级上册数学教案-分数混合运算-人教版

六年级上册数学教案分数混合运算人教版教案:分数混合运算一、教学内容本节课的教学内容来自于人教版六年级上册数学教材,主要涉及分数混合运算。
具体包括分数加减法、分数乘除法以及混合运算的顺序。
二、教学目标通过本节课的学习,使学生掌握分数混合运算的计算法则,提高学生解决实际问题的能力,培养学生的逻辑思维和运算能力。
三、教学难点与重点教学难点:分数混合运算的运算顺序以及在不同情况下如何进行简便计算。
教学重点:掌握分数混合运算的计算法则,能够独立完成相关题目。
四、教具与学具准备教具:黑板、粉笔、多媒体教学设备学具:练习本、笔、计算器五、教学过程1. 实践情景引入:假设小明有2/3的苹果,小红有1/4的苹果,他们一起吃掉了这些苹果的1/2,请问他们还剩下多少苹果?2. 例题讲解:分数加减法、分数乘除法以及混合运算的顺序。
例1:计算 3/4 + 1/2 1/3解:找到分母的最小公倍数,为12,然后进行通分,得到 9/12 + 6/12 4/12 = 11/12。
例2:计算2/3 × 1/4 ÷ 1/2解:先进行乘法运算,得到 1/6,然后进行除法运算,得到 1/3。
例3:计算5/6 1/2 + 1/3 × 2/5解:先进行乘法运算,得到 1/3,然后进行加减法运算,得到1/2。
3. 随堂练习:(1)计算 2/5 + 3/5 1/5答案:1/5(2)计算4/7 × 1/8 ÷ 1/7答案:1/2六、板书设计板书分数混合运算的计算法则,包括分数加减法、分数乘除法以及混合运算的顺序。
七、作业设计(1)计算 3/4 + 1/2 1/3答案:11/12(2)计算2/3 × 1/4 ÷ 1/2答案:1/3(3)计算 5/6 1/2 + 1/3 × 2/5答案:1/22. 应用题:小明有2/3的苹果,小红有1/4的苹果,他们一起吃掉了这些苹果的1/2,请问他们还剩下多少苹果?答案:1/4八、课后反思及拓展延伸本节课通过实例引入,让学生了解分数混合运算的实际应用,通过例题讲解和随堂练习,使学生掌握分数混合运算的计算法则。
小学六年级数学《分数混合运算》教案

小学六年级数学《分数混合运算》教案小学六年级数学《分数混合运算》教案7篇作为一名教学工作者,总不可避免地需要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。
教案应该怎么写才好呢?以下是小编整理的小学六年级数学《分数混合运算》教案,希望能够帮助到大家。
小学六年级数学《分数混合运算》教案1教学内容:教科书第83页例2及“练一练”,练习十六第1-4题。
教学目标:1.学会用分数乘法和减法解决一些稍复杂的实际问题,进一步积累解决问题的策略,增强数学应用意识。
2.在运用已有知识和经验解决一些稍复杂的实际问题的过程中,发展思维,提高分析问题、解决问题的能力,进一步体会数学知识之间的内在联系,体会数学知识和方法在解决实际问题中的价值,从而提高数学学习的兴趣和学好数学的信心。
教学重点:学会用分数乘法和减法解决一些稍复杂的实际问题,进一步积累解决问题的.策略,增强数学应用意识。
教学对策:借助画线段图和分析数量关系来寻找解决问题的方法,鼓励学生要积极交流自己的思考过程,真正理解数量关系后再列式解答。
教学准备:教学光盘及补充练习教学过程:一、复习铺垫1.口算下列各题。
4/15+7/151/2-1/35/9×3/52÷1/21/4÷418÷1/218×1/20÷2/51-3/41÷4/721×3/710/7÷1521÷3/71/2×1/35/6×36进行口算,学生将得数写本子上,时间到后统计完成的题目数量及正确率。
2.口答。
(1)五(1)班中男生人数占全班人数的2/5,那么女生人数占全班的()。
(2)一本故事书已看了2/7,还剩全书的()。
(3)一根绳子长12米,剪去了1/4,剪去了()米。
(4)一盒牛奶900毫升,喝去了1/3,喝去了()毫升。
指名学生口答得数并分析每一题的数量关系。
二、学习新知1.教学例2。
六年级数学分数混合运算试题答案及解析

