中考专题复习-圆的基本性质

合集下载

圆中考 知识点总结

圆中考 知识点总结

圆中考知识点总结圆是中学数学中的一个重要知识点,在中考数学中起着重要的作用。

因此,掌握圆的相关知识对于中考数学是非常重要的。

本文将对中考数学中关于圆的知识点进行总结,帮助学生更好地复习和掌握圆的相关知识。

知识点总结一、基本概念1. 圆的定义:圆是由平面上距离一个确定点一定距离的点的全体组成的集合。

2. 圆的要素:圆心、半径、直径、弧、圆周。

3. 圆的性质:圆的直径是圆周的两倍,圆周上任意两点与圆心的距离相等。

二、圆的相关公式1. 圆的周长公式:C=2πr。

2. 圆的面积公式:S=πr²。

三、圆的相关定理1. 直径定理:直径所对应的两个锐角为直角。

2. 圆的切线定理:过圆外一点引圆的切线与过该点作圆的半径垂直。

3. 圆的切线与弦的性质:相交弦定理、弦切定理。

4. 圆的内切与外切定理:内切定理、外切定理。

四、圆的相关应用1. 圆的面积和周长的应用:计算圆的面积、周长和扇形面积等。

2. 圆的几何关系:切线与圆的位置关系、相交弦的性质等。

3. 圆的倒影与旋转:圆的旋转变换、圆的倒影变换。

五、解题技巧1. 熟练掌握圆的相关公式和定理,能够正确应用公式和定理解题。

2. 多做练习,培养解决问题的能力,提高解题技巧。

3. 注意细节,正确理解题目的意思和要求,避免因理解错误而导致错误答案。

六、经典例题1. 已知AB是∠O的平分线,且AC⊥BC,求证:AC=BC。

2. 已知AB与CD是两条相交的直径,P是与AB、CD相交的一点,求证:PA²+PB²=PC²+PD²。

3. 如图,ΔABC是等边三角形,M、N分别是BC、AB的中点,P为AM的垂足,若PA=2,则求BP的长。

4. 四通五达服装公司要在正方形草坪内竖立一些旗杆,使得每个旗杆都最多不见这块草坪中心的五分之一。

那么最多可以竖立几个旗杆?结语通过对圆的相关知识点进行总结,我们可以更好地掌握圆的相关概念、公式、定理和应用。

2024中考数学一轮复习核心知识点精讲—圆的基本性质

2024中考数学一轮复习核心知识点精讲—圆的基本性质

2024中考数学一轮复习核心知识点精讲—圆的基本性质1.理解圆心角及其所对的弧、弦之间的关系;2.理解并运用圆周角定理及其推论;3.探索并证明垂径定理会应用垂径定理解决与圆有关的问题;4.理解并运用圆内接四边形的性质.考点1:圆的定义及性质圆的定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫圆。

这个固定的端点O叫做圆心,线段OA叫做半径。

圆的表示方法:以O点为圆心的圆记作⊙O,读作圆O。

圆的特点:在一个平面内,所有到一个定点的距离等于定长的点组成的图形。

圆的对称性:1)圆是轴对称图形,经过圆心的每一条直线都是它的对称轴;2)圆是以圆心为对称中心的中心对称图形。

考点2:圆的有关概念弦的概念:连结圆上任意两点的线段叫做弦(例如:右图中的AB)。

直径的概念:经过圆心的弦叫做直径(例如:右图中的CD)。

备注:1)直径是同一圆中最长的弦。

2)直径长度等于半径长度的2倍。

,读作圆弧弧的概念:圆上任意两点间的部分叫做圆弧,简称弧。

以A、B为端点的弧记作ABAB或弧AB。

等弧的概念:在同圆或等圆中,能够互相重合的弧叫做等弧。

半圆的概念:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。

优弧的概念:在一个圆中大于半圆的弧叫做优弧。

劣弧的概念:小于半圆的弧叫做劣弧。

考点3:垂径定理垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

推论1:1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。

推论2:圆的两条平行弦所夹的弧相等。

常见辅助线做法(考点):1)过圆心,作垂线,连半径,造Rt △,用勾股,求长度;2)有弧中点,连中点和圆心,得垂直平分考点4:垂径定理的应用考点5:圆心角的概念圆心角概念:顶点在圆心的角叫做圆心角。

弧、弦、弦心距、圆心角之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。

第一节 圆的基本性质 课件 2025年九年级中考数学人教版一轮复习(广西)

第一节 圆的基本性质   课件 2025年九年级中考数学人教版一轮复习(广西)
2025版
数学
广西专版
第六章 圆
第一节 圆的基本性质
2025版
数学
广西专版
2025版
数学
广西专版
2025版
数学
广西专版
2025版
数学
广西专版
2025版
数学
广西专版
2025版
数学
广西专版
2025版
数学
广西专版
2025版
数学
广西专版
2025版
数学
广西专版
2025版
数学
广西专版
1.如图①,在⊙O中,点A,D分别在直径BC两侧的圆上,连接AB,AC,
(3)如图②,连接CD,若CD=BD,⊙O的半径为2.
Ⅰ)AB的长为 2 ;
Ⅱ)BD的长为 2 .

