根据两点经纬度计算距离
怎么用经纬度计算两地之间的距离

怎么用经纬度计算两地之间的距离?1、地球赤道上环绕地球一周走一圈共40075.04公里,而@一圈分成360°,而每1°(度)有60,每一度一秒在赤道上的长度计算如下:40075.04km/360°=111.31955km111.31955km/60=1.8553258km=1855.3m而每一分又有60秒,每一秒就代表1855.3m/60=30.92m任意两点距离计算公式为d=111.12cos{1/[sinΦAsinΦB十cosΦAcosΦBcos(λB—λA)]}其中A点经度,纬度分别为λA和ΦA,B点的经度、纬度分别为λB和ΦB,d为距离。
2、分为3步计算:第1步分别将两点经纬度转换为三维直角坐标:假设地球球心为三维直角坐标系的原点,球心与赤道上0经度点的连线为X轴,球心与赤道上东经90度点的连线为Y轴,球心与北极点的连线为Z轴,则地面上点的直角坐标与其经纬度的关系为:x=R×cosα×cosβy=R×cosα×sinβz=R×sinαR为地球半径,约等于6400km;α为纬度,北纬取+,南纬取-;β为经度,东经取+,西经取-。
第2步根据直角坐标求两点间的直线距离(即弦长):如果两点的直角坐标分别为(x1,y1,z1)和(x2,y2,z2),则它们之间的直线距离为:L=[(x1-x2)^2+(y1-y2)^2+(z1-z2)^2]^0.5上式为三维勾股定理,L为直线距离。
第3步根据弦长求两点间的距离(即弧长):由平面几何知识可知弧长与弦长的关系为:S=R×π×2[arc sin(0.5L/R)]/180上式中角的单位为度,1度=π/180弧度,S为弧长。
3、1度的实际长度是111公里。
但纬线的距离会越考两端越小,他的距离就会变成111乘COS纬度数,经度不变。
4、南北方向算出两点纬度差,一度等于60海里,1分等于1海里,海里与公里换算关系1海里等于1.852公里。
根据地球上任意两点的经纬度计算两点间的距离

根据地球上任意两点的经纬度计算两点间的距离78、140千米,极半径为6356、755千米,平均半径6371、004千米。
如果我们假设地球是一个完美的球体,那么它的半径就是地球的平均半径,记为R。
如果以0度经线为基准,那么根据地球表面任意两点的经纬度就可以计算出这两点间的地表距离(这里忽略地球表面地形对计算带来的误差,仅仅是理论上的估算值)。
设第一点A的经纬度为(LonA, LatA),第二点B 的经纬度为(LonB, LatB),按照0度经线的基准,东经取经度的正值(Longitude),西经取经度负值(-Longitude),北纬取90-纬度值(90- Latitude),南纬取90+纬度值(90+Latitude),则经过上述处理过后的两点被计为(MLonA, MLatA)和(MLonB, MLatB)。
那么根据三角推导,可以得到计算两点距离的如下公式:C =sin(MLatA)*sin(MLatB)*cos(MLonA-MLonB)+ cos(MLatA)*cos(MLatB)Distance = R*Arccos(C)*Pi/180这里,R和Distance单位是相同,如果是采用6371、004千米作为半径,那么Distance就是千米为单位,如果要使用其他单位,比如mile,还需要做单位换算,1千米=0、mile如果仅对经度作正负的处理,而不对纬度作90-Latitude(假设都是北半球,南半球只有澳洲具有应用意义)的处理,那么公式将是:C = sin(LatA)*sin(LatB)+ cos(LatA)*cos(LatB)*cos(MLonA-MLonB)Distance =R*Arccos(C)*Pi/180以上通过简单的三角变换就可以推出。
如果三角函数的输入和输出都采用弧度值,那么公式还可以写作:C = sin(LatA*Pi/180)*sin(LatB*Pi/180)+ cos(LatA*Pi/180)*cos(LatB*Pi/180)*cos((MLonA-MLonB)*Pi/180)Distance = R*Arccos(C)*Pi/180也就是:C = sin(LatA/57、2958)*sin(LatB/57、2958)+ cos(LatA/57、2958)*cos(LatB/57、2958)*cos((MLonA-MLonB)/57、2958)Distance = R*Arccos(C)=6371、004*Arccos(C)kilometer = 0、*6371、004*Arccos(C)mile =3958、8*Arccos(C)mile在实际应用当中,一般是通过一个个体的邮政编码来查找该邮政编码对应的地区中心的经纬度,然后再根据这些经纬度来计算彼此的距离,从而估算出某些群体之间的大致距离范围(比如酒店旅客的分布范围-各个旅客的邮政编码对应的经纬度和酒店的经纬度所计算的距离范围-等等),所以,通过邮政编码查询经纬度这样一个数据库是一个很有用的资源。
