初中几何反证法专题(编辑)
反证法几何练习题初二

反证法几何练习题初二反证法是一种重要的数学证明方法,在几何学中也有广泛应用。
初二学生在学习几何知识的过程中,掌握和运用反证法可以帮助他们更好地理解几何概念和定理。
本文将介绍一些适合初二学生的反证法几何练习题,并解答它们。
1. 问题:证明如果一个三角形的三个内角之和不是180度,那么这个三角形一定不是一个普通的三角形。
解答:假设存在一个三角形ABC,其三个内角之和不是180度。
我们要证明这个三角形不是一个普通的三角形。
首先,假设这个三角形是普通的三角形。
根据三角形内角和定理,三角形的三个内角之和必定是180度。
而现在我们的假设是三角形ABC的三个内角之和不是180度,所以我们的假设与事实相矛盾。
因此,我们可以得出结论:如果一个三角形的三个内角之和不是180度,则这个三角形不是个普通的三角形。
2. 问题:证明在任何直角三角形中,斜边的长度一定大于任意一条直角边的长度。
解答:假设存在一个直角三角形ABC,其斜边的长度不大于任意一条直角边的长度。
我们要证明这个假设是错误的。
首先,假设斜边AC的长度不大于直角边AB的长度。
根据勾股定理,斜边AC的长度的平方等于直角边AB的长度的平方加上直角边BC的长度的平方,即AC² = AB² + BC²。
由于斜边AC的长度不大于直角边AB的长度,所以AC²不大于AB²。
另一方面,根据直角边BC的长度不为0,我们可以得知BC²大于0。
因此,根据AC² = AB² + BC²,我们可以得出结论AC²小于AB²,这与我们的假设相矛盾。
因此,我们可以得出结论:在任何直角三角形中,斜边的长度一定大于任意一条直角边的长度。
通过以上两个例子,我们可以看到反证法在几何证明中的重要性和应用。
初二学生可以通过解决这些反证法几何练习题,提高他们的逻辑思维和数学证明能力。
希望本文可以对初二学生在几何学习中应用反证法有所帮助。
数学反证法经典例题

数学反证法经典例题一、题目:假设“所有整数都是偶数”成立,则下列结论正确的是?A. 1是奇数B. 2是奇数C. 3是偶数D. 存在奇数(答案)C(注:在假设下,所有整数包括奇数也应被视为偶数,但此假设本身是错误的,此题考察反证法思维)二、题目:若声称“所有质数都是大于2的偶数”,则根据这一错误假设,下列哪个数不应被视为质数?A. 2B. 3C. 5D. 7(答案)B(注:在假设下,只有大于2的偶数被视为质数,但实际上3是质数且为奇数,此题同样考察反证法及质数定义)三、题目:假设“所有三角形的内角和不等于180度”,则以下哪个三角形的内角和在此假设下不可能成立?A. 等边三角形B. 直角三角形C. 钝角三角形D. 任意三角形(答案)D(注:根据几何学基本定理,任意三角形的内角和总是180度,此假设错误,用于考察反证法)四、题目:若有人认为“所有正整数的倒数都小于1”,则下列哪个数的倒数不符合这一错误假设?A. 1B. 2C. 3D. 4(答案)A(注:1的倒数是1,不小于1,此题考察反证法及对倒数概念的理解)五、题目:假设“所有平行线都会相交”,则根据这一错误假设,在平面几何中不可能存在的是?A. 两条平行线B. 两条相交线C. 一条直线和一个点D. 一个三角形(答案)A(注:平行线定义为不相交的直线,此假设与平行线定义相悖,考察反证法及平行线概念)六、题目:若声称“所有实数的平方都是正数”,则下列哪个数的平方不符合这一错误假设?A. 1B. -1C. 0.5D. -0.5(答案)B和D(注:负数和0的平方不是正数,但此题为单选题形式,更严谨的答案是指出存在多个不符合,若必须单选,可选B或D中的任意一个作为代表,此题考察反证法及实数平方性质)七、题目:假设“所有自然数的因数都只有1和它本身”,则根据这一错误假设,下列哪个数不符合这一条件?A. 1B. 2C. 3D. 4(答案)D(注:4除了1和4本身外,还有2作为因数,此假设实际上描述了质数的性质,但4不是质数,考察反证法及质数定义)八、题目:若有人认为“所有圆的周长与其直径的比值都不等于π”,则以下哪个圆的性质在此假设下不成立?A. 圆是闭合曲线B. 圆的对称性C. 圆的面积公式D. 圆的周长与直径之比是常数(答案)D(注:根据圆的定义,其周长与直径之比是π,此假设错误,考察反证法及对圆的基本性质的理解)。
第六章 反证法在立体几何中的应用