2025版
数学
广西专版
2.如图,在⊙O中,OA与弦BC相交于点D,E为⊙O上一点,连接AE,
BE,OC,且OA⊥BC.
(1)若∠BEA=30°,则∠AOC的度数为 60° ;
(2)若BC=2 3,则CD的长为 ;
AD,BD,AO,且AD与BC交于点E,已知∠ACB=30°.
回答下列问题:
2025版
数学
广西专版
(1)∠BAC的度数为 90° ,∠OAC的度数为 30°,∠AOB的度数为 60°,
∠ADB的度数为 30° ;
(2)如图①,连接OD,若∠ABD=120°,则∠AOD的度数为 120°,∠OAD
的度数为 30° ;
(3)若CO的延长线交⊙O于点E,OD=2,则BE的长为 4 ;
(4)若CO=5,BC=8,则OD的长为 3

(5)若BC=4,AD=1,则⊙O的半径长为 2.5

中考数学复习之圆的基本性质,考点过关与基础练习题

中考数学复习之圆的基本性质,考点过关与基础练习题

32.圆的有关性质➢ 知识过关1. 圆有相关概念(1)圆:在一个平面内,线段OA 绕它固定的一个端点O 旋转_____,另一个端点A 所于形成的图形叫做圆,圆心为O ,半径为r 的圆可以看成是所有到定点O 的距离等于____r 的点的集合.(2)弧、弦、等圆、等弧①弧:圆上任意_____的部分叫做弧,大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧; ①弦:连接圆上任意两点的____叫做弦,经过_____的弦叫做直径. ①等圆:能够_____的两个圆叫做等圆;①等弧:在_____或等圆中,能够互相重合的弧叫做等弧. 2. 垂径定理及其推论 (1) 对称性:①圆是中心对称图形,其对称中心是圆心 ①圆是轴对称图形,其对称轴是_______. (2) 垂径定理及其推论①垂径定理:垂直于弦的直径______这条弦,并且平分这条弦所对的______; ①推论:平分弦(非直径)的直径______于弦,并且平分这条弦所对的两条弧.➢ 考点分类考点1 圆心角、弧、弦之间的关系例1如图所示,圆O 通过五边形OABCD 的四个顶点,若D AB=150°,A=65°,D=60°,则的度数为( )A.25°B.40°C.50°D.55°考点2垂径定理及简单应用例2如图所示,水平放置的圆柱形排水管道的截面直径是1m,其中水面的宽AB 为0.8m,则排水管内水的深度为_______m.考点3垂径定理与其他知识的综合运用例3如图,线段AB 是⊙O 的直径,弦CD ⊥AB 于点H ,点M 是弧CBD 上任意一点,AH =2,CH =4.(1)求⊙O 的半径r 的长度; (2)求sin ∠CMD ;(3)直线BM 交直线CD 于点E ,直线MH 交⊙O 于点N ,连接BN 交CE 于点F ,求HE •HF 的值.➢ 真题演练1.如图,AB 是⊙O 的弦,半径OC ⊥AB 于点D ,连接AO 并延长,交⊙O 于点E ,连接BE ,DE .若DE =3DO ,AB =4√5,则△ODE 的面积为( )A .4B .3√2C .2√5D .2√62.如图,⊙O 的半径为5,弦AB 的长为8,M 是弦AB 上的一个动点,则线段OM 的长的最小值为( )A .3B .4C .6D .83.在正方形网格中,以格点O 为圆心画圆,使该圆经过格点A ,B ,并在点A ,B 的右侧圆弧上取一点C ,连接AC ,BC ,则sin C 的值为( )A .√32B .12C .1D .√224.如图,半径为5的⊙A 与y 轴交于点B (0,2)、C (0,10),则点A 的横坐标为( )A .﹣3B .3C .4D .65.如图,在⊙O 中,直径AB =10,CD ⊥AB 于点E ,CD =8.点F 是弧BC 上动点,且与点B 、C 不重合,P 是直径AB 上的动点,设m =PC +PF ,则m 的取值范围是( )A .8<m ≤4√5B .4√5<m ≤10C .8<m ≤10D .6<m <106.在⊙O 中内接四边形ABCD ,其中A ,C 为定点,AC =8,B 在⊙O 上运动,BD ⊥AC ,过O 作AD 的垂线,垂足为E ,若⊙O 的直径为10,则OE 的最大值接近于( )A .52B .5√23C .4D .57.如图,点A ,B ,C 都在⊙O 上,B 是AC ̂的中点,∠OBC =50°,则∠AOB 等于 °.8.如图,将半径为rcm 的⊙O 折叠,弧AB 恰好经过与AB 垂直的半径OC 的中点D ,已知弦AB 的长为4√15cm ,则r = cm .9.如图,AB是⊙O的直径,∠BOD=120°,C为弧BD的中点,AC交OD于点E,DE =1,则AE的长为.10.如图,AB为⊙O的直径,AE为⊙O的弦,C为优弧ABÊ的中点,CD⊥AB,垂足为D.若AE=8,DB=2,则⊙O的半径为.11.如图,⊙O中,直径CD⊥弦AB于E,AM⊥BC于M,交CD于N,连接AD.(1)求证:AD=AN;(2)若AB=8,ON=1,求⊙O的半径.➢课后练习1.如图,在⊙O中,直径CD垂直弦AB于点E,且OE=DE.点P为BĈ上一点(点P不与点B,C重合),连接AP,BP,CP,AC,BC.过点C作CF⊥BP于点F.给出下列结论:①△ABC是等边三角形;②在点P从B→C的运动过程中,CFAP−BP的值始终等于√32.则下列说法正确的是()A.①,②都对B.①对,②错C.①错,②对D.①,②都错2.如图,在半径为5的⊙O 内有两条互相垂直的弦AB 和CD ,AB =8,CD =8,垂足为E .则tan ∠OEA 的值是( )A .1B .√63C .√156D .2√1593.如图,四边形ABCD 内接于半径为5的⊙O ,AB =BC =BE ,AB ⊥BE ,则AD 的长为( )A .5B .5√2C .5√3D .104.如图,点A ,B ,C 在⊙O 上,∠AOC =90°,AB =√2,BC =1,则⊙O 的半径为( )A .√3B .√52C .√102D .√2+125.下列说法正确的是( )A .同弧或等弧所对的圆心角相等B .所对圆心角相等的弧是等弧C .弧长相等的弧一定是等弧D .平分弦的直径必垂直于弦6.如图,A ,B 为圆O 上的点,且D 为弧AB 的中点,∠ACB =120°,DE ⊥BC 于E ,若AC =√3DE ,则BE CE的值为( )A .3B .2C .√33+1D .√3+17.如图所示,在⊙O 中,BC 是弦,AD 过圆心O ,AD ⊥BC ,E 是⊙O 上一点,F 是AE 延长线上一点,EF =AE .若AD =9,BC =6,设线段CF 长度的最小值和最大值分别为m 、n ,则mn =( )A .100B .90C .80D .708.如图,A ,B 是⊙O 上的点,∠AOB =120°,C 是AB̂的中点,若⊙O 的半径为5,则四边形ACBO 的面积为( )A .25B .25√3C .25√34D .25√329.如图,AB 是⊙O 的直径,点C 是半圆上的一个三等分点,点D 是AĈ的中点,点P 是直径AB 上一点,若⊙O 的半径为2,则PC +PD 的最小值是 .10.如图,一下水管道横截面为圆形,直径为260cm ,下雨前水面宽为100cm ,一场大雨过后,水面宽为240cm ,则水位上升 cm .11.如图,在⊙O 中,点C 在弦AB 上,连接OB ,OC .若OB =5,AC =1,BC =5,则线段OC 的长为 .12.如图,以G(0,3)为圆心,半径为6的圆与x轴交于A,B两点,与y轴交于C,D 两点,点E为⊙G上一动点,CF⊥AE于F,点E在⊙G的运动过程中,线段FG的长度的最大值为.13.如图,⊙O的半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连接EC.若AB =8,OC=3,则EC的长为.14.如图,射线PE平分∠CPD,O为射线PE上一点,以O为圆心作⊙O,与PD边交于点A、点B,连接OA,且OA∥PC.(1)求证:AP=AO.(2)若⊙O的半径为10,tan∠OPB=12,求弦AB的长.15.如图,在⊙O中,直径AB与弦CD相交于点E,OF⊥CD,垂足为F.设已知BE=5,AE=12OE,OF=1,求CD的长.➢冲击A+在Rt①ABC中,①BAC=90°,(1)如图1,D、E分别在BC、BA的延长线上,①ADE=2①CAD,求证:DA=DE;(2)如图2,在(1)的条件下,点F在BD上,①AFB=①EFD,求证:①FAD=①FED(3)如图3,若AB=AC,过点C作CN||AB,连接AN,在AN上取一点G,使GA=AC,连接BG交AC于点H,连接CG,试探究CN、CH、GN之间满足的数量关系式,并给出证明;。