知道两点经纬度求两点距离公式

知道两点经纬度求两点距离公式计算两点之间的距离是地理学中的一个基本问题。
在计算两点距离之前,我们首先需要明确计算距离的参考系。
通常情况下,我们使用经度(表示东西方的位置)和纬度(表示南北方的位置)来确定地球上的位置。
在计算两点之间的距离时,我们可以使用不同的方法。
其中,最常用的方法包括欧几里得距离、大圆距离和球面三角法。
1.欧几里得距离:欧几里得距离又称为直线距离,它是二维欧几里得空间中两点之间的直线上的距离。
对于平面上的两个点(x1,y1)和(x2,y2),欧几里得距离公式如下:d=√((x2-x1)²+(y2-y1)²)然而,由于地球是一个球体而不是一个平面,欧几里得距离并不适用于计算地球上两点之间的距离。
2.大圆距离:大圆距离也称为球面距离,它是地球上两点之间沿着地球表面的最短距离。
大圆距离公式如下:d=R*θ其中,R是地球的半径(通常取平均半径6371公里),θ是两点之间的中心角。
计算大圆距离时,我们需要先将经纬度转换为弧度,然后使用球面三角法计算中心角。
3.球面三角法:余弦定理公式如下:cos(c) = cos(a) * cos(b) + sin(a) * sin(b) * cos(γ)其中,a和b是两个点分别与地球球心的连线与地球赤道的夹角,c 是两个点之间的中心角,γ是两个点之间的经度差。
为了计算中心角,我们需要首先将经纬度转换为弧度。
对于两个经纬度坐标点(φ1,λ1)和(φ2,λ2),其中φ表示纬度,λ表示经度,转换公式如下:φ = latitude * π / 180λ = longitude * π / 180然后,就可以使用余弦定理计算两点之间的距离了。
以上这些方法都可以计算两个经纬度坐标之间的球面距离。
对于一些较短距离的计算,例如在城市范围内,使用欧几里得距离可能是比较准确的。
对于大范围距离的计算,推荐使用球面三角法。
最后,还需要注意的是,上述公式都是基于地球模型的简化情况,实际地球的形状更接近于一个略扁的椭球体。
两个经纬度之间的距离计算公式excel

两个经纬度之间的距离计算公式excel计算两个经纬度之间的距离可以使用"球面余弦定理"。
在Excel 中,可以使用以下公式计算两点之间的距离:Copy code=ACOS(COS(lat1)*COS(long1)*COS(lat2)*COS(long2) + COS(lat1)*SIN(long1)*COS(lat2)*SIN(long2) + SIN(lat1)*SIN(lat2)) * R其中:lat1, long1 是第一个点的纬度和经度(以弧度为单位)lat2, long2 是第二个点的纬度和经度(以弧度为单位)R 是地球半径首先,我们需要把经纬度转换为弧度。
在Excel 中可以使用"RADIANS" 函数进行转换。
例如,将纬度转换为弧度的公式为:Copy code=RADIANS(lat1)经度同理。
然后在用上面给出的公式计算即可。
示例:假设第一个点纬度为A1,经度为B1;第二个点纬度为A2,经度为B2;地球半径为C1那么第一个点纬度转换为弧度的公式为=RADIANS(A1),经度同理。
最后使用公式=ACOS(COS(RADIANS(A1))*COS(RADIANS(B1))*COS(RADIANS(A2))*COS(RADIANS(B2)) + COS(RADIANS(A1))*SIN(RADIANS(B1))*COS(RADIANS(A2))*SIN(RADIANS(B2)) + SIN(RADIANS(A1))*SIN(RADIANS(A2))) * C1 即可计算出两个点之间的距离。
请注意,这个公式的结果是以千米为单位的距离。
如果需要米为单位的距离,可以将地球半径设置为6371即可。
请注意,由于经纬度是按照地球球面来计算的,所以这个公式只能用于近似计算地球上两点之间的距离,如果需要精确计算,可能需要使用其他方法。
地球上两点的经纬度计算他们距离的公式

地球上两点的经纬度计算他们距离的公式一、球面余弦定理球面余弦定理是一种常用的计算地球上两点距离的公式。
