含参数的一元二次不等式题答案)

合集下载

一元二次不等式练习题含答案

一元二次不等式练习题含答案

一元二次不等式练习一、选择题1.设集合S ={x |-5<x <5},T ={x |x 2+4x -21<0},则S ∩T =( )A .{x |-7<x <-5}B .{x |3<x <5}C .{x |-5<x <3}D .{x |-7<x <5}2.已知函数y =ax 2+2x +3的定义域为R ,则实数a 的取值范围是( )A .a >0B .a ≥13C .a ≤13D .0<a ≤133.不等式x +1x -2≥0的解集是( ) A .{x |x ≤-1或x ≥2} B.{x |x ≤-1或x >2}C .{x |-1≤x ≤2} D.{x |-1≤x <2}4.若不等式ax 2+bx -2>0的解集为⎩⎨⎧⎭⎬⎫x |-2<x <-14,则a ,b 的值分别是( )A .a =-8,b =-10B .a =-1,b =9C .a =-4,b =-9D .a =-1,b =25.不等式x(x-a+1)>a的解集是{}x|x<-1或x>a,则( ) A.a≥1 B.a<-1C.a>-1 D.a∈R6.已知函数f(x)=ax2+bx+c,不等式f(x)>0的解集为{}x|-3<x<1,则函数y=f(-x)的图象为( )7.在R上定义运算⊙:a⊙b=ab+2a+b,则满足x⊙(x-2)<0的实数x的取值范围是( )A.(0,2) B.(-2,1)C.(-∞,-2)∪(1,+∞) D.(-1,2)二、填空题8.若不等式2x2-3x+a<0的解集为(m,1),则实数m的值为________.9.若关于x的不等式ax-b>0的解集是(1,+∞),则关于x的不等式ax+b x-2>0的解集是________.10.若关于x的方程9x+(4+a)3x+4=0有解,则实数a的取值范围是________.三、解答题11.解关于x 的不等式:ax 2-2≥2x -ax (a <0)..12.设函数f (x )=mx 2-mx -1.(1)若对于一切实数x ,f (x )<0恒成立,求m 的取值范围;(2)若对于x ∈[1,3],f (x )<-m +5恒成立,求m 的取值范围.答案1.【解析】 ∵S ={x |-5<x <5},T ={x |-7<x <3},∴S ∩T ={x |-5<x <3}.【答案】 C2.【解析】 函数定义域满足ax 2+2x +3≥0,若其解集为R ,则应⎩⎨⎧a >0,Δ≤0,即⎩⎨⎧a >0,4-12a ≤0,∴a ≥13.【答案】 B3.【解析】 x +1x -2≥0?⎩⎨⎧?x +1??x -2?≥0,x -2≠0?x >2或x ≤-1.【答案】 B4.【解析】 依题意,方程ax 2+bx -2=0的两根为-2,-14,∴⎩⎨⎧-2-14=-b a,12=-2a ,即⎩⎨⎧a =-4,b =-9.【答案】 C5.【解析】 x (x -a +1)>a ?(x +1)(x -a )>0,∵解集为{}x |x <-1或x >a ,∴a >-1.【答案】 C.6. 【解析】 由题意可知,函数f (x )=ax 2+bx +c 为二次函数,其图象为开口向下的抛物线,与x 轴的交点是(-3,0),(1,0),又y =f (-x )的图象与f (x )的图象关于y 轴对称,故只有B 符合.7.【解析】 ∵a ⊙b =ab +2a +b ,∴x ⊙(x -2)=x (x -2)+2x +x -2=x 2+x -2,原不等式化为x 2+x -2<0?-2<x <1.【答案】 B8. 【解析】 ∵方程2x 2-3x +a =0的两根为m,1,∴⎩⎨⎧m +1=32,1·m =a 2,∴m =12.【答案】 129.【解析】 由于ax >b 的解集为(1,+∞),故有a >0且b a =1.又ax +bx -2>0?(ax +b )(x -2)=a (x +1)(x -2)>0?(x +1)(x -2)>0,即x <-1或x >2.【答案】 (-∞,-1)∪(2,+∞)10.【解析】 方程9x +(4+a )3x +4=0化为:4+a =-9x +43x =-⎝⎛⎭⎪⎫3x +43x ≤-4,当且仅当3x =2时取“=”,∴a ≤-8.【答案】 (-∞,-8]11.【解析】 原不等式化为ax 2+(a -2)x -2≥0?(x +1)(ax -2)≥0.①若-2<a <0,2a <-1,则2a≤x ≤-1;②若a =-2,则x =-1;③若a <-2,则-1≤x ≤2a.综上所述,当-2<a <0时,不等式解集为⎩⎨⎧⎭⎬⎫x |2a ≤x ≤-1;当a =-2时,不等式解集为{x |x =-1};当a <-2时,不等式解集为⎩⎨⎧⎭⎬⎫x |-1≤x ≤2a . 12.【解析】 (1)要使mx 2-mx -1<0,x ∈R 恒成立.若m =0,-1<0,显然成立;若m ≠0,则应⎩⎨⎧m <0,Δ=m 2+4m <0?-4<m <0.综上得,-4<m ≤0.(2)∵x ∈[1,3],f (x )<-m +5恒成立,即mx 2-mx -1<-m +5恒成立;即m (x 2-x +1)<6恒成立,而x 2-x +1>0,∴m <6x 2-x +1.∵6x 2-x +1=6⎝⎛⎭⎪⎫x -122+34,∴当x ∈[1,3]时,⎝ ⎛⎭⎪⎫6x 2-x +1min =67, ∴m 的取值范围是m <67.。

含参数的一元二次不等式例题

含参数的一元二次不等式例题

含参数的一元二次不等式例题例题 1解不等式:x^2 2x + a > 0,其中a为参数。

解析:对于一元二次方程x^2 2x + a = 0,其判别式\Delta = 4 4a。

当\Delta 0,即4 4a 0,a > 1时,不等式的解集为R。

当\Delta = 0,即4 4a = 0,a = 1时,不等式化为(x 1)^2 > 0,解集为x ≠ 1。

当\Delta > 0,即4 4a > 0,a 1时,方程x^2 2x + a = 0的两根为x_1 = 1 \sqrt{1 a},x_2 = 1 + \sqrt{1 a},不等式的解集为x 1 \sqrt{1 a}或x > 1 + \sqrt{1 a}。

例题 2解不等式:ax^2 + 2x + 1 > 0,其中a为参数。

解析:当a = 0时,不等式化为2x + 1 > 0,解得x > \frac{1}{2}。

当a ≠ 0时,对于一元二次方程ax^2 + 2x + 1 = 0,其判别式\Delta = 4 4a。

若\Delta 0,即4 4a 0,a > 1,不等式的解集为R。

若\Delta = 0,即4 4a = 0,a = 1,不等式化为(x + 1)^2 > 0,解集为x ≠ 1。

若\Delta > 0,即4 4a > 0,a 1且a ≠ 0,方程ax^2 + 2x + 1 = 0的两根为x_1 = \frac{1 + \sqrt{1 a}}{a},x_2 =\frac{1 \sqrt{1 a}}{a}。