六年级数学分数混合运算试题答案及解析1.学校阅览室看书的人,人人有座位,而且座无虚席.过了一会儿,看书的人走了,又新来了24人,现在座位不够了,其中8人是2人合坐一个座位,这时在阅览室看书的人有多少?【答案】84人【解析】其中8人是2人合坐一个座位,即此时比原来多了8÷2=4人.由于新来了24人,则其中24﹣4=20人坐了原来走的人数的座位,所以这个原来有20÷=80人,则现在共有80+4=84人.解:(24﹣8÷2)÷+8÷2=(24﹣4)+4,=20×4+4,=80+4,=84(人).答:这时在阅览室看书的人有84人.【点评】明确“8人是2人合坐一个座位”说明现在比原来多(8÷2)=4人是完成本题的关键.2.(用递等式计算.25×24+924÷3(7.2﹣2.8÷2)×1.5÷[1÷(﹣)].【答案】908;8.7;【解析】(1)先算乘除法,后算加法;(2)先算小括号内的除法,再算小括号内的减法,最后算括号外的乘法;(3)先算小括号内的减法,再算中括号内的除法,最后算中括号外的除法.解:(1)25×24+924÷3=600+308=908(2)(7.2﹣2.8÷2)×1.5=(7.2﹣1.4)×1.5=5.8×1.5=8.7(3)÷[1÷(﹣)]=÷[1÷]=÷=×=【点评】考查学生对四则运算法则以及运算顺序的掌握情况.3.一堆沙土重吨,用去了,用去了吨,还剩总数的.【答案】,.【解析】解:×=(吨)1﹣=答:用去了吨,还剩总数的.故答案为:,.4.下面各题怎样简便就怎样算125×25×32×0.36×+×(2.5+2.5+2.5+2.5)×25×8.【答案】36000;0.9;;2000.【解析】125×25×32×0.36,把32拆分为:8×4,运用乘法结合律简算;,运用乘法分配律简算;×+×,运用乘法分配律简算;(2.5+2.5+2.5+2.5)×25×8,首先根据乘法的意义,将原式转化为2.5×4×25×8,再运用乘法和结合律简算.解:125×25×32×0.36=125×8×(25×4)×0.36=1000×100×0.36=36000;90%×=()×0.9=1×0.9=0.9;×+×===;(2.5+2.5+2.5+2.5)×25×8=2.5×4×(25×8)=10×200=2000.【点评】此题考查的目的是理解掌握分数、小数、百分数四则混合运算的顺序以及它们的计算法则,并且能够灵活选择简便方法进行计算.5.食堂运来大米和菜油共650千克,运来的菜油比大米少,运来的大米有多少千克?【答案】350千克【解析】把大米的质量看成单位“1”,运来的菜油比大米少,那么运来的菜油的质量就是大米的(1﹣),总质量就是大米的(1﹣+1),它对应的数量是650千克,由此用除法求出运来大米的质量.解:650÷(1﹣+1)=650÷=350(千克)答:运来的大米有350千克.【点评】本题的关键是找出单位“1”,并找出数量对应了单位“1”的几分之几,再用除法就可以求出单位“1”的量.6.甲数的等于乙数的,则甲数()乙数.A.大于 B.小于 C.等于【答案】B【解析】因为甲×=乙×,把甲数看作是4,乙数看作是5,根据求一个数是另一个数的几分之几进行解答.解:4÷5=;答:甲数相当于乙数的;故选B.【点评】此题可以根据分数的意义,来解决有关的问题.7.下列各题怎样简便就怎样计算.(+)×12 87×﹣×××××14 3.7×+1.3÷.【答案】(1)(+)×12=×12+×12=10+3=13;(2)87×=(86+1)×=86×+1×=3+=3;(3)﹣×=×(1﹣)=×=;(4)××=××=×=;(5)××14=×(×14)=×8=;(6)3.7×+1.3÷=3.7×+1.3×=(3.7+1.3)×=5×=6.【解析】(1)(2)(3)(6)利用乘法分配律简算;(3)利用乘法交换律简算;(4)利用乘法结合律简算.解:(1)(+)×12=×12+×12=10+3=13;(2)87×=(86+1)×=86×+1×=3+=3;(3)﹣×=×(1﹣)=×=;(4)××=××=×=;(5)××14=×(×14)=×8=;(6)3.7×+1.3÷=3.7×+1.3×=(3.7+1.3)×=5×=6.【点评】分数四则计算的关键是抓住运算顺序,正确按运算顺序计算,适当利用运算定律简算.8.要运来360吨白菜,已经运来,运来了多少吨?【答案】90【解析】把大白菜的总质量看成单位“1”,已经运来了,用总质量乘上就是运来的质量,由此求解.解:360×=90(吨)答:运来了90吨.【点评】本题的关键是找出单位“1”,已知单位“1”的量求它的几分之几是多少用乘法计算.9.