它基于球面三角形的余弦定理,公式如下:d = R * arccos(sin(lat1) * sin(lat2) + cos(lat1) * cos(lat2) * cos(lon2 - lon1))其中,d表示两点之间的距离,R表示地球的半径,而lat1、lat2、lon1和lon2分别表示两点的纬度和经度。
在计算中,经纬度应以弧度为单位。
如果给定的经纬度是度数,可以先将其转化为弧度再代入公式中计算。
二、哈弗斯因子公式哈弗斯因子公式也是一种常用的计算地球上两点距离的公式。
它基于海伦公式,公式如下:d = 2 * R * arcsin(√(sin((lat2 - lat1) / 2)² + cos(lat1) * cos(lat2) * sin((lon2 - lon1) / 2)²))其中,d表示两点之间的距离,R表示地球的半径,而lat1、lat2、lon1和lon2分别表示两点的纬度和经度。
在计算中,经纬度应以弧度为单位。
如果给定的经纬度是度数,可以先将其转化为弧度再代入公式中计算。
可以看到,球面余弦公式和哈弗斯因子公式在计算方式上有一些差异。
球面余弦公式更容易计算,因为它不需要计算所有角度的正弦函数值,只需要计算两个角度的正弦函数值并进行一些乘法和加法运算。
相比之下,哈弗斯因子公式需要计算所有角度的正弦函数值,计算量稍大一些。
无论是使用球面余弦公式还是哈弗斯因子公式,都需要注意地球的半径值。
地球的半径并不是一个精确的常数,因为地球的形状是复杂的。
在实际计算中,可以根据所需要的精度选择合适的地球半径值,一般情况下选择平均半径值进行计算即可。
除了上述公式之外,还可以使用其他更复杂的公式来计算地球上两点的距离。
例如,Vincenty公式和Haversine公式等都是比较常用的计算地球上两点距离的公式。
怎么用经纬度计算两地之间的距离

怎么用经纬度计算两地之间的距离经纬度是地球上一点的坐标表示方法,可以用来计算两个点之间的距离。
计算两地之间的距离可以使用多种方法,包括球面距离公式、大圆航线距离和Vincenty算法等。
下面将详细介绍这些方法。
1.球面距离公式球面距离公式是最简单且最常用的计算两点之间距离的方法。
它基于球面三角形的边长计算两点之间的距离,如下所示:d = R * arccos(sin(lat1) * sin(lat2) + cos(lat1) * cos(lat2) * cos(lon2 - lon1))其中,d是两点之间的球面距离,R是地球的平均半径,lat1和lat2是两点的纬度,lon1和lon2是两点的经度。
2.大圆航线距离大圆航线距离是计算两点之间最短距离的方法,它基于地球表面上连接两点的最短弧线,如下所示:d = R * arccos(sin(lat1) * sin(lat2) + cos(lat1) * cos(lat2) * cos(lon2 - lon1))其中,d是两点之间的大圆航线距离,R是地球的半径,lat1和lat2是两点的纬度,lon1和lon2是两点的经度。
3. Vincenty算法Vincenty算法是一种更精确的计算两点之间距离的方法,它基于椭球体模型而不是简单地球模型。
该算法能够考虑地球形状的扁平化,并且适用于短距离和长距离的计算。
具体实现需要迭代计算,公式略显繁琐,如下所示:a=R1,b=R2,f=(a-b)/aL = L2 - L1, U1 = atan((1 - f) * tan(lat1)), U2 = atan((1 - f) * tan(lat2))sinU1 = sin(U1), cosU1 = cos(U1), sinU2 = sin(U2), cosU2 = cos(U2)λ=L,λʹ=2πwhile (,λ - λʹ, > 10e-12):sinλ = sin(λ), cosλ = cos(λ), sinσ = sqrt((cosU2 *sinλ) * (cosU2 * sinλ) + (cosU1 * sinU2 - sinU1 * cosU2 *cosλ) * (cosU1 * sinU2 - sinU1 * cosU2 * cosλ))cosσ = sinU1 * sinU2 + cosU1 * cosU2 * cosλσ = atan2(sinσ, cosσ)sinα = cosU1 * cosU2 * sinλ / sinσcos²α = 1 - sinα * sinαcos2σm = cosσ - 2 * sinU1 * sinU2 / cos²αC = f / 16 * cos²α * (4 + f * (4 - 3 * cos²α))λʹ=λλ = L + (1 - C) * f * sinα * (σ + C * sinσ * (cos2σm + C * cosσ * (-1 + 2 * cos2σm * cos2σm)))u² = cos²α * (a*a - b*b) / (b*b)B=u²/1024*(256+u²*(-128+u²*(74-47*u²)))Δσ = B / 6 * (cosσ * (-1 + 2 * cos2σm * cos2σm) - B / 4 * (cos2σm * (-3 + 4 * sinσ * sinσ) - B / 6 * cosσ * (-3 + 4 * cos2σm * cos2σm) * (-3 + 4 * sinσ * sinσ)))s=b*A*(σ-Δσ)其中,a和b是地球的长半轴和短半轴,f是扁平度参数,R1和R2是两点的曲率半径,L1和L2是两点的经度差,lat1和lat2是两点的纬度。
根据经纬度算距离

根据经纬度算距离
经纬度距离计算简单方法:
1) 根据最长的纬线,即0度纬线,也就是赤道,计算经度的距离。
赤道周长:40075704m(约4万km),所以,1度经度最大距离等于40075704/360=111321m(约111km)。
0.0001度经度最大距离等于11.132m。
0.000001度经度最大距离是0.1113m。
2) 根据经线长度,计算纬度的距离。
子午线周长:40008548m(约4万km,所以,1度纬度最大距离等于40008548/360=111134m(约111km)。
0.0001度经度最大距离等于11.113m。
0.000001度经度最大距离等于0.1111m。
所以说,经纬度相差0.000001度时候,距离相差位0.111m。
这个精度已经满足了绝大部分GIS应用的需求,所以各大在线地图的坐标也都保留到了第6位。
结论:
相差1经度或者1纬度,球面距离约为111 千米
相差0.000001经度或者0.000001纬度,球面距离为0.11 米
1。
经纬度坐标求距离

经纬度坐标求距离引言经纬度是表示地理位置的一种常用坐标系统,经度表示纬度的距离,纬度表示赤道的距离。
在很多应用中,我们需要计算两个经纬度坐标之间的距离,以便确定两个地点之间的实际距离。
本文将简要介绍如何使用经纬度坐标来计算两个地点之间的距离。
距离公式在计算两个经纬度坐标之间的距离之前,我们需要了解一些基本的数学和地理概念。
地球是一个近似于椭球体的球体,我们可以使用大圆距离公式来计算两个经纬度坐标之间的距离。
大圆距离是两个点之间的最短距离,可以通过以下公式计算:$$ d = R \\cdot c $$其中, - d:两个经纬度坐标之间的距离 - R:地球的半径 - 对于地球,平均半径约为6371公里 - 对于其他行星,半径可能不同 - c:两个点之间的角度距离 - 可以通过以下公式计算:$$ c = 2 \\cdot \\arcsin(\\sqrt{\\sin^2(\\frac{lat_2-lat_1}{2}) + \\cos(lat_1) \\cdot \\cos(lat_2) \\cdot \\sin^2(\\frac{lon_2-lon_1}{2})}) $$其中, - lat_1, lon_1:第一个点的纬度和经度 - lat_2, lon_2:第二个点的纬度和经度示例代码以下是使用Python编写的示例代码,将两个地点的经纬度坐标作为输入,计算它们之间的距离。
```python import mathdef distance(lat1, lon1, lat2, lon2): # 将角度转换为弧度 lat1 = math.radians(lat1) lon1 = math.radians(lon1) lat2 = math.radians(lat2) lon2 = math.radians(lon2) # 地球的半径(单位:公里)R = 6371# 计算角度距离c = 2 * math.asin(math.sqrt(math.sin((lat2 - lat1) / 2) ** 2 + math.cos (lat1) * math.cos(lat2) * math.sin((lon2 - lon1) / 2) ** 2))# 计算距离distance = R * creturn distance示例输入lat1 = 52.520008 # 地点1的纬度 lon1 = 13.404954 # 地点1的经度 lat2 = 48.856613 # 地点2的纬度 lon2 = 2.352222 # 地点2的经度调用函数计算距离result = distance(lat1, lon1, lat2, lon2)输出结果print(。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