2024年中考数学总复习考点培优训练第六章第一节圆的基本性质

2024年中考数学总复习考点培优训练第六章第一节圆的基本性质

A. 40°
B. 50°
C. 60°
D. 70°
第1题图
第2题图
第一节 圆的基本性质
3. 数学文化 (2023岳阳)我国古代数学名著《九章算术》中有这 样一道题:“今有圆材,径二尺五寸,欲为方版,令厚七寸,
问广几何?”结合题图,其大意是:今有圆形材质,直径BD为
25寸,要做成方形板材,使其厚度CD达到7寸,则BC的长是( C )
第12题图
∵AB是⊙O的直径,
∴∠ACB=90°.
在Rt△ABC中,AC=8,BC=6,
∴AB= AC2 BC2 =10.
∵OD⊥AC,OA=OC,
∴AE=CE=
1 2
AC=4.
第10题解图
第一节 圆的基本性质
∵OA=OB,∴OE是△ABC的中位线,
∴OE=
1 2
BC=3.
由于PQ过圆心O,且PQ⊥AC,
48°,∠APD=80°,则∠B的度数为( A )
A. 32° B. 42°
C. 48° D. 52°
6. (2023泰安)如图,AB是⊙O的直径,D,C是⊙O上的点,
∠ADC=115°,则∠BAC的度数是( A )
A. 25°
B. 30° C. 35° D. 40°
7. (2023巴中)如图,⊙O是△ABC的外接圆,若∠C=25°,则
第9题图
第一节 圆的基本性质
10. (2022广州)如图,AB是⊙O的直径,点C在⊙O上,且AC=8, BC=6. (1)尺规作图:过点O作AC的垂线,交劣弧 AC于点D,连接CD( 保留作图痕迹,不写作法);
第10题图
第一节 圆的基本性质
【作法提示】 分别以点A,C为圆心,大于 1 AC为半径画弧,在

中考圆形知识点总结归纳

中考圆形知识点总结归纳

中考圆形知识点总结归纳圆形是中学数学中一个重要的几何概念,在中考中也是一个常见的考点。

本文将对中考中涉及到的圆形知识进行总结和归纳,帮助考生复习和掌握这一部分内容。

一、圆的基本概念圆是由平面上任意一点到另一点的距离都相等的点的集合。

其中,距离相等的这个固定值称为圆的半径,用字母r表示。

圆心是圆上任意两点的连线的垂直平分线的交点。

二、圆的性质1. 圆上任意两点之间的距离都等于圆的半径。

2. 圆心角的度数等于它所对的弧的度数,且圆心角所对的弧长等于圆的半径乘以圆心角的弧度值。

3. 相等弧所对的圆心角是相等的。

4. 圆的内切正多边形的中心与圆心重合。

三、弧1. 圆周角:圆周角是指以圆心为顶点的角,它的两边是相交于圆上的两条弧。

圆周角的度数等于它所对的弧的度数。

2. 弦:圆内部连接两点的线段称为弦。

弦分割出的两条弧叫做弦所对的弧。

3. 弧长:指圆上的一段弧所对应的圆周长度。

弧长等于圆心角的弧度值乘以圆的半径。

四、相交弦与切线的性质1. 相交弦定理:相交弦所对的弧相等,或者说两个相交弦所对应的圆心角相等。

2. 切线的性质:切线与半径的垂直分割线。

切线于半径的交点处所对应的圆心角为直角。

五、圆的面积和周长1. 圆的面积公式:S = πr²,其中S为圆的面积,r为圆的半径,π取近似值3.14。

2. 圆的周长公式:C = 2πr,其中C为圆的周长。

六、圆的应用1. 圆的切线与圆的性质:切线与切点间的弦相等,切线切割出的小圆与大圆相似。

2. 弧长与扇形面积:扇形面积等于扇形所对的圆心角的弧长所占整个圆的比例乘以圆的面积。

总结:通过对中考圆形知识点的总结和归纳,我们可以看到,圆形在中考中的考点比较多,涉及到圆的基本概念、性质、弧、相交弦与切线的性质、面积和周长以及应用等方面的内容。