脱式计算,能简算的要简算.(1)10﹣[﹣(35%﹣)×](2)625÷+×36﹣36(3)(111+999)÷[56×(﹣)](4)×370%+630%×+440%【答案】9.85;22477.5;370;6.4.【解析】(1)先算小括号里面的减法,再算中括号里面的乘法,再算中括号里面的减法,最后算括号外面的减法;(2)、(4)根据乘法分配律进行简算;(3)中括号里面根据乘法分配律进行简算,最后算除法.解:(1)10﹣[﹣(35%﹣)×]=10﹣[﹣0.25×]=10﹣[﹣0.05]=10﹣0.15=9.85;(2)625÷+×36﹣36=625×36+×36﹣36=(625+﹣1)×36=624.375×36=22477.5;(3)(111+999)÷[56×(﹣)]=1110÷[56×﹣56×]=1110÷[24﹣21]=1110÷3=370;(4)×370%+630%×+440%=×(370%+630%)+440%=×10+440%=2+440%=6.4.【点评】考查了运算定律与简便运算,四则混合运算.注意运算顺序和运算法则,灵活运用所学的运算定律简便计算.10.直接写得数.3.5+4.7= ×= 1÷= 8×=1+= ÷= ×÷= 1÷6×=【答案】8.2;;1.6;;1;;;;【解析】根据分数、小数四则运算的计算法则及混合运算的运算顺序进行计算即可.解:3.5+4.7=8.2 ×= 1÷=1.6 8×=1+=1÷=×÷= 1÷6×=【点评】此题考查了分数、小数四则运算的计算法则的运用.11.计算下面各题(能简算的要用简便方法算)60×+40÷(+)×+4.8×3.9+6.1×41﹣0.75+0.45÷0.9.【答案】88;1;48;0.75;【解析】(1)先算除法和乘法,再算加法;(2)运用乘法分配律和加法结合律简算;(3)运用乘法分配律简算;(4)先算减法和除法,再算加法.解:(1)60×+40÷=24+64=88(2)(+)×+=×+×+=++=+(+)=+1=1(3)4.8×3.9+6.1×4=4.8×3.9+6.1×4.8=4.8×(3.9+6.1)=4.8×10=48(4)1﹣0.75+0.45÷0.9=0.25+0.5=0.75【点评】此题考查了四则混合运算,注意运算顺序和运算法则,灵活运用所学的运算定律简便计算.12.计算÷÷×(1÷)6÷(÷)×+÷(+18)÷.【答案】12;;8;;11【解析】(1)按照从左向右的顺序进行计算;(2)先算小括号里面的除法,再算乘法;(3)先算小括号里面的除法,再算括号外面的除法;(4)、(5)根据乘法分配律进行简算.解:(1)÷÷=÷=12;=×=;(3)6÷(÷)=6÷=8;(4)×+÷=×+×=(+)×=1×=;(5)(+18)÷=(+18)×=×+18×=1+10=11.【点评】考查了运算定律与简便运算,四则混合运算.注意运算顺序和运算法则,灵活运用所学的运算定律简便计算.13.果园去年收苹果1200吨,今年比去年少收,今年收苹果多少吨?【答案】1080吨【解析】果园去年收苹果1200吨,今年比去年少收,将去年产量当作单位“1”,根据分数减法的意义,今年产量是去年的1﹣,求一个数的几分之几是多少,用乘法计算,则今年产量是1200×(1﹣)吨.解:1200×(1﹣)=1200×=1080(吨)答:今年收苹果1080吨.【点评】首先根据已知条件求出今年产量占去年产量的分率是完成本题的关键.14.脱式计算①42÷(÷)②3.5×[(702﹣270)÷16]③(4﹣3 )÷④51.6÷[(3﹣1.25)×].【答案】15;94.5;;30【解析】①先算括号内的除法,再算括号外的除法;②先算减法,再算除法,最后算乘法;③先算括号内的减法,再算括号外的除法;④先算小括号内的减法,再算中括号内的乘法,最后算括号外的除法.解:①42÷(÷)=42÷=42×=15②3.5×[(702﹣270)÷16]=3.5×[432÷16]=3.5×27=94.5③(4﹣3)÷=×=④51.6÷[(3﹣1.25)×]=51.6÷[(3﹣1)×]=51.6÷[×]=51.6÷=51.6×=30【点评】此题考查了四则混合运算,注意运算顺序和运算法则,灵活运用所学的运算定律简便计算.15.看图列式计算.【答案】20千克【解析】由图可知,苹果有25千克,香蕉数量是苹果的,根据分数乘法的意义,用苹果数量乘香蕉占苹果数量的分率,即得香蕉多少千克.