当0 a 1时,不等式的解集为x \frac{1 \sqrt{1 a}}{a}或x > \frac{1 + \sqrt{1 a}}{a}。

当a 0时,不等式的解集为\frac{1 + \sqrt{1 a}}{a} x\frac{1 \sqrt{1 a}}{a}。

一元二次不等式练习题含答案

一元二次不等式练习题含答案

一元二次不等式练习题含答案Last revision on 21 December 2020一元二次不等式练习一、选择题1.设集合S ={x |-5<x <5},T ={x |x 2+4x -21<0},则S ∩T =( )A .{x |-7<x <-5}B .{x |3<x <5}C .{x |-5<x <3}D .{x |-7<x <5}2.已知函数y =ax 2+2x +3的定义域为R ,则实数a 的取值范围是( )A .a >0B .a ≥13C .a ≤13D .0<a ≤133.不等式x +1x -2≥0的解集是( ) A .{x |x ≤-1或x ≥2} B .{x |x ≤-1或x >2}C .{x |-1≤x ≤2}D .{x |-1≤x <2}4.若不等式ax 2+bx -2>0的解集为⎩⎨⎧⎭⎬⎫x |-2<x <-14,则a ,b 的值分别是( ) A .a =-8,b =-10 B .a =-1,b =9C .a =-4,b =-9D .a =-1,b =25.不等式x (x -a +1)>a 的解集是{}x |x <-1或x >a ,则( )A .a ≥1B .a <-1C .a >-1D .a ∈R6.已知函数f (x )=ax 2+bx +c ,不等式f (x )>0的解集为{}x |-3<x <1,则函数y =f (-x )的图象为( )7.在R 上定义运算⊙:a ⊙b =ab +2a +b ,则满足x ⊙(x -2)<0的实数x 的取值范围是( )A .(0,2)B .(-2,1)C .(-∞,-2)∪(1,+∞)D .(-1,2)二、填空题8.若不等式2x 2-3x +a <0的解集为(m,1),则实数m 的值为________.9.若关于x 的不等式ax -b >0的解集是(1,+∞),则关于x 的不等式ax +b x -2>0的解集是________.10.若关于x 的方程9x +(4+a )3x +4=0有解,则实数a 的取值范围是________.三、解答题11.解关于x 的不等式:ax 2-2≥2x -ax (a <0)..12.设函数f (x )=mx 2-mx -1.(1)若对于一切实数x ,f (x )<0恒成立,求m 的取值范围;(2)若对于x ∈[1,3],f (x )<-m +5恒成立,求m 的取值范围.答案1.【解析】 ∵S ={x |-5<x <5},T ={x |-7<x <3},∴S ∩T ={x |-5<x <3}.【答案】 C2.【解析】 函数定义域满足ax 2+2x +3≥0,若其解集为R ,则应⎩⎪⎨⎪⎧ a >0,Δ≤0,即⎩⎪⎨⎪⎧a >0,4-12a ≤0,∴a ≥13. 【答案】 B3.【解析】 x +1x -2≥0⎩⎪⎨⎪⎧ x +1x -2≥0,x -2≠0x >2或x ≤-1. 【答案】 B4.【解析】 依题意,方程ax 2+bx -2=0的两根为-2,-14, ∴⎩⎨⎧ -2-14=-b a ,12=-2a ,即⎩⎪⎨⎪⎧a =-4,b =-9. 【答案】 C5.【解析】 x (x -a +1)>a (x +1)(x -a )>0,∵解集为{}x |x <-1或x >a ,∴a >-1.【答案】 C .6. 【解析】 由题意可知,函数f (x )=ax 2+bx +c 为二次函数,其图象为开口向下的抛物线,与x 轴的交点是(-3,0),(1,0),又y =f (-x )的图象与f (x )的图象关于y 轴对称,故只有B 符合.7.【解析】 ∵a ⊙b =ab +2a +b ,∴x ⊙(x -2)=x (x -2)+2x +x -2=x 2+x -2,原不等式化为x 2+x -2<0-2<x <1.【答案】 B8. 【解析】 ∵方程2x 2-3x +a =0的两根为m,1,∴⎩⎨⎧ m +1=32,1·m =a 2,∴m =12. 【答案】 12 9.【解析】 由于ax >b 的解集为(1,+∞),故有a >0且b a =1.又ax +b x -2>0(ax +b )(x -2)=a (x +1)(x -2)>0(x +1)(x -2)>0,即x <-1或x >2.【答案】 (-∞,-1)∪(2,+∞)10.【解析】 方程9x +(4+a )3x +4=0化为:4+a =-9x +43x =-⎝⎛⎭⎫3x +43x ≤-4, 当且仅当3x =2时取“=”,∴a ≤-8.【答案】 (-∞,-8]11.【解析】 原不等式化为ax 2+(a -2)x -2≥0(x +1)(ax -2)≥0.①若-2<a <0,2a <-1,则2a≤x ≤-1; ②若a =-2,则x =-1;③若a <-2,则-1≤x ≤2a. 综上所述,当-2<a <0时,不等式解集为⎩⎨⎧⎭⎬⎫x |2a ≤x ≤-1; 当a =-2时,不等式解集为{x |x =-1};当a <-2时,不等式解集为⎩⎨⎧⎭⎬⎫x |-1≤x ≤2a . 12.【解析】 (1)要使mx 2-mx -1<0,x ∈R 恒成立.若m =0,-1<0,显然成立;若m ≠0,则应⎩⎪⎨⎪⎧m <0,Δ=m 2+4m <0-4<m <0. 综上得,-4<m ≤0.(2)∵x ∈[1,3],f (x )<-m +5恒成立, 即mx 2-mx -1<-m +5恒成立; 即m (x 2-x +1)<6恒成立,而x 2-x +1>0,∴m <6x 2-x +1. ∵6x 2-x +1=6⎝⎛⎭⎫x -122+34, ∴当x ∈[1,3]时,⎝ ⎛⎭⎪⎫6x 2-x +1min =67, ∴m 的取值范围是m <67.。

高一数学一元二次不等式试题答案及解析

高一数学一元二次不等式试题答案及解析

高一数学一元二次不等式试题答案及解析1. 8.二次不等式ax2+bx+c<0的解集是R的条件是()A.B.C.D.【答案】D【解析】有题意知二次函数的图象恒在轴的下方,所以开口向下,与轴没有交点,.【考点】二次函数恒成立的问题.2.不等式的解集是()A.B.C.D.【答案】A【解析】,故选A,注意分解因式后变量系数的正负.【考点】解不等式.3.设函数,(1)若不等式的解集.求的值;(2)若求的最小值.【答案】(1)(2)9【解析】(1)由二次不等式的解集与对应方程根之间的关系可知:-1和3是方程的二实根,由此可得到关于a,b的二元一次方程组,解此方程组得到a,b的值;(2)由得到,利用基本不等式就可求得的最小值.试题解析:(1)因为不等式的解集,所以-1和3是方程的二实根,从而有:即解得:.(2)由得到,所以,当且仅当时“=”成立;所以的最小值为9.【考点】1.一元二次不等式;2.基本不等式.4.若关于的不等式的解集,则的值为_________.【答案】【解析】由题意得,为方程的两根,且由得又由得:【考点】不等式解集与方程根的关系5.若不等式ax2+bx+2>0的解集为,则a-b=________.【答案】-10【解析】由题意得:为方程的两根,且由韦达定理得:【考点】一元二次不等式解集与一元二次方程根的关系6.已知集合若,则实数m的取值范围是()【答案】当时,m的取值范围是【解析】思路分析:因为,,所以,应注意讨论或的情况。