对于考生而言,要牢固掌握圆的基本概念和性质,熟练运用相关公式和定理,灵活应用于解题过程中。

只有通过不断的实践和练习,才能在考试中熟练运用所学的圆形知识,取得好的成绩。

中考总复习:圆的有关概念、性质与圆有关的位置关系--知识讲解(基础)

中考总复习:圆的有关概念、性质与圆有关的位置关系--知识讲解(基础)

中考总复习:圆的有关概念、性质与圆有关的位置关系—知识讲解(基础)责编:常春芳【考纲要求】1. 圆的基本性质和位置关系是中考考查的重点,但圆中复杂证明及两圆位置关系中证明会有下降趋势,不会有太复杂的大题出现;2.中考试题中将更侧重于具体问题中考查圆的定义及点与圆的位置关系,对应用、创新、开放探究型题目,会根据当前的政治形势、新闻背景和实际生活去命题,进一步体现数学来源于生活,又应用于生活.【知识网络】【考点梳理】考点一、圆的有关概念及性质1.圆的有关概念圆、圆心、半径、等圆;弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧;三角形的外接圆、三角形的内切圆、三角形的外心、三角形的内心、圆心角、圆周角.要点诠释:等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.2.圆的对称性圆是轴对称图形,任何一条直径所在直线都是它的对称轴,圆有无数条对称轴;圆是以圆心为对称中心的中心对称图形;圆具有旋转不变性.3.圆的确定不在同一直线上的三个点确定一个圆.要点诠释:圆心确定圆的位置,半径确定圆的大小.4.垂直于弦的直径垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.推论 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点诠释:在图中(1)直径CD ,(2)CD ⊥AB ,(3)AM =MB ,(4)C C A B =,(5)AD BD =.若上述5个条件有2个成立,则另外3个也成立.因此,垂径定理也称“五二三定理”.即知二推三. 注意:(1)(3)作条件时,应限制AB 不能为直径.5.圆心角、弧、弦之间的关系定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量也相等. 6.圆周角圆周角定理 在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 推论1 在同圆或等圆中,相等的圆周角所对的弧也相等.推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径. 要点诠释:圆周角性质的前提是在同圆或等圆中.考点二、与圆有关的位置关系 1.点和圆的位置关系设⊙O 的半径为r ,点P 到圆心的距离OP =d ,则有:点P 在圆外⇔d >r ; 点P 在圆上⇔d =r ; 点P 在圆内⇔d <r . 要点诠释:圆的确定:①过一点的圆有无数个,如图所示.②过两点A 、B 的圆有无数个,如图所示.③经过在同一直线上的三点不能作圆.④不在同一直线上的三点确定一个圆.如图所示.2.直线和圆的位置关系(1)切线的判定切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线.(会过圆上一点画圆的切线)(2)切线的性质切线的性质定理圆的切线垂直于过切点的半径.(3)切线长和切线长定理切线长经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.切线长定理从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.要点诠释:直线l是⊙O的切线,必须符合两个条件:①直线l经过⊙O上的一点A;②OA⊥l.3.圆和圆的位置关系(1)基本概念两圆相离、相切、外离、外切、相交、内切、内含的定义.(2)请看下表:要点诠释:①相切包括内切和外切,相离包括外离和内含.其中相切和相交是重点. ②同心圆是内含的特殊情况.③圆与圆的位置关系可以从两个圆的相对运动来理解. ④“R-r ”时,要特别注意,R >r .【典型例题】类型一、圆的性质及垂径定理的应用【高清课堂:圆的有关概念、性质及与圆有关的位置关系 ID:412074 经典例题1】1.已知:如图所示,在⊙O 中,弦AB 的中点为C ,过点C 的半径为OD .(1)若AB =OC =1,求CD 的长; (2)若半径OD =R ,∠AOB =120°,求CD 的长.【思路点拨】如图所示,一般的,若∠AOB =2n °,OD ⊥AB 于C ,OA =R ,OC =h ,则AB =2R ·sin n °=2n ·tan n °=CD =R -h ;AD 的长180n Rπ=. 【答案与解析】解:∵半径OD 经过弦AB 的中点C , ∴半径OD ⊥AB .(1)∵AB=AC=BC∵OC=1,由勾股定理得OA=2.∴CD=OD-OC=OA-OC=1,即CD=1.(2)∵OD⊥AB,OA=OB,∴∠AOD=∠BOD.∴∠AOB=120°,∴∠AOC=60°.∵OC=OA·cos∠AOC=OA·cos60°=12 R,∴1122CD OD OC R R R =-=-=.【总结升华】圆的半径、弦长的一半、弦心距三条线段组成一个直角三角形,其中一个锐角为弦所对圆心角的一半,可充分利用它们的关系解决有关垂径定理的计算问题.举一反三:【变式】在足球比赛场上,甲、乙两名队员互相配合向对方球门进攻,当甲带球冲到A点时,乙已跟随冲到B点(如图所示),此时甲是自己直接射门好还是迅速将球回传给乙,让乙射门好呢?(不考虑其他因素)【答案】解:过M、N、B三点作圆,显然A点在圆外,设MA交圆于C,则∠MAN<∠MCN.而∠MCN=∠MBN,∴∠MAN<∠MBN.因此在B点射门较好.即甲应迅速将球回传给乙,让乙射门.2.(2015•大庆模拟)已知AB是⊙O的直径,C是圆周上的动点,P是弧AC的中点.(1)如图1,求证:OP∥BC;(2)如图2,PC交AB于D,当△ODC是等腰三角形时,求∠A的度数.【思路点拨】(1)连结AC,延长PO交AC于H,如图1,由P是弧AC的中点,根据垂径定理得PH⊥AC,再根据圆周角定理,由AB是⊙O的直径得∠ACB=90°,然后根据OP∥BC;(2)如图2,根据圆心角、弧、弦的关系,以及三角形内角和等推论证来求得∠A的度数.