解:25×=20(千克)答:香蕉有20千克.【点评】求一个数的几分之几是多少,用乘法.16.解比例(前两题)、脱式计算6.5:x=3.25:4 = 10÷[﹣(÷+)]25×1.25×32 5400﹣2940÷28×27 (+)÷+【答案】(1)8;(2)8;(3)37.5;(4)1000;(5)2565;(6).【解析】(1)先根据比例基本性质:两内项之积等于两外项之积,化简方程,再依据等式的性质,方程两边同时除3.25求解;(2)先根据比例基本性质:两内项之积等于两外项之积,化简方程,再依据等式的性质,方程两边同时除0.25求解;(3)先算小括号里的除法,再算小括号里的加法,再算中括号里的减法,再算除法即可;(4)先把式子化为25×1.25×4×8,再用乘法的交换律与结合律即可;(5)先算乘除,再算加减;(6)先计算小括号里的加法,再算除法,最后算加法.解:(1)6.5:x=3.25:43.25x=6.5×43.25x÷3.25=6.5×4÷3.25x=8;(2)=0.25x=1.25×1.60.25x÷0.25=1.25×1.6÷0.25x=8;(3)10÷[﹣(÷+)]=10÷[﹣(2+)]=10÷()=10÷=37.5;(4)25×1.25×32=25×1.25×4×8=(25×4)×(1.25×8)=100×10=1000;(5)5400﹣2940÷28×27=5400﹣105×27=5400﹣2835=2565;(6)(+)÷+===.【点评】解方程的依据是:等式的性质,以及比例基本性质,解答时(1)方程能化简的先化简;(2)注意对齐等号.还考到了四则混合运算.17.乙车的速度比甲车慢,已知甲车2小时行90千米,乙车每小时行多少千米?【答案】36千米【解析】乙车的速度比甲车慢,把甲车的速度看作单位“1”,乙车的速度是甲车的(1﹣),已知甲车2小时行90千米,则甲车的速度为90÷2=45千米/小时,用45×(1﹣)即得乙车的速度.解:90÷2×(1﹣)=90÷2×=45×=36(千米)答:乙车每小时行36千米.【点评】首先根据分数减法的意义求出乙车速度占甲车速度的分率是完成本题的关键.18.我市一所小学开展了“奉献爱心、情系灾区”的募捐活动,五年级捐款占全校总捐款的,六年级捐款占全校总捐款的,这两个年级一共捐款6000元.这所小学一共募捐了多少元?【答案】14400【解析】六年级捐款占全校捐款总数的,五年级捐款占全校捐款的.把全校捐款数看作单位“1”,那么五年级与六年级共捐总钱数的(+),正好捐6000元,全校捐款数是6000÷(+),据此解答即可.解:6000÷(+)=6000÷=6000×=14400(元)答:这所小学一共募捐了14400元.【点评】此题考查了单位“1”的确定,注意量与率的对应,用除法解答即可.19.下面各题怎样计算简便就怎样算.①0.54×0.28+0.72×0.54②676÷13+17×25③12.5×64④2÷(÷)×⑤3.4÷2.5÷0.4⑥[(+)×].【答案】①0.54;②477;③800;④5;⑤3.4;⑥.【解析】①利用乘法分配律简算;②先算乘法和除法,再算加法;③把64=8×8,利用乘法结合律简算;④先算小括号里面的除法,再算括号外面的除法,最后算乘法;⑤利用除法的性质简算;⑥先算加法,再算乘法,最后算除法.解:①0.54×0.28+0.72×0.54=0.54×(0.28+0.72)=0.54×1=0.54;②676÷13+17×25=52+425=477;③12.5×64=12.5×8×8=100×8=800;④2÷(÷)×=2÷(×)×=2××=5;⑤3.4÷2.5÷0.4=3.4÷(2.5×0.4)=3.4÷1=3.4;⑥[(+)×]=×=.【点评】混合运算的运算顺序的关键是抓住运算顺序,正确按运算顺序计算,适当利用运算定律简算.20.用递等式计算,能简算的要写出简算过程.24×(++)×÷×0.375÷×40%+×0.4.【答案】23;;;0.4.【解析】(1)、(4)根据乘法分配律进行简算;(2)、(3)按照从左向右的顺序进行计算.解:(1)24×(++)=24×+24×+24×=9+4+10=13+10=23;(2)×÷=÷=;(3)×0.375÷=÷=;(4)×40%+×0.4=×0.4+×0.4=(+)×0.4=1×0.4=0.4.