①当时,方程无实根,只需判别式小于0.②当,时,方程的根为非负实根,利用一元二次方程根的分布加以讨论。

解:①当时,方程无实根,所以所以②当,时,方程的根为非负实根,设方程的两根为则即解得综上,当时,m的取值范围是【考点】集合的运算,不等式(组)的解法。

点评:中档题,本题易忽视的情况而出错。

当,时,注意结合二次函数的图象和性质,讨论根的分布情况。

7.不等式组的解集是()A.B.C.D.【答案】C【解析】根据题意,由于不等式组可知,对于,,然后求解交集得到结论为,故答案为C.【考点】不等式的解集点评:主要是考查了一元二次不等式的求解,属于基础题。

3.2.2含参数的一元二次不等式的解法(例题精讲)

3.2.2含参数的一元二次不等式的解法(例题精讲)

含参数的一元二次不等式的解法解含参数的一元二次不等式,通常情况下,均需分类讨论,那么如何讨论呢?对含参一元二次不等式常用的分类方法有三种:一、按2x 项的系数a 的符号分类,即0,0,0<=>a a a ;例1 解不等式:()0122>+++x a ax 分析:本题二次项系数含有参数,()044222>+=-+=∆a a a ,故只需对二次项 系数进行分类讨论。

解:∵()044222>+=-+=∆a a a 解得方程 ()0122=+++x a ax 两根,24221a a a x +---=a a a x 24222++--= ∴当0>a 时,解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+---<++-->a a a x a a a x x 242242|22或 当0=a 时,不等式为012>+x ,解集为⎭⎬⎫⎩⎨⎧>21|x x 当0<a 时, 解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+---<<++--a a a x a a a x 242242|22例2 解不等式 分析 因为0≠a ,0>∆,所以我们只要讨论二次项系数的正负。

解 ()()032)65(2>--=+-x x a x x a ∴当0>a 时,解集为{}32|><x x x 或;当0<a 时,解集为{}32|<<x x二、按判别式∆的符号分类,即0,0,0<∆=∆>∆;例3 解不等式042>++ax x分析 本题中由于2x 的系数大于0,故只需考虑∆与根的情况。

解:∵162-=∆a ∴当()4,4-∈a 即0<∆时,解集为R ;当4±=a 即Δ=0时,()00652≠>+-a a ax ax解集为⎭⎬⎫⎩⎨⎧≠∈2a x R x x 且; 当4>a 或4-<a 即0>∆,此时两根分别为21621-+-=a a x ,21622---=a a x ,显然21x x >, ∴不等式的解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧----+->21621622a a x a a x x 〈或例4 解不等式()()R m x x m ∈≥+-+014122 解 因,012>+m ()()2223414)4(mm -=+--=∆,所以当3±=m ,即0=∆时,解集为⎭⎬⎫⎩⎨⎧=21|x x ; 当33<<-m ,即0>∆时,解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+--+-+>1321322222m m x m m x x 〈或; 当33>-<m m 或,即0<∆时,解集为R 。

高考数学 一元二次不等式及其解法大全(含练习和答案)

高考数学 一元二次不等式及其解法大全(含练习和答案)

一元二次不等式及其解法1.一元二次不等式(20(0)ax bx c a ++>>)与相应的二次函数(2(0)y ax bx c a =++>)及一元二次方程(20(0)ax bx c a ++=>)的关系(简称三个二次之间的关系)判别式Δ=b 2-4acΔ>0 Δ=0 Δ<0 二次函数y =ax 2+bx +c (a >0)的图象一元二次方程 ax 2+bx +c =0 (a >0)的根有两相异实根1212,()x x x x < 有两相等实根 122b x x a==-没有实数根 ax 2+bx +c >0 (a >0)的解集R ax 2+bx +c <0 (a >0)的解集∅ 注:(1)若0a <时,可以先将二次项系数化为正数,若对应方程有两实根,则可根据“大于取两边,小于取中间”求解集。