【答案与解析】(1)证明:连结AC,延长PO交AC于H,如图1,∵P是弧AB的中点,∴PH⊥AC,∵AB是⊙O的直径,∴∠ACB=90°,∴BC⊥AC,∴OP∥BC;(2)解:如图2,∵P是弧AC的中点,∴PA=PC,∴∠PAC=∠PCA,∵OA=OC,∴∠OAC=∠OCA,∴∠PAO=∠PCO,当DO=DC,设∠DCO=x,则∠DOC=x,∠PAO=x,∴∠OPC=∠OCP=x,∠PDO=2x,∵∠OPA=∠PAO=x,∴∠POD=2x,在△POD中,x+2x+2x=180°,解得x=36°,即∠PAO=36°,当CO=CD,设∠DCO=x,则∠OPC=x,∠PAO=x,∴∠POD=2x,∴∠ODC=∠POD+∠OPC=3x,∵CD=CO,∴∠DOC=∠ODC=3x,在△POC中,x+x+5x=180°,解得x=()°,即∠PAO=()°.综上所述,∠A的度数为36°或()°.【总结升华】本题考查了圆周角定理及其推论同时考查了等腰三角形的性质、垂径定理和三角形内角和定理.举一反三:【变式】(2015•温州模拟)如图,在Rt△ABC中,∠ACB=90°,AC=5,CB=12,AD是△ABC的角平分线,过A、C、D三点的圆与斜边AB交于点E,连接DE.(1)求BE的长;(2)求△ACD外接圆的半径.【答案】解:(1)∵∠ACB=90°,且∠ACB为圆O的圆周角(已知),∴AD为圆O的直径(90°的圆周角所对的弦为圆的直径),∴∠AED=90°(直径所对的圆周角为直角),又AD是△ABC的角平分线(已知),∴∠CAD=∠EAD(角平分线定义),∴CD=DE(在同圆或等圆中,相等的圆周角所对的弦相等),在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AC=AE(全等三角形的对应边相等);∵△ABC为直角三角形,且AC=5,CB=12,∴根据勾股定理得:AB==13,∴BE=13﹣AC=13﹣5=8;(2)由(1)得到∠AED=90°,则有∠BED=90°,设CD=DE=x,则DB=BC﹣CD=12﹣x,EB=AB﹣AE=AB﹣AC=13﹣5=8,在Rt△BED中,根据勾股定理得:BD2=BE2+ED2,即(12﹣x)2=x2+82,解得:x=,∴CD=,又AC=5,△ACD为直角三角形,∴根据勾股定理得:AD==,根据AD是△ACD外接圆直径,∴△ACD外接圆的半径为:×=.类型二、圆的切线判定与性质的应用3.如图所示,AB=AC,O是BC的中点,⊙O与AB相切于点D,求证:AC与⊙O相切.【思路点拨】AC与⊙O有无公共点在已知条件中没有说明,因此只能过点O向AC作垂线段OE,长等于⊙O的半径,则垂足E必在⊙O上,从而AC与⊙O相切.【答案与解析】证明:连接OD,作OE⊥AC,垂足为E,连结OA.∵AB与⊙O相切于点D,∴OD⊥AB.∵AB=AC,OB=OC,∴∠1=∠2,∴OE=OD.∵OD为⊙O半径,∴AC与⊙O相切.【总结升华】如果已知直线经过圆上一点,那么连半径,证垂直;如果已知直线与圆是否有公共点在条件中并没有给出,那么作垂直,证半径.举一反三:【变式】如图所示,在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c.求△ABC的内切圆的半径.【答案】解:设△ABC的内切圆与三边的切点分别为D、E、F,根据切线长定理可得:AE =AF ,BF =BD ,CD =CE ,而AE+CE =b ,CD+BD =a ,AF+BF =c , 可求2a b cCE +-=. 连接OE 、OD ,易证OE =CE .即直角三角形的内切圆半径2a b cr +-=.4.如图所示,已知:△ABC 内接于⊙O ,点D 在OC 的延长线上,1sin 2B =,∠D =30°. (1)求证:AD 是⊙O 的切线; (2)若AC =6,求AD 的长.【思路点拨】(1)连接OA ,根据圆周角定理求出∠O 的度数,根据三角形的内角和定理求出∠OAD ,根据切线的判定推出即可;(2)得出等边三角形AOC ,求出OA ,根据勾股定理求出AD 的长即可. 【答案与解析】(1)证明:连接OA ,∵1sin 2B =,∴∠B =30°. ∵∠AOC =2∠B ,∴∠AOC =60°. ∵∠D =30°,∴∠OAD =180°-∠D -∠AOD =90°. ∴AD 是⊙O 的切线.(2)解:∵OA =OC ,∠AOC =60°,∴△AOC是等边三角形,∴OA=AC=6.∵∠OAD=90°,∠D=30°,∴AD=【总结升华】证明直线是圆的切线的方法:①有半径,证垂直;②有垂直,证半径.举一反三:【变式】如图所示,半径OA⊥OB,P是OB延长线上一点,PA交⊙O于D,过D作⊙O的切线交PO于C 点,求证:PC=CD.【答案】证明:连接OD.∵CE切⊙O于D,∴OD⊥CE.∴∠2+∠3=90°.∵OA⊥OB,∴∠P+∠A=90°.∵OD=OA,∴∠3=∠A..∴∠P=∠2.又∵∠1=∠2,∴∠P=∠1.∴PC=CD.类型三、切线的性质与等腰三角形、勾股定理综合运用5.已知AB是⊙O的直径,点P是AB延长线上的一个动点,过P作⊙O的切线,切点为C,∠APC 的平分线交AC于点D,求∠CDP的度数.【思路点拨】连接OC,根据题意,可知OC⊥PC,∠CPD+∠DPA+∠A+∠ACO=90°,可推出∠DPA+∠A=45°,即∠CDP=45°.【答案与解析】解:连接OC,∵OC=OA,,PD平分∠APC,∴∠CPD=∠DPA,∠A=∠ACO,∵PC为⊙O的切线,∴OC⊥PC,∵∠CPD+∠DPA+∠A+∠ACO=90°,∴∠DPA+∠A=45°,即∠CDP=45°.【总结升华】本题主要考查切线的性质、等边三角形的性质、角平分线的性质、外角的性质,解题的关键在于做好辅助线构建直角三角形,求证∠CPD+∠DPA+∠A+∠ACO=90°,即可求出∠CDP=45°.【高清课堂:圆的有关概念、性质及与圆有关的位置关系 ID:412074 经典例题3】6.如图所示,AB是⊙O的直径,AF是⊙O的弦,AE平分∠BAF,交⊙O于点E,过点E作直线ED⊥AF于点D,交AB的延长线于点C.(1)求证:CD是⊙O的切线;(2)若DE=4,sinC=35,求AE的长.【思路点拨】构造半径、半弦、弦心距的直角三角形.【答案与解析】解:(1)证明:连接OE,BF,交于点G,则BF⊥AF,BF∥CD.∵OA=OE,∴∠OAE=∠OEA.∵∠OAE=∠FAE,∴∠OEA=∠FAE.∴OE∥AF,∵AF⊥DE,∴OE⊥CD.∴CD为⊙O的切线.(2)解:∵ BF∥DE,OE∥AF,∠D=90°,∴四边形DEGF为矩形.∴BF=2GF=2DE=8.∵BF∥CD,∴∠C=∠ABF.可求得OA=OB=5,OG=3.∴DF=EG=2,AF=AB·sinC=6.∴AD=8,AE=【总结升华】(1)通过挖掘图形的性质,将分散的条件sinC=35,DE=4,集中到一个直角三角形中,使问题最终得到解决;(2)本题第(2)问还可以适当改变后进行变式训练,如改为:若DF=2,sinC=35,求AE的长;(3)第(2)问还可以过O作OM⊥AF于M后得OM=DE=4,sin∠AOM=sinC=35加以解决.。