【点评】考查了运算定律与简便运算,四则混合运算.注意运算顺序和运算法则,灵活运用所学的运算定律简便计算.21.怎样简便怎样算..【答案】;14;.【解析】(1)把除法改为乘法,运用乘法分配律简算;(2)运用加法交换律和结合律以及减法的性质简算;(3)先算括号内的乘法,再算括号内的减法,最后算括号外的除法.解:(1)÷6+×,=×+×,=(+)×,=;(2)18.8﹣﹣3.8﹣,=(18.8﹣3.8)﹣(+),=15﹣1,=14;(3)(1﹣×)÷,=(1﹣)÷,=×,=.【点评】此题主要考查分数四则混合运算的运算顺序和应用运算定律进行简便计算.22.直接写出得数42×(+)= 13.39÷13= (+)×4= ÷=7.2÷0.4= ﹣×= 6×÷6×= 0÷×=3.2×1.25×= 0.61÷0.1= 299+358= 1÷﹣÷1=【答案】42×(+)=13 13.39÷13=1.03 (+)×4=3 ÷=37.2÷0.4=18 ﹣×= 6×÷6×= 0÷×=03.2×1.25×=1 0.61÷0.1=6.1 299+358=657 1÷﹣÷1=4【解析】(1)(3)(6)运用乘法分配律简算;(2)注意数位对齐;(4)把除法变为乘法,约分计算;(5)(10)把被除数和除数分别扩大10倍,再计算;(7)调整运算顺序,使计算简便;(8)0乘(除以)任何数都得0;(9)运用乘法交换律和结合律简算;(11)把299看作300﹣1,再计算;(12)先算除法,再算减法.解:42×(+)=13 13.39÷13=1.03 (+)×4=3 ÷=37.2÷0.4=18 ﹣×= 6×÷6×= 0÷×=03.2×1.25×=1 0.61÷0.1=6.1 299+358=657 1÷﹣÷1=4【点评】完成本题要细心分析式中数据,能简便计算的要简便计算,同时注意“0”的特殊作用.23.直接写得数.3.14×20= 2×= 1+﹣= (+)×9=72÷= 1.5×100= 1.25×8= 99×0.8+0.8=【答案】3.14×20=62.8 2×= 1+﹣=(+)×9=972÷=32 1.5×100=150 1.25×8=10 99×0.8+0.8=80【解析】根据整数、小数、分数的四则混合云算算法则计算.解:3.14×20=62.8 2×= 1+﹣=(+)×9=972÷=32 1.5×100=150 1.25×8=10 99×0.8+0.8=80【点评】根据四则混合运算法则,能简便计算的要简便计算.24.某养殖场鸡有600只.鸭比鸡多,鸭比鹅多,鸭比鸡多多少只?【答案】400只.【解析】养殖场鸡有600只.鸭比鸡多,鸭的只数是鸡的1+,根据分数乘法的意义,鸭有600×(1+)只,则用鸭的只数减鸡的只数,即得鸭比鸡多多少只.解:600×(1+)﹣600=600×﹣600=1000﹣600=400(只)答:鸭比鸡多400只.【点评】完成本题要注意“鸭比鹅多”在本题中属多余条件.25.小红看一本80页的故事书.第一天看了15页,第一天比第二天少看了,第二天看了多少页?【答案】20页【解析】将第二天看的页数当作单位“1”,根据分数减法的意义,第一天看的是第二天看的页数的1﹣,根据分数除法的意义,用第一天看的页数除以其占第二天看的页数的分率,即得第二天看了多少页.解:15÷(1﹣)=15=20(页)答:第二天看了20页.【点评】已知一个数的几分之几是多少,求这个数,用除法计算.26.比20吨多的是()A.(20×)吨 B.(20+)吨 C.(20+20×)吨【答案】C【解析】由题意可知“一个数量比20吨多”把20吨看作单位“1”,要求的数量相当于20吨与20吨的的和,根据一个数乘分数的意义,用乘法解答.解:20+20×=20+4=24(吨)故选:C.【点评】此题解答关键是确定单位“1”,单位“1”已知用乘法解答,单位“1”未知用除法解答.27.脱式计算(能简算的要简算)×+×(+)×3620%×+×1﹣÷.【答案】;14;0.2;.【解析】(1)、(2)、(3)根据乘法分配律进行简算;(4)先算除法,再算减法.解:(1)×+×=(+)×=1×=;(2)(+)×36=×36+×36=6+8=14;(3)20%×+×=0.2×+0.2×=0.2×(+)=0.2×1=0.2;(4)1﹣÷=1﹣=.