2.简单的分式不等式(1)()0()f x g x >⇔______________; (2)()0()f xg x <⇔____________ (3)()0()f x g x ≥⇔ ___________ (4)()0()f x g x ≤⇔_____________ 3.二次不等式恒成立的条件(1)ax 2+bx +c >0 (a ≠0)对一切x ∈R 恒成立的充要条件是___________ (2)ax 2+bx +c <0 (a ≠0)对一切x ∈R 恒成立的充要条件是___________1.(人教A 版教材习题改编)不等式2x 2-x -1>0的解集是( )A .(-12,1) B .(1,+∞)C .(-∞,1)∪(2,+∞)D .(-∞,-12)∪(1,+∞)2.不等式x -12x +1≤0的解集为( )A .(-12,1]B .{x |x ≥1或x <-12}C .[-12,1]D .{x |x ≥1或x ≤-12} 3.(2012·福建高考)已知关于x 的不等式x 2-ax +2a >0在R 上恒成立,则实数a 的取值范围是________.4.一元二次不等式ax 2+bx +2>0的解集是(-12,13),则a +b 的值是________.(一)考向1 一元二次不等式的解法例1 求下列不等式的解集(1)22730x x ++> (2)3+2x -x 2≥0;(3)2830x x -+-> (4)213502x x -+-> (5)22320x x -+-< (6)2xx -1≤1解一元二次不等式的步骤: (1)把二次项系数化为正数;(2)先考虑因式分解法,再考虑求根公式法或配方法或判别式法; (3)写出不等式的解集. 变式训练1 解下列不等式:(1)2310x x -+≤ (2)23520x x +-> (3)22530x x --+> (4)29610x x -+-<(5)3012x x+≤- (6)-1≤x 2+2x -1≤2;(二)考向2 三个二次的关系例2 已知关于x 的不等式x 2+ax +b <0的解集(-1,2),试求关于x 的不等式ax 2+x +b <0的解集. 【思路点拨】 不等式解集的端点值是相应方程的根.(1)给出一元二次不等式的解集,则可知二次项系数的符号和相应一元二次方程的两根.(2)三个二次的关系体现了数形结合,以及函数与方程的思想方法.变式训练2 若关于x的不等式axx-1<1的解集是{x|x<1或x>2},求实数a的取值范围.(三)考向3含参数的一元二次不等式的解法例3求不等式12x2-ax>a2(a∈R)的解集.【思路点拨】先求方程12x2-ax=a2的根,讨论根的大小,确定不等式的解集.解含参数的一元二次不等式的步骤(1)二次项若含有参数应讨论参数是等于0,小于0,还是大于0,然后将不等式转化为二次项系数为正的形式.(2)判断方程实根的个数,讨论判别式Δ与0的关系.(3)确定方程无实根时可直接写出解集,确定方程有两个相异实根时,要讨论两实根的大小关系,从而确定解集形式.变式训练3 解关于x的不等式x2-(a+1)x+a<0.(四)考向4 不等式恒成立问题例4 若不等式mx 2-mx -1<0对一切实数x 恒成立,求实数m 的取值范围.【思路点拨】分m =0与m ≠0两种情况讨论,当m ≠0时,用判别式法求解.1.不等式ax 2+bx +c >0的解是全体实数(或恒成立)的条件是当a =0时,b =0,c >0;当a ≠0时,⎩⎪⎨⎪⎧a >0,Δ<0;不等式ax 2+bx +c <0的解是全体实数(或恒成立)的条件是当a =0时,b =0,c <0;当a ≠0时,⎩⎪⎨⎪⎧a <0,Δ<0.2.解决恒成立问题一定要搞清谁是主元,谁是参数,一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.变式训练4 对任意a ∈[-1,1]不等式x 2+(a -4)x +4-2a >0恒成立,则实数x 的取值范围是________.一个过程解一元二次不等式的一般过程是:一看(看二次项系数的符号),二算(计算判别式,判断方程根的情况),三写(写出不等式的解集).两点联想不等式ax 2+bx +c >0(或ax 2+bx +c <0)(a ≠0)的求解,善于联想:(1)二次函数y =ax 2+bx +c 的图象与x 轴的交点,(2)方程ax 2+bx +c =0(a ≠0)的根,运用好“三个二次”间的关系.三个防范1.二次项系数中含有参数时,参数的符号影响不等式的解集;不要忘了二次项系数是否为零的情况.2.解含参数的一元二次不等式,可先考虑因式分解,再对根的大小进行分类讨论;若不能因式分解,则可对判别式进行分类讨论,分类要不重不漏.3.不同参数范围的解集切莫取并集,应分类表述.课时训练1.设集合M={}2230x x x --<,N=12log 0,x x M N ⎧⎫<⋂⎨⎬⎩⎭则等于 ( )A .-(1,1) B.(1,3) C.(0,1) D.(-1,0)2.在R 上定义运算:(1)x y x y ⊗⊗=-,若不等式()()1x a x a -⊗+<对任意实数x 成立,则 ( )A 、11a -<<B 、02a <<C 、1322a -<<D 、3122a -<<3.“|x -1|<2成立”是“x (x -3)<0成立”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.定义02x x <>或运算a b ad bc c d ⎛⎫=- ⎪⎝⎭,则不等式1011x x ⎛⎫<< ⎪⎝⎭的解集为() A .(1,1)- B. (1,0)(0,1)-⋃C. (1)(1-⋃D.5.设A ={x ∈Z ||x -2|≤5},则A 中最小元素为( )A .2B .-3C .7D .06、不等式20x ax b --<的解集为{}223,10x x bx ax <<-->则的解集为( )A 、{}23x x <<B 、1132x x ⎧⎫<<⎨⎬⎩⎭C 、1123x x ⎧⎫-<<-⎨⎬⎩⎭D 、{}32x x -<<-7.设x ∈R ,则“x >12”是“2x 2+x -1>0”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件8.不等式102xx-≥+的解集为 ( ) A.[]2,1- B. (]2,1- C. ()(),21,-∞-⋃+∞ D. (](),21,-∞-⋃+∞ 9. “关于x 的不等式x 2-2ax +a >0的解集为R ”是“0≤a ≤1”( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 10.不等式22530x x --≥成立的一个必要不充分条件是 ( )A .0x ≥ B. 02x x <>或 C. 12x <- D. 132x x ≤-≥或 11.不等式22253x x a a -+≥-对任意实数x 恒成立,则实数a 的取值范围为 ( )A .[]1,4- B. [)(,2)5,-∞-⋃+∞ C. (][),14,-∞-⋃+∞ D. []2,5-12、若函数222,0(),0x x x f x x ax x ⎧-≥=⎨-+<⎩是奇函数,则满足()f x a x >的的取值范围是________13.若不等式2(1)0x a x a --+≤的解集是[-4,3]的子集,则a 的取值范围是________14.已知不等式|x -2|>1的解集与不等式x 2+ax +b >0的解集相等,则a +b 的值为________.15. 设命题p :2x 2-3x +1≤0; 命题q :x 2-(2a +1)x +a (a +1)≤0, 若命题p 是命题q 的必要不充分条件,则实数a 的取值范围是________. 16.不等式ax 2+4x +a >1-2x 2对一切x ∈R 恒成立,则实数a 的取值范围是________.一元二次不等式及其解法答案1、D 【解析】 ∵2x 2-x -1=(x -1)(2x +1)>0, ∴x >1或x <-12.故原不等式的解集为(-∞,-12)∪(1,+∞).2、A 【解析】 原不等式等价于(1)(21)0210x x x -+≤⎧⎨+≠⎩.∴原不等式的解集为(-12,1].3、(0,8) 【解析】 ∵x 2-ax +2a >0在R 上恒成立, ∴Δ=a 2-4×2a <0,∴0<a <8.4、-14 【解析】 由已知得方程ax 2+bx +2=0的两根为-12,13.