根据两点经纬度计算距离这些经纬线是怎样定出来的呢?地球是在不停地绕地轴旋转(地轴是一根通过地球南北两极和地球中心的假想线),在地球中腰画一个与地轴垂直的大圆圈,使圈上的每一点都和南北两极的距离相等,这个圆圈就叫作“赤道”。
在赤道的南北两边,画出许多和赤道平行的圆圈,就是“纬圈”;构成这些圆圈的线段,叫做纬线。
我们把赤道定为纬度零度,向南向北各为90度,在赤道以南的叫南纬,在赤道以北的叫北纬。
北极就是北纬90度,南极就是南纬90度。
纬度的高低也标志着气候的冷热,如赤道和低纬度地地区无冬,两极和高纬度地区无夏,中纬度地区四季分明。
其次,从北极点到南极点,可以画出许多南北方向的与地球赤道垂直的大圆圈,这叫作“经圈”;构成这些圆圈的线段,就叫经线。
公元1884平面坐标图年,国际上规定以通过英国伦敦近郊的格林尼治天文台的经线作为计算经度的起点,即经度零度零分零秒,也称“本初子午线”。
在它东面的为东经,共180度;在它西面的为西经,共180度。
因为地球是圆的,所以东经180度和西经180度的经线是同一条经线。
各国公定180度经线为“国际日期变更线”。
为了避免同一地区使用两个不同的日期,国际日期变线在遇陆地时略有偏离。
每一经度和纬度还可以再细分为60分,每一分再分为60秒以及秒的小数。
利用经纬线,我们就可以确定地球上每一个地方的具体位置,并且把它在地图或地球仪上表示出来。
例如问北京的经纬度是多少?我们很容易从地图上查出来是东经116度24分,北纬39度54分。
在大海中航行的船只,只要把所在地的经度测出来,就可以确定船在海洋中的位置和前进方向。
纬度共有90度。
赤道为0度,向两极排列,圈子越小,度数越大。
横线是纬度,竖线是经度。
当然可以计算,四元二次方程。
经度和纬度都是一种角度。
经度是个两面角,是两个经线平面的夹角。
因所有经线都是一样长,为了度量经度选取一个起点面,经1884年国际会议协商,决定以通过英国伦敦近郊、泰晤士河南岸的格林尼治皇家天文台(旧址)的一台主要子午仪十字丝的那条经线为起始经线,称为本初子午线。
本初子午线平面是起点面,终点面是本地经线平面。
某一点的经度,就是该点所在的经线平面与本初子午线平面间的夹角。
在赤道上度量,自本初子午线平面作为起点面,分别往东往西度量,往东量值称为东经度,往西量值称为西经度。
由此可见,一地的经度是该地对于本初子午线的方向和角距离。
本初子午线是0°经度,东经度的最大值为180°,西经度的最大值为180°,东、西经180°经线是同一根经线,因此不分东经或西经,而统称180°经线。
纬度是个线面角。
起点面是赤道平面,线是本地的地面法线。
所谓法线,即垂直于参考扁球体表面的线。
某地的纬度就是该地的法线与赤道平面之间的夹角。
纬度在本地经线上度量,由赤道向南、北度量,向北量值称为北纬度,向南量值称为南纬度。
由此可见,一地的纬度是该地对于赤道的方向和角距离。
赤道是0°纬线,北纬度的最大值为90°,即北极点;南纬度的最大值为90°,即南极点。
经纬度互换度(DDD):E 108.90593度N 34.21630度如何将度(DDD)::108.90593度换算成度分秒(DMS)东经E 108度54分22.2秒?转换方法是将108.90593整数位不变取108(度),用0.90593*60=54.3558,取整数位54(分),0.3558*60=21.348再取整数位21(秒),故转化为108度54分21秒.同样将度分秒(DMS):东经E 108度54分22.2秒换算成度(DDD)的方法如下:108度54分22.2秒=108+(54/60)+(22.2/3600)=108.90616度因为计算时小数位保留的原因,导致正反计算存在一定误差,但误差影响不是很大。
1秒的误差就是几米的样子。
GPS车友可以用上述方法换算成自己需要的单位坐标。
经纬度换算成米纬度分为60分,每一分再分为60秒以及秒的小数。
纬度线投射在图上看似水平的平行线,但实际上是不同半径的圆。
有相同特定纬度的所有位置都在同一个纬线上。
赤道的纬度为0°,将行星平分为南半球和北半球。
纬度是指某点与地球球心的连线和地球赤道面所成的线面角,其数值在0至90度之间。
位于赤道以北的点的纬度叫北纬,记为N,位于赤道以南的点的纬度称南纬,记为S。
纬度数值在0至30度之间的地区称为低纬地区,纬度数值在30至60度之间的地区称为中纬地区,纬度数值在60至90度之间的地区称为高纬地区。