【点评】考查了运算定律与简便运算,四则混合运算.注意运算顺序和运算法则,灵活运用所学的运算定律简便计算.28.客车和货车分别从A、B两地同时相对开出,当客车行了全程的时,货车行了48千米;当客车到达B地时,货车行了全程的.A、B两地相距千米.【答案】160.【解析】当客车行完全程时,客车又行了全程的1﹣=,这时,货车应该又行了÷×48=64千米,货车一共行了全程的,实际行了64+48=112千米,进而求出A、B两地相距:112÷=160千米;由此解答即可.解:[(1﹣)÷×48+48]÷=[×48+48]÷=112×=160(千米)答:A、B两地相距160千米.故答案为:160.【点评】此题属于较复杂的分数除法应用题,明确货车一共行了全程的,实际行了64+48=112千米,进而根据已知一个数的几分之几是多少,求这个数,用除法解答.29.某学校有学生1240人,女生人数的与男生人数的同样多,那么男女生各有多少人?【答案】男生640人,女生600人.【解析】先把女生人数看作单位“1”,表示出女生人数的,再运用分数除法意义,表示出男生人数,进而求出男生人数和女生人数比就是15:16,然后把总人数看作单位“1”,求出男女生人数各占总人数的分率,最后运用分数乘法意义即可解答.解::=15:1615+16=311240×=600(人)1240×=640(人)答:男生640人,女生600人.【点评】解答本题的关键是求出男女生人数比,解答的依据是分数乘法意义.30.同学们参观天文馆,六年级去了154人,五年级去的人数是六年级的,四年级去的人数是五年级的.四年级去了多少人?【答案】112人.【解析】六年级去了154人,五年级去的人数是六年级的,根据乘法的意义,五年级去了154×人,四年级去的人数是五年级的,则用五年级人数乘四年级去的人数占五年级人数的分率,即得四年级去了多少人.解:154××=112(人)答:四年级去了112人.【点评】求一个数的几分之几是多少,用乘法.。
《分数混合运算》(教案)北师大版六年级上册数学

《分数混合运算》(教案)北师大版六年级上册数学今天我要为大家分享的教学内容是北师大版六年级上册的数学教材,具体是分数混合运算。
一、教学内容本节课的教学内容主要包括分数的四则混合运算。
我们将从简单的分数加减法开始,逐步过渡到分数乘除法,结合实际情境,让学生运用分数混合运算解决实际问题。
二、教学目标通过本节课的学习,我希望学生能够掌握分数混合运算的计算法则,提高运算速度和准确性,并能运用所学知识解决实际问题。
三、教学难点与重点本节课的重点是分数混合运算的计算法则,难点是如何将实际问题转化为分数混合运算问题,并运用所学知识解决。
四、教具与学具准备为了更好地开展教学活动,我准备了一些教具和学具,包括黑板、粉笔、多媒体教学设备、数学练习本等。
五、教学过程1. 实践情景引入:假设小明有2/3的苹果,小红有1/4的苹果,他们一起吃掉了这些苹果的1/2,请问他们还剩下多少苹果?2. 例题讲解:我们来解决这个实际问题。
我们可以将小明和小红的苹果数量相加,然后再减去他们吃掉的苹果数量。
具体计算如下: 2/3 + 1/4 1/2 = 8/12 + 3/12 6/12 = 5/12所以,小明和小红还剩下5/12的苹果。
(1)1/2 + 1/3 1/4(2)2/5 × 3/4 ÷ 1/24. 讲解练习:我们来一起看一下同学们的练习情况。
我们来看第一个问题:1/2 + 1/3 1/4 = 6/12 + 4/12 3/12 = 7/12所以,第一个问题的答案是7/12。
2/5 × 3/4 ÷ 1/2 = 6/20 ÷ 1/2 = 6/10 = 3/5所以,第二个问题的答案是3/5。
六、板书设计黑板上我会写下今天讲解的例题和同学们的练习题目,以及分数混合运算的计算法则。
七、作业设计作业题目:(1)1/3 + 2/5 1/4(2)2/7 × 3/8 ÷ 1/3答案:(1)1/3 + 2/5 1/4 = 10/20 + 8/20 5/20 = 13/20(2)2/7 × 3/8 ÷ 1/3 = 6/56 ÷ 1/3 = 9/56八、课后反思及拓展延伸通过本节课的学习,我发现同学们对分数混合运算的计算法则掌握得比较好,但在解决实际问题时,有些同学可能会混淆。
六年级数学上教案《分数混合运算》人教版