初三数学中考总复习圆的基本性质专题复习练习含答案

初三数学中考总复习圆的基本性质专题复习练习含答案

2019 初三数学中考总复习圆的基天性质专题复习练习︵ ︵ ︵1. 如图,AB 是⊙O 的直径, BC =CD =DE ,∠COD =34°,则∠ AEO 的度数是 ( A )A .51°B .56°C .68°D .78°2.如图,在 ⊙O 中,直径 CD ⊥弦 AB ,则以下结论中正确的选项是 ( B )1A .AC =ABB .∠C =2∠ BODC .∠ C = ∠BD .∠ A =∠BOD3.如图, AB 是⊙O 的直径, BC 是⊙O 的弦.若 ∠ OBC =60°,则 ∠BAC 的 度数是(D)A .75°B .60°C .45°D .30°4.如图,⊙ O 为△ABC 的外接圆,∠ A =72°,则 ∠BCO 的度数为 ( B )A .15°B .18°C .20°D .28°5.如图是以 △ABC 的边 AB 为直径的半圆 O ,点 C 恰幸亏半圆上,过点 C 作 CD ⊥ AB 交 AB 于点 D. 已知 ∠ACD =3,BC =4,则 AC 的长为 ( D ) cos 52016A .1 B. 3 C .3 D. 3 如图, 是⊙ 外一点, , 分别交 ⊙ 于 , 两点,已知 ︵ ︵P O PB O AB 和CD 所对6. PAC D 的圆心角分别为 90°和 20°,则 ∠P =( D )A .45°B .20°C .25°D .35°7.(2019 ·南宁 )如图,AB 是⊙O 的直径,AB =8,点 M 在⊙O 上,∠MAB =20°,点 N 是弧 MB 的中点, P 是直径 AB 上的一动点.若 MN =1,则△PMN 周长的第1页/共4页最小值为(B)A .4B. 5C.6D.7.如图,已知⊙O 是等腰△的外接圆,点D是︵上一点, BD 交 AC8Rt ABC AC4于点 E,若 BC=4,AD =5,则 AE 的长是 ( C )A .3B. 2C.1D.1.29. 如图,A,D 是⊙ O 上的两个点, BC 是直径.若∠ D=32°,则∠ OAC =()A .64°B.58°C.72°D.55°10.如图, AB 为⊙O 的弦,⊙ O 的半径为 5,OC⊥AB 于点 D,交⊙ O 于点 C,且 CD=1,则弦 AB 的长是 __6__.11.如图,边长为 1 的小正方形组成的网格中,半径为 1 的⊙O 在格点上,则1∠AED 的正切值为 __2__.12.如图,在⊙O 中,弦 AC=2 3,点 B 是圆上一点,且∠ABC =45°,则⊙O 的半径 R 为__ 6__.13.(2019 ·东营 )如图,水平搁置的圆柱形排水管道的截面直径是1 m,此中水面的宽 AB 为 0.8 m,则排水管内水的深度为__0.8__m.14.如图,AB 是⊙O 的直径,点 C 是⊙O 上的一点,若∠BOC=60°,AB =8,︵点 E 是劣弧 AC 上一动点, OD⊥BE 于点 D,则 OD 的长的最大值为 __2 3__.15.如图,在△ ABC 中, AB =AC=10,以 AB 为直径的⊙ O 与 BC 交于点 D,与 AC 交于点 E,连 OD 交 BE 于点 M,且 MD =2,则 BE 长为 __8__.16.如图,在 Rt△ABC 中,∠ACB =90°,AC =5,CB=12,AD 是△ABC 的角均分线,过 A,C,D 三点的圆 O 与斜边 AB 交于点 E,连结 DE.(1)求证: AC=AE;第2页/共4页(2)求 AD 的长.解:(1)∵∠ ACB =90°,且 ∠ACB 为圆 O 的圆周角,∴ AD 为圆 O 的直径,∴∠ A ED =90°,又 AD 是△ ABC 的∠BAC 的均分线,∴∠ CAD =∠EAD ,∴CD =ED ,CD =DE ,在 Rt △ACD 和 Rt △AED 中,∴Rt △ACD ≌Rt △AED(HL) , AD =AD ,∴ A C =AE(2)∵△ ABC 为直角三角形,且AC = 5,CB = 12,∴依据勾股定理得 AB =52+122=13,由 (1)获得 ∠AED =90°,则有 ∠BED =90°,设 CD =DE =x ,则 DB =BC -CD =12-x ,EB =AB -AE =AB -AC =13-5= 8,在 Rt △BED中,依据勾股定理得 BD 2=BE 2+ED 2,即(12-x)2=x 2+82,解得 x =103,∴ CD=103,又 AC =5,△ACD 为直角三角形,∴依据勾股定理得 AD =AC 2+CD 25 13=317.如图,等腰三角形 ABC 中, BA =BC ,以 AB 为直径作圆,交 BC 于点 E ,圆心为 O.在 EB 上截取 ED =EC ,连结 AD 并延伸,交 ⊙O 于点 F ,连结 OE ,EF.(1)试判断 △ACD 的形状,并说明原因;(2)求证: ∠ADE =∠OEF.解:(1)△ ACD 是等腰三角形, 连结 AE ,∵AB 是⊙O 的直径,∴∠ AED =90°, ∴AE ⊥ CD ,∵ CE =ED ,∴ AC =AD ,∴△ ACD 是等腰三角形(2)∵∠ ADE =∠DEF +∠ F ,∠ OEF =∠OED + ∠DEF ,而 ∠ OED = ∠B ,∠ B=∠ F ,∴∠ ADE =∠OEF18.