则⎩⎨⎧-b a =-12+132a =(-12)×13解得⎩⎪⎨⎪⎧a =-12,b =-2, ∴a +b =-14.典例分析:例1:(1)原不等式可化为(3)(21)0x x ++> 故原不等式的解集为132x x x ⎧⎫<->-⎨⎬⎩⎭或(2)原不等式化为x 2-2x -3≤0, 即(x -3)(x +1)≤0, 故原不等式的解集为{x |-1≤x ≤3}. (3)原不等式可化为2830x x -+<284(1)(3)520∆=-⨯-⨯-=>212830413413x x x x ∴-+-===方程有两个实根,故原不等式的解集为{}413413x x << (4)原不等式可化为26100x x -+≤ 26411040∆=-⨯⨯=-<∴原不等式的解集为∅(5)原不等式可化为22620x x -+> 2(6)42270∆=--⨯⨯=-<∴故原不等式的解集为R(6) ∵2x x -1≤1⇔2xx -1-1≤0 ⇔x +1x -1≤0 ⇔(1)(1)01110x x x x ≤⎧⇔-≤<⎨-≠⎩-+∴原不等式的解集为[-1,1).变式训练1 (1)9450∆=-=> 12353522x x ∴==对应的方程有两实数根 ∴原不等式的解集为35352x ⎧-+⎪≤≤⎨⎪⎪⎩⎭(2)原不等式可化为(31)(2)0x x -+> ∴原不等式的解集为123x x x ⎧⎫<->⎨⎬⎩⎭或(3)∵-2x 2-5x +3>0, ∴2x 2+5x -3<0,∴(2x -1)(x +3)<0, ∴原不等式的解集为{x |-3<x <12}.(4)原不等式可化为2(31)0x -> ∴原不等式的解集为13x x ⎧⎫≠⎨⎬⎩⎭(5)原不等式可化为(3)(12)0120x x x +-≤⎧⎨-≠⎩ (3)(21)0120x x x +-≥⎧⎨-≠⎩则 13212x x x ⎧≤-≥⎪⎪∴⎨⎪≠⎪⎩或∴原不等式的解集为132x x x ⎧⎫≤->⎨⎬⎩⎭或(6)这是一个双向不等式,可转化为不等式组⎩⎪⎨⎪⎧x 2+2x -1≥-1,x 2+2x -1≤2,即⎩⎪⎨⎪⎧x 2+2x ≥0, ①x 2+2x -3≤0. ② 由①得x ≥0或x ≤-2; 由②得-3≤x ≤1. 故得所求不等式的解集为{x |-3≤x ≤-2或0≤x ≤1}.例2 由于x 2+ax +b <0的解集是(-1,2),所以⎩⎪⎨⎪⎧1-a +b =0,4+2a +b =0,解得⎩⎪⎨⎪⎧a =-1,b =-2.故不等式即为-x 2+x -2<0, ∵⎩⎪⎨⎪⎧-1<0,Δ=1-8=-7<0∴不等式ax 2+x +b <0的解集为R .,变式训练2 解: axx -1<1⇔(a -1)x +1x -1<0⇔[(a -1)x +1](x -1)<0,由原不等式的解集是{x |x <1或x >2}, 知⎩⎪⎨⎪⎧a -1<0,-1a -1=2⇒a =12. ∴实数a 的取值范围是{12}. 例3 ∵12x 2-ax >a 2, ∴12x 2-ax -a 2>0,即(4x +a )(3x -a )>0,令(4x +a )(3x -a )=0, 得:x 1=-a 4,x 2=a3.①a >0时,-a 4<a 3,解集为{x |x <-a 4或x >a3};②a =0时,x 2>0,解集为{x |x ∈R 且x ≠0};③a <0时,-a 4>a 3,解集为{x |x <a 3或x >-a4}.综上所述:当a >0时,不等式的解集为{x |x <-a 4或x >a3};当a =0时,不等式的解集为{x |x ∈R 且x ≠0};当a <0时,不等式的解集为{x |x <a3或x >-变式训练3 【解】 原不等式可化为(x -a )(x -1)<0.当a >1时,原不等式的解集为(1,a ); 当a =1时,原不等式的解集为空集; 当a <1时,原不等式的解集为(a ,例4 要使mx 2-mx -1<0对一切实数x 恒成立,若m =0,显然-1<0;若m ≠0,则⎩⎪⎨⎪⎧m <0,Δ=m 2+4m <0,解得-4<m <0, 故实数m 的取值范围是(-4,0].,变式训练4 【解析】 设f (a )=(x -2)a +x 2-4x +4,则原问题可转化为一次函数(或常数函数)f (a )在区间[-1,1]上恒正时x 应满足的条件,故应有⎩⎪⎨⎪⎧f (-1)>0,f (1)>0. 即⎩⎪⎨⎪⎧x 2-5x +6>0,x 2-3x +2>0, 化为⎩⎪⎨⎪⎧(x -2)(x -3)>0,(x -1)(x -2)>0. 解之,得x <1或x >3.课时训练1、B 解:由2230x x --<, 得13x -<<由12log 0x <,得1x > 所以{}13M N x x ⋂=<<2、C 解:()()1x a x a -⊗+<对任意实数x 成立, 即()(1)1x a x a ---<对任意实数x 成立2210x x a a ∴--++>恒成立 214(1)0a a ∴∆=--++< 1322a ∴-<< 3. B 【解析】 ∵|x -1|<2⇔-1<x <3,又x (x -3)<0⇔0<x <3.则(0,3)(-1,3). 4、C 解:由题意可知原不等式即为2011x <-< ,212x ∴<<1221x x ∴<<<-或5. B 【解析】 由|x -2|≤5,得-3≤x ≤7, 又x ∈Z ,∴A 中的最小元素为-36、C 解:由题意知2,3是方程20x ax b --=的解235,236a ab b +==⎧⎧∴∴⎨⎨⨯=-=-⎩⎩ 22106510bx ax x x ∴-->--->不等式为2116+5+1023x x x x ⎧⎫<∴-<<-⎨⎬⎩⎭即, 7、 A 【解析】 2x 2+x -1>0的解集为{x |x >12或x <-1}, 故由x >12⇒2x 2+x -1>0,但2x 2+x -1>0D ⇒/x >12. 则“x >12”是“2x 2+x -1>0”的充分不必要条件. 8、B 解:由102x x -≥+,得(1)(2)020x x x -+≥⎧⎨+≠⎩ 则(1)(2)020x x x -+≤⎧⎨+≠⎩解得21x -<≤ (]2,1∴-原不等式的解集为9、A 【解析】 关于x 的不等式x 2-2ax +a >0的解集为R ,则Δ=4a 2-4a <0,解得0<a <1,由集合的包含关系可知选A.10、B 解:原不等式可化为(21)(3)0x x +-≥,解得132x x ≤-≥或 所以原不等式成立的一个必要不充分条件是02x x <>或11、A 解:由题意知,2225(1)4x x x -+=-+的最小值为4,所以22253x x a a -+≥- 对任意实数x 恒成立,只需234a a -≤,解得14a -≤≤12、(13,)-+∞ 解:()(1)(1)f x f f ∴-=-是奇函数, 即1(12)a --=--2()2a f x ∴=->-,则不等式等价于22002222x x x x x x ≥<⎧⎧⎨⎨->--->-⎩⎩,或,解得030x x ≥<<,或-1- 即(13,)x ∈--+∞13、43a -≤≤ 解:原不等式可化为()(1)0x a x --≤,当1a <时,不等式的解集为[],1a , 此时只要4a ≥-即可,即41a -≤<,当1a =时,不等式的解集为1x =,此时符合要求; 当1a >时,不等式的解集为[]1,a ,此时只要3a ≤即可,即13a <≤,综上可得43a -≤≤14. -1 【解析】 由|x -2|>1得x -2<-1或x -2>1,即x <1或x >3.依题意得知,不等式x 2+ax +b >0的解集是(-∞,1)∪(3,+∞)于是有⎩⎪⎨⎪⎧1×3=b ,1+3=-a ,即a =-4,b =3,a +b =-1. 15、[0,12], 解:由2x 2-3x +1≤0,得12≤x ≤1, 由x 2-(2a +1)x +a (a +1)≤0,得a ≤x ≤a +1,由命题p 是命题q 的必要不充分条件知,p 是q 的充分不必要条件,即{x |12≤x ≤1}{x |a ≤x ≤a +1}, ∴⎩⎪⎨⎪⎧a ≤12,a +1≥1,∴0≤a ≤12. 16、 (2,+∞) 【解析】 由题意知,不等式(a +2)x 2+4x +a -1>0对一切x ∈R 恒成立,则有⎩⎪⎨⎪⎧a +2>0,Δ=16-4(a +2)(a -1)<0,解得a >2.。