六年级数学上教案《分数混合运算》人教版教学内容本节课主要讲解六年级上册数学课程中的分数混合运算。
教学内容包括分数的四则运算、带分数的运算、分数与小数的互换、以及分数在实际问题中的应用。
通过本节课的学习,学生将能够熟练掌握分数混合运算的规则,并能够灵活运用到实际问题中。
教学目标1. 知识与技能:使学生掌握分数的四则运算规则,能够熟练进行带分数的运算,以及分数与小数的互换。
2. 过程与方法:通过讲解、举例、练习等方式,使学生掌握分数混合运算的方法,并能够运用到实际问题中。
3. 情感态度与价值观:培养学生对数学的兴趣和自信心,提高学生解决问题的能力。
教学难点1. 分数四则运算的规则,尤其是带分数的运算。
2. 分数与小数的互换,以及分数在实际问题中的应用。
教具学具准备1. 教具:黑板、粉笔、教学PPT。
2. 学具:练习本、铅笔、橡皮。
教学过程1. 导入:通过讲解一些简单的分数运算题目,引导学生回顾分数的基本概念和四则运算规则。
2. 新课:讲解带分数的运算,以及分数与小数的互换。
通过举例和练习,使学生掌握运算规则。
3. 练习:让学生做一些分数混合运算的练习题,巩固所学知识。
4. 应用:讲解一些实际问题,引导学生运用分数混合运算解决问题。
6. 作业布置:布置一些分数混合运算的练习题,让学生在课后进行练习。
板书设计1. 板书分数混合运算2. 板书内容:分数四则运算规则带分数的运算分数与小数的互换分数在实际问题中的应用作业设计1. 基础练习:分数四则运算、带分数的运算、分数与小数的互换。
2. 综合练习:解决一些实际问题,运用分数混合运算。
课后反思本节课通过讲解、举例、练习等方式,使学生掌握了分数混合运算的规则,并能够运用到实际问题中。
在教学过程中,要注意引导学生积极参与,及时发现和解决学生的问题。
同时,要注重培养学生的数学思维能力和解决问题的能力。
在课后,要及时批改学生的作业,了解学生的学习情况,对存在的问题进行针对性的辅导。
《分数混合运算》(教案)人教版六年级上册数学

《分数混合运算》(教案)人教版六年级上册数学我作为一名经验丰富的教师,今天我要为大家分享的是人教版六年级上册数学《分数混合运算》的教学内容。
一、教学内容本节课的教学内容主要包括教材第107页的分数混合运算。
通过本节课的学习,学生将掌握同分母分数加减法、异分母分数加减法的运算方法,以及混合运算的运算顺序。
二、教学目标1. 理解分数混合运算的概念,掌握同分母分数加减法、异分母分数加减法的运算方法。
2. 能够正确进行分数混合运算,提高运算速度和准确性。
3. 培养学生的逻辑思维能力和解决问题的能力。
三、教学难点与重点1. 教学难点:异分母分数加减法的运算方法和混合运算的运算顺序。
2. 教学重点:同分母分数加减法、异分母分数加减法的运算方法,以及混合运算的运算顺序。
四、教具与学具准备1. 教具:黑板、粉笔、多媒体课件。
2. 学具:练习本、笔、计算器。
五、教学过程1. 实践情景引入:假设小明有2/3千克苹果,小华给了小明1/4千克苹果,请问小明现在有多少千克苹果?2. 例题讲解:同分母分数加减法、异分母分数加减法的运算方法。
3. 随堂练习:请同学们完成教材第107页的练习题,巩固所学知识。
4. 混合运算:请同学们思考一下,如何计算下面的混合运算?1/2 + 3/4 2/35. 学生分组讨论,分享解题思路和答案。
6. 板书设计:同分母分数加减法:分子相加(减),分母不变异分母分数加减法:通分后,分子相加(减),分母不变7. 作业设计:题目1:计算下列分数混合运算:1/2 + 3/4 2/32/5 1/4 3/5答案:1/2 + 3/4 2/3 = 5/62/5 1/4 3/5 = 1/10六、课后反思及拓展延伸本节课通过实践情景引入,让学生更好地理解分数混合运算的概念。
通过例题讲解和随堂练习,学生掌握了同分母分数加减法、异分母分数加减法的运算方法。
在混合运算部分,学生通过分组讨论,分享了解题思路和答案,提高了课堂氛围。
《分数混合运算》(教案)-六年级上册数学西师大版

《分数混合运算》(教案)六年级上册数学西师大版一、教学内容我在准备这节课时,仔细阅读了西师大版六年级上册数学教材,确定了本节课的教学内容为分数混合运算。
具体包括分数加减法和乘除法的运算规则,以及如何将这些规则应用于解决实际问题。