如图,以 △ABC 的一边 AB 为直径的半圆与其余两边AC ,BC 的交点分别第3页/共4页︵ ︵为 D ,E ,且 DE =BE.(1)试判断 △ABC 的形状,并说明原因;(2)已知半圆的半径为 5,BC =12,求 sin ∠ABD 的值.︵ ︵解:(1)△ABC 为等腰三角形.原因以下:连结 AE ,∵DE =BE ,∴∠ DAE =∠ BAE ,即 AE 均分 ∠BAC ,∵ AB 为直径,∴∠ AEB =90°,∴ AE ⊥BC ,∴△ ABC 为等腰三角形1 1(2)∵△ ABC 为等腰三角形, AE ⊥BC ,∴BE =CE =2BC =2×12=6,在 Rt △ABE中,∵AB =10,BE = 6,∴AE = 102-62=8,∵AB 为直径, ∴∠ ADB =90°,∴1 · =1 · ,∴ BD=8×12=48,在 Rt △ABD 中,∵AB =10,BD =48,2AE BC2BD AC10551414 AD5 7 ∴AD = AB2 -BD 2=5 ,∴ sin ∠ABD =AB=10=25第4页/共4页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆的基本性质|夯实基础|1.[2019·凉山州]下列命题:①直线外一点到这条直线的垂线段,叫做点到直线的距离;②两点之间线段最短;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦.其中,真命题的个数为 ()A.1B.2C.3D.4图K26-1 图K26-2 图K26-3 图K27-22.[2019·宜昌]如图K26-1,点A,B,C均在☉O上,当∠OBC=40°时,∠A的度数是()A.50°B.55°C.60°D.65°3.[2018·威海]如图K26-2,☉O的半径为5,AB为弦,点C为AB⏜的中点,若∠ABC=30°,则弦AB的长为()A.12B.5 C.5√32D.5√34.[2019·天水]如图K26-3,四边形ABCD是菱形,☉O经过点A,C,D,与BC相交于点E,连结AC,AE.若∠D=80°,则∠EAC的度数为()A.20°B.25°C.30°D.35°5.[2019·益阳]如图K27-2,P A,PB为圆O的切线,切点分别为A,B,PO交AB于点C,PO的延长线交圆O于点D,下列结论不一定成立的是()A.P A=PBB.∠BPD=∠APDC.AB⊥PDD.AB平分PD6.[2018·成都]如图K28-2,在▱ABCD中,∠B=60°,☉C的半径为3,则图中阴影部分的面积是()A.πB.2πC.3πD.6π7.[2018·杭州]如图K26-5,AB是☉O的直径,点C是半径OA的中点,过点C作DE⊥AB,交☉O于D,E两点,过点D作直径DF,连结AF,则∠DF A=.图K28-2 图K26-5 图K26-6 图K27-4 图K27-5⏜所对的圆心角∠8.[2019·海南]如图K27-4,☉O与正五边形ABCDE的边AB,DE分别相切于点B,D,则劣弧BDBOD的大小为度.9.[2019·大兴一模]将一块含30°角的三角板如图K28-6放置,三角板的一个顶点C落在以AB为直径的半圆上,⏜的长为(结果保留π).斜边恰好经过点B,一条直角边与半圆交于点D,若AB=2,则BD图K28-610.[2019·台州]如图K26-6,AC是圆内接四边形ABCD的一条对角线,点D关于AC的对称点E在边BC上,连结AE,若∠ABC=64°,则∠BAE的度数为.11.[2019·黄石]如图K27-5,在Rt△ABC中,∠A=90°,CD平分∠ACB交AB于点D,O是BC上一点,经过C,D两点的☉O分别交AC,BC于点E,F,AD=√3,∠ADC=60°,则劣弧CD的长为.12.[2018·绍兴]等腰三角形ABC中,顶角A为40°,点P在以A为圆心,BC长为半径的圆上,且BP=BA,则∠PBC的度数为.13.如图K26-7,在△ABC中,AB=AC,以AC为直径的☉O交AB于点D,交BC于点E.(1)求证:BE=CE;(2)若BD=2,BE=3,求AC的长.图K26-714.[2019·常德]如图K27-8,☉O与△ABC的AC边相切于点C,与AB,BC边分别交于点D,E,DE∥OA,CE是☉O 的直径.(1)求证:AB是☉O的切线;(2)若BD=4,CE=6,求AC的长.图K27-815.[2019·广东]在如图K28-10所示的网格中,每个小正方形的边长为1,每个小正方形的顶点叫格点,△ABC的三⏜与BC相切于点D,分别交AB,AC于点E,F.个顶点均在格点上,以点A为圆心的EF(1)求△ABC三边的长;⏜所围成的阴影部分的面积.(2)求图中由线段EB,BC,CF及FE16.[2019·安徽]筒车是我国古代发明的一种水利灌溉工具.如图K26-8,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理.如图②,筒车盛水桶的运行轨道是以轴心O为圆心的圆.已知圆心在水面上方,且圆被水面截得的弦AB的长为6米,∠OAB=41.3°.若点C为运行轨道的最高点(C,O的连线垂直于AB).求点C到弦AB所在直线的距离.(参考数据:sin41.3°≈0.66,cos41.3°≈0.75,tan41.3°≈0.88)图K26-8一、单选题1.已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为( )A B .32C D .2.