赤道、南回归线、北回归线、南极圈和北极圈是特殊的纬线。
纬度1秒的长度地球的子午线总长度大约40008km。
平均:纬度1度= 大约111km纬度1分= 大约1.85km纬度1秒= 大约30.9m根据地球上任意两点的经纬度计算两点间的距离地球是一个近乎标准的椭球体,它的赤道半径为6378.140千米,极半径为6356.755千米,平均半径6371.004千米。
如果我们假设地球是一个完美的球体,那么它的半径就是地球的平均半径,记为R。
如果以0度经线为基准,那么根据地球表面任意两点的经纬度就可以计算出这两点间的地表距离(这里忽略地球表面地形对计算带来的误差,仅仅是理论上的估算值)。
设第一点A的经纬度为(LonA, LatA),第二点B的经纬度为(LonB, LatB),按照0度经线的基准,东经取经度的正值(Longitude),西经取经度负值(-Longitude),北纬取90-纬度值(90- Latitude),南纬取90+纬度值(90+Latitude),则经过上述处理过后的两点被计为(MLonA, MLatA)和(MLonB, MLatB)。
那么根据三角推导,可以得到计算两点距离的如下公式:C = sin(MLatA)*sin(MLatB)*cos(MLonA-MLonB) + cos(MLatA)*cos(MLatB)Distance = R*Arccos(C)*Pi/180这里,R和Distance单位是相同,如果是采用6371.004千米作为半径,那么Distance 就是千米为单位,如果要使用其他单位,比如mile,还需要做单位换算,1千米=0.621371192mile如果仅对经度作正负的处理,而不对纬度作90-Latitude(假设都是北半球,南半球只有澳洲具有应用意义)的处理,那么公式将是:C = sin(LatA)*sin(LatB) + cos(LatA)*cos(LatB)*cos(MLonA-MLonB)Distance = R*Arccos(C)*Pi/180以上通过简单的三角变换就可以推出。
如果三角函数的输入和输出都采用弧度值,那么公式还可以写作:C = sin(LatA*Pi/180)*sin(LatB*Pi/180) +cos(LatA*Pi/180)*cos(LatB*Pi/180)*cos((MLonA-MLonB)*Pi/180)Distance = R*Arccos(C)*Pi/180也就是:C = sin(LatA/57.2958)*sin(LatB/57.2958) +cos(LatA/57.2958)*cos(LatB/57.2958)*cos((MLonA-MLonB)/57.2958)Distance = R*Arccos(C) = 6371.004*Arccos(C) kilometer =0.621371192*6371.004*Arccos(C) mile = 3958.758349716768*Arccos(C) mile在实际应用当中,一般是通过一个个体的邮政编码来查找该邮政编码对应的地区中心的经纬度,然后再根据这些经纬度来计算彼此的距离,从而估算出某些群体之间的大致距离范围(比如酒店旅客的分布范围-各个旅客的邮政编码对应的经纬度和酒店的经纬度所计算的距离范围-等等),所以,通过邮政编码查询经纬度这样一个数据库是一个很有用的资源。
附:C#代码:private const double EARTH_RADIUS = 6378.137;//地球半径private static double rad(double d){return d * Math.PI / 180.0;}public static double GetDistance(double lat1, double lng1, double lat2, double lng2) {double radLat1 = rad(lat1);double radLat2 = rad(lat2);double a = radLat1 - radLat2;double b = rad(lng1) - rad(lng2);double s = 2 * Math.Asin(Math.Sqrt(Math.Pow(Math.Sin(a/2),2) +Math.Cos(radLat1)*Math.Cos(radLat2)*Math.Pow(Math.Sin(b/2),2)));s = s * EARTH_RADIUS;s = Math.Round(s * 10000) / 10000;return s;。