二、教学目标我的教学目标是让学生掌握分数混合运算的规则,能够独立进行运算,并能够将所学知识应用于解决实际问题。
三、教学难点与重点在教学过程中,我注意到分数混合运算的难点和重点是如何正确应用运算规则,特别是当运算中涉及到不同分母时如何进行通分和约分。
四、教具与学具准备为了帮助学生更好地理解分数混合运算,我准备了PPT、黑板、粉笔等教具,以及练习本、计算器等学具。
五、教学过程1. 引入:我通过一个实际问题引入本节课的主题,让学生思考如何解决分数混合运算的问题。
2. 讲解:我通过PPT和黑板,详细讲解分数混合运算的规则,并通过例题进行演示。
3. 练习:我在课堂上设置了一些随堂练习,让学生亲自动手进行分数混合运算,并及时给予反馈和指导。
4. 应用:我让学生运用所学知识解决一些实际问题,以加深他们对分数混合运算的理解。
六、板书设计我在板书上列出了分数混合运算的规则,以及一些典型的例题和解答过程,以便学生能够清晰地看到和理解运算的步骤。
七、作业设计我布置了一些分数混合运算的题目,包括一些实际问题,让学生在课后进行练习,巩固所学知识。
八、课后反思及拓展延伸在课后,我进行了反思,认为学生在分数混合运算方面还需要更多的练习和应用。
在今后的教学中,我将更多地设置实际问题,让学生在解决实际问题的过程中,加深对分数混合运算的理解和掌握。
这就是我对于《分数混合运算》这一课的教案设计。
我希望通过这样的教案,能够帮助学生更好地理解和掌握分数混合运算,提高他们的数学能力。
同时,我也将不断反思和调整我的教学方法,以更好地适应学生的学习需求。
重点和难点解析1. 运算规则的理解和应用:学生对于分数加减法和乘除法的运算规则理解不深,特别是当运算中涉及到不同分母时如何进行通分和约分,这是本节课的重点和难点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学新课程标准教材
数学教案( 2019 — 2020学年度第二学期 )
学校:
年级:
任课教师:
数学教案 / 小学数学 / 小学六年级数学教案
编订:XX文讯教育机构
分数混合运算
教材简介:本教材主要用途为通过学习数学的内容,让学生可以提升判断能力、分析能力、理解能力,培养学生的逻辑、直觉判断等能力,本教学设计资料适用于小学六年级数学科目, 学习后学生能得到全面的发展和提高。
本内容是按照教材的内容进行的编写,可以放心修改调整或直接进行教学使用。
教学目标
使学生掌握分数乘加、乘减混合运算.
教学重点
1.掌握的顺序
2.会用乘法的运算定律在分数乘法中进行简算
教学难点
分数乘法的简算
教学过程
一、复习
(一)说说你是怎样算的?
(二)看看下面每组算式,它们有什么样的关系.
○○○
(三)那么如何计算呢?能否应用运算定律简算呢?这节课我们来一起研究.
板书课题:
二、探索、悟理
(一)出示例题
(二)读题之后请同学试做(板演在黑板上)
教师:这道题应该先算哪一步,再算哪一步?(强调运算顺序)
(三)做一做
教师提问:你按怎样的运算顺序计算的?
(四)小结
教师提问:谁能说一说分数乘加、乘减这样的混合运算按怎样的运算顺序计算呢?
顺序:
在一个分数混合算式中,既有一级运算,又有二级运算,先做第二级运算,后做一级运算;在有括号的算式里,先做括号里边的,再做括号外边的.
(五)仔细观察下面两题,计算中有没有好方法使它们算得又快又准.
小组汇报结果.
=××
教师提问:说一说为什么这样算,依据什么?(乘法交换律、结合律、分配律)教师说明:由这两题可以看出,乘法运算定律同样可以应用在分数中.
(七)做一做
三、归纳、质疑
(一)这节课学习了什么知识?(学生自己小结)
混合运算、分数乘法中的简算.
(二)你在学习中遇到了什么没有得到解决的问题吗?
四、训练、深化
(一)巩固混合运算
1.判断
(×)(×)
(√)(√)
2.计算
(二)巩固简算
1.填空
2.简算
(三)提高练习
五、课后作业
(一)用简便方法计算下面各题
六、板书设计
教学设计点评
学生已通过第七册的学习,对整数、小数混合运算的运算顺序比较熟悉了,所以,本教学设计注意以旧引新,通过复习,让学生讨论、试做,发挥学生的主体性,掌握的运算顺序
和计算技巧。
巩固练习中,从基本练习一直到提高题,设计有层次,有坡度。
XX文讯教育机构
WenXun Educational Institution。