如图,在⊙O 中,AB 是直径,CD 是弦,AB ⊥CD ,垂足为E ,连接CO ,AD ,∠BAD=20°,则下列说法中正确的是( ) A .AD=2OBB .CE=EOC .∠OCE=40°D .∠BOC=2∠BAD第2题 第3题 第4题 第5题3.如图,AB 是⊙O 的弦,半径OC ⊥AB ,D 为圆周上一点,若BC 的度数为50°,则∠ADC 的度数为 ( ) A .20°B .25°C .30°D .50°4.如图,正五边形ABCDE 内接于⊙O ,P 为DE 上的一点(点P 不与点D 重合),则CPD ∠的度数为( ) A .30B .36︒C .60︒D .72︒5.如图,扇形AOB 中,OA=2,C 为弧AB 上的一点,连接AC ,BC ,如果四边形AOBC 为菱形,则图中阴影部分的面积为( )A .23π- B .23π-C .43πD .43π-6.如图,⊙A 过点O (0,0),C 0),D (0,1),点B 是x 轴下方⊙A 上的一点,连接BO ,BD ,则∠OBD 的度数是( )A .15°B .30°C .45°D .60°第6题 第7题 第8题 第10题7.如图,四边形ABCD 是圆内接四边形,E 是BC 延长线上一点,若 105BAD ∠=︒,则DCE ∠的大小是( )A .25B .65C .75D .1058.如图,以等边ABC ∆的一边AB 为直径的半圆O 交AC 于点D ,交BC 于点E ,若4AB =,则阴影部分的面积是( )A .B .CD .29.圆锥的母线长是3,底面半径是1,则这个圆锥侧面展开图圆心角的度数为( ) A .90°B .120°C .150°D .180°10.如图,ABC 的边AC 与O 相交于,C D 两点,且经过圆心O ,边AB 与O 相切,切点为B .若30A ∠︒=,则C ∠的大小是( ) A .60︒B .45︒C .30D .20︒11.如图,P 为⊙O 外一点,PA 、PB 分别切⊙O 于点A 、B ,CD 切⊙O 于点E ,分别交PA 、PB 于点C 、D ,若PA =6,则△PCD 的周长为( ) A .8B .6C .12D .10第11题 第12题12.如图,等腰直角三角板ABC 的斜边AB 与量角器的直径重合,点D 是量角器上60°刻度线的外端点,连接CD 交AB 于点E ,则∠CEB 的度数为( ) A .60° B .65°C .70°D .75°二、填空题13.△ABC 内接于圆O ,且AB =AC ,圆O 的半径等于6cm ,O 点到BC 距离等于2cm ,则AB 长为_____cm . 14.如图,三个小正方形的边长都为1,则图中阴影部分面积的和是 (结果保留π).15.如图是一个圆环形黄花梨木摆件的残片,为求其外圆半径,小林在外圆上任取一点A ,然后过点A 作AB 与残片的内圆相切于点D ,作CD ⊥AB 交外圆于点C ,测得CD =15cm ,AB =60cm ,则这个摆件的外圆半径是_____cm .16..如图,圆锥侧面展开得到扇形,此扇形半径 CA=6,圆心角∠ACB=120°, 则此圆锥高 OC 的长度是_______.17.如图,已知半圆的直径4㎝,点C 、D 是这个半圆的三等分点,则弦AC 、AD 和弧CD 围成的阴影部分面积为 .18.如图,⊙O 中OA ⊥BC ,∠CDA=25°,则∠AOB 的度数为________.19.在平面直角坐标系中有A ,B ,C 三点,()1,3A ,()3,3B ,()5,1C .现在要画一个圆同时经过这三点,则圆心坐标为_______.20.如图,Rt △ABC 的内切圆与斜边AB 相切于点D ,AD =3,BD =4,则△ABC 的面积为_____. 三、解答题21.如图,AB 是O 的直径,AC 是弦,D 是弧BC 的中点,过点D 作EF 垂直于直线,AC 垂足为F ,交AB 的延长线于点E .()1求证:EF 是O 的切线;()2若6,8AF EF==,求O的半径.22.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点都在格点上.(1)在所给的网格中画出与△ABC相似(相似比不为1)的△A1B1C1(画出一个即可);(2)在所给的网格中,将△ABC绕点C顺时针旋转90°得到△A2B2C,画出△A2B2C,并直接写出在此旋转过程中点A经过的路径长.23.如图,CD是⊙O的直径,点B在⊙O上,连接BC、BD,直线AB与CD的延长线相交于点A,AB2=AD•AC,OE∥BD交直线AB于点E,OE与BC相交于点F.(1)求证:直线AE是⊙O的切线;(2)若⊙O的半径为3,cos A=45,求OF的长.24.如图,在△ABC中,以AB为直径的⊙O交AC于点D,过点D作DE⊥BC于点E,且∠BDE=∠A.(1)判断DE与⊙O的位置关系,并说明理由;(2)若AC=16,tanA=34,求⊙O的半径.25.如图,△AB.C内接于⊙0,点D在半径OB的延长线上,∠BCD=∠A=30°.(1)判断直线CD与⊙0的位置关系,并说明理由(2)若⊙0的半径为1,求阴影部分面积.26.如图所示,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC,过点D作DE⊥AC于E.(1)求证:AB=AC;(2)求证:DE为⊙O的切线.。

相关文档
最新文档