一元二次不等式及其解法练习及同步练习题(含答案)

一元二次不等式及其解法练习及同步练习题(含答案)

一元二次不等式及其解法练习(一)、一元二次不等式的解法1、求解下列不等式(1)、23710x x -≤ (2)、2250x x -+-< (3)、2440x x -+-< (4)205x x -<+2、求下列函数的定义域(1)、y =(2)y =3、已知集合{}{}22|160,|430A x x B x x x =-<=-+>,求A B ⋃含参数的一元二次不等式的解法含参数的一元二次不等式的解法与具体的一元二次不等式的解法在本质上是一致的,这类不等式可从分析两个根的大小及二次系数的正负入手去解答,但遗憾的是这类问题始终成为绝大多数学生学习的难点,此现象出现的根本原因是不清楚该如何对参数进行讨论,而参数的讨论实际上就是参数的分类,而参数该如何进行分类?下面我们通过几个例子体会一下。

一.二次项系数为常数例1、解关于x 的不等式:0)1(2>--+m x m x 解:原不等式可化为:(x-1)(x+m )>0 (两根是1和-m ,谁大?)(1)当1<-m 即m<-1时,解得:x<1或x>-m(2)当1=-m 即m=-1时,不等式化为:0122>+-x x ∴x ≠1(3)当1>-m 即m>-1时,解得:x<-m 或x>1综上,不等式的解集为: (){}m x x x m -><-<或时当1|,11(){}1|,12≠-=x x m 时当 (){}1-|,13><->x m x x m 或时当例2:解关于x 的不等式:.0)2(2>+-+a x a x (不能因式分解)解:()a a 422--=∆ (方程有没有根,取决于谁?) ()()R a a a 时,解集为即当32432404212+<<-<--=∆()()32432404222+=-==--=∆a a a a 或时当 (i )13324-≠-=x a 时,解得:当(ii )13-324-≠+=x a 时,解得:当()()时或即当32432404232+>-<>--=∆a a a a 两根为()242)2(21aa a x --+-=,()242)2(22aa a x ----=.()()242)2(242)2(22aa a x aa a x --+->----<或此时解得:综上,不等式的解集为: (1)当324324+<<-a 时,解集为R ; (2)当324-=a 时,解集为(13,-∞-)⋃(+∞-,13); (3)当324+=a 时,解集为(13,--∞-)⋃(+∞--,13); (4)当324-<a 或324+>a 时, 解集为(248)2(,2+---∞-a a a )⋃(+∞+-+-,248)2(2a a a ); 二.二次项系数含参数例3、解关于x 的不等式:.01)1(2<++-x a ax解:若0=a ,原不等式.101>⇔<+-⇔x x 若0<a ,原不等式ax x a x 10)1)(1(<⇔>--⇔或.1>x 若0>a ,原不等式.0)1)(1(<--⇔x ax )(* 其解的情况应由a 1与1的大小关系决定,故 (1)当1=a 时,式)(*的解集为φ;(2)当1>a 时,式)(*11<<⇔x a; (3)当10<<a 时,式)(*a x 11<<⇔. 综上所述,不等式的解集为: ①当0<a 时,{11><x ax x 或}; ②当0=a 时,{1>x x };③当10<<a 时,{a x x 11<<};④当1=a 时,φ;⑤当1>a 时,{11<<x ax}.例4、解关于x 的不等式:.012<-+ax ax解:.012<-+ax ax(1)当0=a 时,.01R x ∈∴<-原式可化为(2)当0>a 时, 此时 a a 42+=∆>0 两根为a a a a x 2421++-=,aa a a x 2422+--=. 解得:a a a a 242+--aa a a x 242++-<< (3)当a<0时, 原式可化为:012>-+ax x aa 4+=∆此时 ①当0<∆即04<<-a 时,解集为R ; ②当0=∆即4-=a 时,解得:21-≠x ; ③当0>∆即4-<a 时解得:或a a a a x 242+-->aa a a x 242++-< 综上,(1)当0>a 时,解集为(a a a a 242+--,aa a a 242++-); (2)当04≤<-a 时,解集为R ;(3)当4-=a 时,解集为(21,-∞-)⋃(+∞-,21); (4)当4-<a 时,解集为(a a a a 24,2+--∞-)⋃(+∞++-,242aa a a ). 上面四个例子,尽管分别代表了四种不同的类型,但它们对参数a 都进行了讨论,看起来比较复杂,特别是对参数a 的分类,对于初学者确实是一个难点,但通过对它们解题过程的分析,我们可以发现一个规律:参数a 的分类是根据不等式中二次项系数等于零和判别式0=∆时所得到的a 的值为数轴的分点进行分类,如: 解关于x 的不等式:033)1(22>++-ax x a解:033)1(22>++-ax x a )(* 1012=⇒=-a a 或1-=a ;203)1(4922=⇒=⨯-⨯-=∆a a a 或2-=a ;∴当2-<a 时,012>-a 且0<∆,)(*解集为R ;当2-=a 时,012>-a 且0=∆,)(*解集为(1,∞-)⋃(+∞,1);当12-<<-a 时,012>-a 且0>∆,)(*解集为(223123,22----∞-a a a )⋃(+∞--+-,22312322a a a ); 当1-=a 时,)(*1033<⇔>+-⇔x x ,)(*解集为(1,∞-);当11<<-a 时,012<-a 且0>∆,)(*解集为(22312322----a a a ,22312322--+-a a a ); 当1=a 时,)(*1033->⇔>+⇔x x ,)(*解集为(+∞-,1);当21<<a 时,012>-a 且0>∆,)(*解集为(223123,22----∞-a a a )⋃(+∞--+-,22312322a a a ); 当2=a 时,012>-a 且0=∆,)(*解集为(1,-∞-)⋃(+∞-,1);当2>a 时,012>-a 且0<∆,)(*解集为R .综上,可知当2-<a 或2>a 时,解集为R ;当2-=a 时,(1,∞-)⋃(+∞,1);当12-<<-a 或21<<a 时,解集为 (223123,22----∞-a a a )⋃(+∞--+-,22312322a a a );当1-=a 时,解集为(1,∞-); 当11<<-a 时,)(*解集为(22312322----a a a ,22312322--+-a a a );当1=a 时,)(*解集为(+∞-,1);当2=a 时,解集为(1,-∞-)⋃(+∞-,1).通过此例我们知道原来解任意含参数的一元二次不等式对参数进行分类讨论时只需求出二次项系数等于零和判别式0=∆时所得到的参数的值,然后依此进行分类即可,这样这类问题便有了“通法”,都可迎刃而解了。

含参一元二次不等式专项训练

含参一元二次不等式专项训练

含参一元二次不等式专项训练含参一元二次不等式专题训练解答题(共12小题)1.已知不等式(ax﹣1)(x+1)<0 (a∈R).2.解关于x的不等式:x2+(a+1)x+a>0(a是实数).(1)若x=a时不等式成立,求a的取值范围;(2)当a≠0时,解这个关于x的不等式.5.求x的取值范围:(x+2)(x﹣a)>0.3.解关于x的不等式ax2+2x﹣1<0(a>0).4.解关于x的不等式,(a∈R):(1)ax2﹣2(a+1)x+4>0;(2)x2﹣2ax+2≤0.6.当a>﹣1时,解不等式x2﹣(a+1)x﹣2a2﹣a≥0.7.解关于x的不等式(x﹣1)(ax﹣2)>0.8.解关于x的不等式,其中a≠0.9.解不等式:mx2+(m﹣2)x﹣2<0.10.解下列不等式:(1)ax2+2ax+4≤0;(2)(a﹣2)x2﹣(4a﹣3)x+(4a+2)≥0.11.解关于x的不等式ax2﹣(a+1)x+1<0.12.解关于x的不等式ax2﹣2≥2x﹣ax(a∈R).含参一元二次不等式专题训练参考答案与试题解析一.解答题(共12小题)1.(2009•如皋市模拟)已知不等式(ax﹣1)(x+1)<0 (a∈R).(1)若x=a时不等式成立,求a的取值范围;(2)当a≠0时,解这个关于x的不等式.考点:一元二次不等式的解法.专题:计算题;综合题;分类讨论;转化思想.分析:(1)若x=a时不等式成立,不等式转化为关于a的不等式,直接求a的取值范围;(2)当a≠0时,当a>0、﹣1<a<0、a<﹣1三种情况下,比较的大小关系即可解这个关于x的不等式.解答:解:(1)由x=a时不等式成立,即(a2﹣1)(a+1)<0,所以(a+1)2(a ﹣1)<0,所以a<1且a≠﹣1.所以a 的取值范围为(﹣∞,﹣1)∪(﹣1,1).(6分)(2)当a>0时,,所以不等式的解:;当﹣1<a<0时,,所以不等式(ax﹣1)(x+1)<0的解:或x<﹣1;当a<﹣1时,,所以不等式的解:x<﹣1或.当a=﹣1时,不等式的解:x<﹣1或x>﹣1综上:当a>0时,所以不等式的解:;当﹣1<a<0时,所以不等式的解:或x>﹣1;当a≤﹣1时,所以不等式的解:x<﹣1或.(15分)点评:本题考查一元二次不等式的解法,考查转化思想,分类讨论思想,是中档题.2.解关于x的不等式:x2+(a+1)x+a>0(a是实数).考点:一元二次不等式的解法.专题:不等式的解法及应用.分析:x2+(a+1)x+a>0(a是实数).可化为(x+a)(x+1)>0.对a与1的大小分类讨论即可得出.解答:解:x2+(a+1)x+a>0(a是实数)可化为(x+a)(x+1)>0.当a>1时,不等式的解集为{x|x>﹣1或x<﹣a};当a<1时,不等式的解集为{x|x>﹣a或x<﹣1};当a=1时,不等式的解集为{x|x≠﹣1}.点评:本题考查了一元二次不等式的解法、分类讨论的方法,属于基础题.3.解关于x的不等式ax2+2x﹣1<0(a>0).考点:一元二次不等式的解法.专题:不等式的解法及应用.分析:由a>0,得△>0,求出对应方程ax2+2x﹣1=0的两根,即可写出不等式的解集.解答:解:∵a>0,∴△=4+4a>0,且方程ax2+2x﹣1=0的两根为x1=,x2=,且x1<x2;∴不等式的解集为{x|<x<}.点评:本题考查了不等式的解法与应用问题,解题时应按照解一元二次不等式的步骤进行解答即可,是基础题.4.解关于x的不等式,(a∈R):(1)ax2﹣2(a+1)x+4>0;(2)x2﹣2ax+2≤0.考点:一元二次不等式的解法.专题:计算题;不等式的解法及应用.分(1)分a=0,a>0,a<0三种情况进行讨论:a=0,a<0析:两种情况易解;a>0时,由对应方程的两根大小关系再分三种情况讨论即可;(2)按照△=4a2﹣8的符号分三种情况讨论即可解得;解答:解:(1)ax2﹣2(a+1)x+4>0可化为(ax﹣2)(x ﹣2)>0,(i)当a=0时,不等式可化为x﹣2<0,不等式的解集为{x|x<2};(ii )当a>0时,不等式可化为(x﹣)(x﹣2)>0,①若,即0<a<1时,不等式的解集为{x|x<2或x>};②若=2,即a=1时,不等式的解集为{x|x≠2};③若,即a>1时,不等式的解集为{x|x<或x>2}.(iii)当a<0时,不等式可化为(x﹣)(x﹣2)<0,不等式的解集为{x|<x<2}.综上,a=0时,不等式的解集为{x|x<2};0<a<1时,不等式的解集为{x|x<2或x >};a=1时,不等式的解集为{x|x≠2};a>1时,不等式的解集为{x|x<或x>2};a<0时,不等式的解集为{x|<x<2}.(2)x 2﹣2ax+2≤0,△=4a2﹣8,①当△<0,即﹣a时,不等式的解集为∅;②当△=0,即a=时,不等式的解集为{x|x=a};③当△>0,即a<﹣或a>时,不等式的解集为[x|a﹣≤x≤a}.综上,﹣a时,不等式的解集为∅;a=时,不等式的解集为{x|x=a};a <﹣或a >时,不等式的解集为[x|a﹣≤x≤a}.点评:该题考查含参数的一元二次不等式的解法,考查分类讨论思想,若二次系数为参数,要按照二次系数的符号讨论;若△符号不确定,要按△符号讨论;若△>0,要按照两根大小讨论.属中档题.5.求x的取值范围:(x+2)(x﹣a)>0.考点:一元二次不等式的解法.专题:不等式的解法及应用.分析:通过对a分类讨论,利用一元二次不等式的解法即可得出.解答:解:①当a=﹣2时,不等式(x+2)(x﹣a)>0化为(x+2)2>0,解得x≠﹣2,其解集为{x|x∈R,且x≠1}.②当a>﹣2时,由不等式(x+2)(x﹣a)>0,解得x<﹣2或x>a,其解集为{x|x<﹣2或x>a}.③当a<﹣2时,由不等式(x+2)(x﹣a)>0,解得x<a或x>﹣2,其解集为{x|x<a或x>﹣2}.综上可得:①当a=﹣2时,原不等式的解集为{x|x∈R,且x≠1}.②当a>﹣2时,原不等式的解集为{x|x<﹣2或x>a}.③当a<﹣2时,原不等式的解集为{x|x<a或x>﹣2}.点评:本题考查了一元二次不等式的解法和分类讨论的方法,属于基础题.6.当a>﹣1时,解不等式x2﹣(a+1)x﹣2a2﹣a≥0.考点:一元二次不等式的解法.专题:分类讨论;不等式的解法及应用.分析:把不等式x2﹣(a+1)x﹣2a2﹣a≥0化为(x+a)[x﹣(2a+1)]≥0,讨论a的取值,写出对应不等式的解集.解答:解:不等式x2﹣(a+1)x﹣2a2﹣a≥0可化为(x+a)[x﹣(2a+1)]≥0,∵a>﹣1,∴﹣a<1,2a+1>﹣1;当﹣a=2a+1,即a=﹣时,不等式的解集是R;当﹣a>2a+1,即﹣1<a<﹣时,不等式的解集是{x|x≤2a+1,或x≥﹣a};当﹣a<2a+1,即a>﹣时,不等式的解集是{x|x≤﹣a,或x≥2a+1}.∴a=﹣时,不等式的解集是R;﹣1<a<﹣时,不等式的解集是{x|x≤2a+1,或x≥﹣a};a>﹣时,不等式的解集是{x|x≤﹣a,或x≥2a+1}.点评:本题考查了含有字母系数的不等式的解法问题,解题时应在适当地时候,对字母系数进行讨论,是基础题.7.解关于x的不等式(x﹣1)(ax﹣2)>0.考点:一元二次不等式的解法.专题:不等式的解法及应用.分析:通过对a分类讨论,利用一元二次不等式的解法即可得出解集.解答:解:①当a=0时,不等式(x﹣1)(ax ﹣2)>0化为﹣2(x﹣1)>0,即x﹣1<0,解得x<1,因此解集为{x|x<1}.②当a >0时,原不等式化为.当a>2时,则,∴不等式(x﹣1)(x﹣)>0的解集是{x|x>1或x}.当a=2时,=1,∴不等式化为(x﹣1)2>0的解集是{x|x≠1}.当0<a<2时,则,∴不等式(x﹣1)(x ﹣)>0的解集是{x|x<1或x}.③当a<0时,原不等式化为,则,∴不等式(x﹣1)(x﹣)<0的解集是{x|x<1}.综上可知::①当a=0时,不等式的解集为{x|x<1}.②当a>0时,不等式的解集是{x|x>1或x}.当a=2时,不等式的解集是{x|x≠1}.当0<a<2时,不等式的解集是{x|x<1或x }.③当a<0时,不等式的解集是{x|x<1}.点评:本题考查了分类讨论方法、一元二次不等式的解法,属于中档题.8.解关于x的不等式,其中a≠0.考点:一元二次不等式的解法.专题:不等式的解法及应用.分析:方程,其中a≠0两根为1,,对两根大小分类讨论求解.解答:解:当a<0时,,不等式的解集为…(3分)当0<a<1时,,不等式的解集为…(6分)当a=1时,,不等式的解集为ϕ…(9分)当a>1时,,不等式的解集为…(11分)综上所述:当a<0时,或a>1,原不等式的解集为当0<a<1时,原不等式的解集为当a=1时,原不等式的解集为ϕ…(12分)点评:本题主要考查了一元二次不等式的解法,其中主要考查了分类讨论的思想在解题中的应用.9.解不等式:mx2+(m﹣2)x ﹣2<0.考点:一元二次不等式的解法.专题:分类讨论;不等式的解法及应用.分析:把不等式等价变形为(x+1)(mx﹣2)<0,讨论m 的取值,从而求出不等式的解集.解答:解:原不等式可化为(x+1)(mx﹣2)<0,当m=0时,不等式为﹣2(x+1)<0,此时解得x>﹣1.当m≠0,则不等式等价为m(x+1)(x﹣)<0.若m>0,则不等式等价为(x+1)(x ﹣)<0,对应方程的两个根为﹣1,,此时不等式的解为﹣1<x<.若m<0.则不等式等价为(x+1)(x﹣)>0,对应方程的两个根为﹣1,.若﹣1=,解得m=﹣2,此时不等式为(x+1)2>0,此时x≠﹣1.若﹣2<m<0时,<﹣1,此时不等式的解为x>﹣1或x<.若m<﹣2时,>﹣1,此时不等式的解为x<﹣1或x>.综上:m>0时,不等式的解集为{x|﹣1<x<},m=0时,不等式的解集为{x|x>﹣1};m=﹣2,不等式的解集为{x|x≠﹣1};﹣2<m<0,不等式的解集为{x|x>﹣1或x<};m<﹣2,不等式的解集为{m|x<﹣1或x>}.点评:本题考查了含有参数的一元二次不等式的解法问题,解题时应对参数进行分类讨论,是易错题.10.解下列不等式:(1)ax2+2ax+4≤0;(2)(a﹣2)x2﹣(4a﹣3)x+(4a+2)≥0.考点:一元二次不等式的解法.专题:不等式的解法及应用.分析:(1)通过对a和△分类讨论,利用一元二次不等式的解法即可解出;(2)通过对a分类讨论,利用一元二次不等式的解法即可得出.解答:解:(1)①当a=0时,原不等式可化为4≤0,不成立,应舍去.②当a≠0时,△=4a2﹣16a.当a=4时,△=0,原不等式可化为(x+1)2≤0,解得x=﹣1,此时原不等式的解集为{﹣1};当△<0时,解得0<a<4.此时原不等式的解集为∅.当△>0时,解得a>4或a<0.由ax2+2ax+4=0,解得=,当a>4时,原不等式的解集为{x|};当a<0时,原不等式的解集为{x|x ≥或}.综上可得:当a=4时,不等式的解集为{﹣1};当△<0时,不等式的解集为∅.当△>0时,当a>4时,不等式的解集为{x|};当a<0时,不等式的解集为{x|x ≥或}.(2)①当a=2时,原不等式化为﹣5x+10≥0,解得x≤2,此时不等式的解集为{x|x≤2};②当a≠2时,△=25.此时不等式化为[(a﹣2)x﹣(2a+1)](x﹣2)≥0,当a >2时,化为,此时,因此不等式的解集为{x|x≥或x≤2};当a <2时,,此时不等式化为,不等式的解集为{x|}.综上可得:①当a=2时,不等式的解集为{x|x≤2};②当a>2时,不等式的解集为{x|x≥或x≤2};当a<2时,不等式的解集为{x|}.点评:本题考查了分类讨论、一元二次不等式的解法,考查了计算能力,属于难题.11.解关于x的不等式ax2﹣(a+1)x+1<0.考点:一元二次不等式的解法.专题:计算题;分类讨论.分析:当a=0时,得到一个一元一次不等式,求出不等式的解集即为原不等式的解集;当a≠0时,把原不等式的左边分解因式,然后分4种情况考虑:a小于0,a大于0小于1,a 大于1和a等于1时,分别利用求不等式解集的方法求出原不等式的解集即可.解答:解:当a=0时,不等式的解为x>1;当a≠0时,分解因式a (x﹣)(x﹣1)<0当a<0时,原不等式等价于(x﹣)(x﹣1)>0,不等式的解为x>1或x<;当0<a<1时,1<,不等式的解为1<x<;当a>1时,<1,不等式的解为<x<1;当a=1时,不等式的解为∅.点评:此题考查了一元二次不等式的解法,考查了分类讨论的数学思想,是一道综合题.12.解关于x的不等式ax2﹣2≥2x ﹣ax(a∈R).考点:一元二次不等式的解法.专题:计算题;分类讨论.分析:对a分类:a=0,a>0,﹣2<a<0,a=﹣2,a<﹣2,分别解不等式,求解取交集即可.解答:解:原不等式变形为ax2+(a﹣2)x ﹣2≥0.①a=0时,x≤﹣1;②a≠0时,不等式即为(ax﹣2)(x+1)≥0,当a>0时,x≥或x≤﹣1;由于﹣(﹣1)=,于是当﹣2<a<0时,≤x≤﹣1;当a=﹣2时,x=﹣1;当a<﹣2时,﹣1≤x≤.综上,当a=0时,x≤﹣1;当a>0时,x≥或x≤﹣1;当﹣2<a<0时,≤x≤﹣1;当a=﹣2时,x=﹣1;当a<﹣2时,﹣1≤x≤.点评:本题考查不等式的解法,考查分类讨论思想,是中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


元二次不等式 参考例题(2)
1. (1)解不等式121≤-x x (2)不等式11
<-x ax 的解集为}21|{><x x x ,或,求a 的值.
2.解下列关于x 的不等式:
(1)01)1(2<++-x a
a x (2))23(0)3)(2(-≠≠<-+-a a x x a x ,且
(3)01)1(2<++-x a ax (4)0)2)(2(>--ax x
(5)012<++x ax (6)
)(11
R a a x x ∈-<-
3.(1)若不等式04)2(2)2(2<--+-x a x a 对R x ∈恒成立,求实数a 的取值范围.
(2)若不等式
13642222<++++x x m mx x 的解集为R ,求实数m 的取值范围.
4.(1)已知}0)1(|{},023|{22≤++-=≤+-=a x a x x B x x x A ,
①若A
B ,求实数a 的取值范围.;
②若A B ⊆,求实数a 的取值范围.;
③若B A 为仅含有一个元素的集合,求a 的值.
(2)已知}031|
{≤--=x x x A ,B B A a x a x x B =≤++-= 且},0)1(|{2,求实数a 的取值范围.
(3) 关于x 的不等式2
)1(|2)1(|2
2-≤+-a a x 与0)13(2)1(32≤+++-a x a x 的解集依次为A 与B , 若B A ⊆,求实数a 的取值范围.
(4)设全集R U =,集合}3|12||{},01
|
{<+=≥+-=x x B x a x x A ,若R B A = , 求实数a 的取值范围.
(5)已知全集R U =,}034|{},082|{},06|{2222<+-=>-+=<--=a ax x x C x x x B x x x A ,
若C B A ⊆)( ,求实数a 的取值范围.
答案:1、(}0,1|{>-≤x x x 或)(2
1=a ) 2、}1|{01,1)3(1)2(}1|{10,1)1(a x a x a a a a
x a x a a <<<<->Φ±=<<<<-<时,或当时,当时,或当 }
3,2|{3)3(}3,2|{32)2(}32,|{2)1(a x x x a x a x x a x a x x a <<-<><<-<<<-<<-<-<或时,当或时,当或时,当
}11|{1)5(1)4(}11|{10)3(}1|{0)2(}1,1|{0)1(<<>Φ=<<<<>=><
<x a x a a a x x a x x a x a x x a 时,当时,当时,当时,当或时,当 }2,2|{,1)5(}
2|{,1)4(}2,2|{,10)3(}
2|{,0)2(}22|{,0)1(><>≠=><<<<=<<<x a x x a x x a a
x x x a x x a x a
x a 或时当时当或时当时当时当 Φ≥-+-<<---<<-<=--->-+-<<时,当时,当时,当或时,当41)4(}24112411|{410)3(}1|{0)2(}2411,2411|{0)1(a a a x a a x a x x a a
a x a a x x a }1,1|{0)3(}1|{0)2(}11|
{0)1(a a x x x a x x a x a
a x a -><<<=<<->或时,当时,
当时,当 3、(22≤<-a )、(31<<m )
4、(2>a )、(21≤≤a )、(1≤a )/ (31<≤a )/(31,1≤≤-=a a 或)/(12≤≤-a ) /( 21≤≤a )。

相关文档
最新文档