第六章 反证法在立体几何中的应用在立体几何中哪些命题适合应用反证法,我们进行了一些归纳,下面以实例来说明。
一、证明诸直线共面例题:求证:过一点和一条直线垂直的所有直线都在同一平面内。
已知:一点P 与一条直线l ,且a 、b 、c.......n 都垂直于l.求证:a 、b 、c.......n 在同一平面内。
证明:⎩⎨⎧⊥⊥=⋂bl a l P b a , α确定的平面b a l ,⊥⇒; 假设、确定的平面又面ααn a l n l a ,l ,pn ⊥⇒⎩⎨⎧⊥⊥⊄; 这样过一点有两个平面与直线l 垂直,与有且只有一个矛盾,那么α⊂pn ,故命题得证。
二、证明诸点共面例题:已知空间四点A 、B 、C 、D 满足2π=∠=∠=∠=∠DAB CDA BCD ABC ,求证:A 、B 、C 、D 共面。
证明:抓住四个角都是直角这一特征,容易联想到勾股定理进行比较,从二推出矛盾。
假设A 、B 、D α∈, C α∉,/C 是C 在α内的射影,连/C D,D C CD AD D C C C ADCD /// ⇒⊥⇒⊥⊥α ⑴同理B C CB / ⇒ ⑵D ABC D C B A ADAB AB B C AD D C ////,,,,,⇒∈⊥⊥⊥α且是矩形, 所以22/2//2BD D C BC D BC =+⇒=∠π⑶已知2222BD CD BC BCD =+⇒=∠π⑷ 由⑴⑵有 2/2/22B C D C CB CD ++由⑶⑷有 2/2/22B C D C CB CD +=+ ⇒矛盾,则C 一定在α内,即A 、B 、C 、D 共面。
三、证明两条直线异面例题1:已知两个不同平面βα、相交于直线l ,经过直线l 上两点A 和B 分别在α内直线 作AC ,β内作直线BD;求证:AC 、BD 是异面直线。
证明:假设 AC 、BD 共面,则 AC 、BD 所在平面βα点,即和过点,即和过A BC B AC 那么,βα、重合与已知矛盾;所以 AC 、BD 是异面直线。
初二数学反证法例题

1.下列哪个命题适合用反证法证明?A.两直线平行,同位角相等。
B.若a=b,则a2=b2。
C.三角形中至少有一个角不大于60°。
(答案)D.全等三角形的对应边相等。
2.使用反证法证明“√2是无理数”时,应先假设什么?A.√2是有理数。
(答案)B.√2是无理数。
C.√2是整数。
D.√2不是整数。
3.下列哪个步骤不是反证法的一般步骤?A.假设命题的结论不成立。
B.从假设出发,经过推理得出矛盾。
C.肯定假设正确,从而肯定原命题成立。
(答案)D.得出原命题成立的结论。
4.用反证法证明“三角形的内角和为180°”时,应假设什么?A.三角形的内角和不为180°。
(答案)B.三角形的内角和为180°。
C.三角形的外角和为360°。
D.三角形的内角和大于180°。
5.下列哪个命题不能用反证法证明?A.相邻的两个角不互补。
B.至少有一个角大于或等于60°的三角形存在。
(答案)C.两个连续整数的乘积不是完全平方数。
D.在三角形中,至少有一个角不大于60°。
6.使用反证法证明命题时,如果推出了与哪个条件矛盾,则说明假设错误?A.已知条件B.命题的结论C.已知条件、定义、定理或公理等(答案)D.假设的条件7.下列哪个选项不是反证法中的“归谬”步骤?A.导出与假设相矛盾的结论。
B.导出与已知条件相矛盾的结论。
(答案)C.导出与定义、定理或公理等相矛盾的结论。
D.导出与临时假设相矛盾的结论。
8.用反证法证明“正方形的对角线不相等”是错误的命题时,应先假设什么?A.正方形的对角线相等。
(答案)B.正方形的对角线不相等。
C.正方形的四条边相等。
D.正方形的对角线互相垂直。
9.下列哪个命题适合用反证法证明其不存在性?A.存在一个三角形,其内角和为181°。
(答案)B.所有三角形的内角和都为180°。
C.三角形的外角和为360°。
几何证明中的反证法与归纳法

几何证明中的反证法与归纳法在几何学中,证明是一种基本的思维方式。
为了证明一个几何问题的正确性,数学家们使用了许多不同的方法。
其中,反证法和归纳法是两种常见的证明方法,它们在几何证明中发挥着重要的作用。
本文将详细介绍几何证明中的反证法和归纳法,并探讨它们在解决几何问题中的应用。
一、反证法反证法是一种常用的证明方法,它通过假设问题的对立面,推导出矛盾的结论,以此证明原命题的正确性。
在几何证明中,反证法可以用来证明很多命题,特别是与平行线和垂直线相关的命题。
例如,我们要证明两条平行线之间的夹角等于180度。
首先,我们假设这两条线之间的夹角小于180度。
然后,通过推理和几何定理,我们可以得出两条平行线之间的夹角等于180度的矛盾结论。
因此,我们可以得出结论,两条平行线之间的夹角等于180度。
通过反证法可以简洁地证明一个命题的正确性,因为它只需假设一个假设,并通过推理得出矛盾的结论。
然而,反证法并不适用于所有的几何问题,有时候需要更加直接的证明方法,比如归纳法。
二、归纳法归纳法是一种证明数学命题的常用方法,它通过从特殊情况出发,逐步推广至一般情况,以此证明一个命题的正确性。
在几何证明中,归纳法常常用于证明关于面积、周长和角度的命题。
例如,我们要证明一个三角形的内角和等于180度。
首先,我们证明一个等边三角形的内角和等于180度。
然后,我们假设一个等腰三角形的内角和等于180度。
最后,我们通过推理可以得出结论,在一个任意的三角形中,内角和也等于180度。
通过归纳法可以一步步地推导出结论,从特殊到一般,使证明过程更加具体有效。
然而,归纳法的使用有时需要构造特定的几何图形,并且证明过程可能相对复杂。
在一些情况下,我们需要结合其他证明方法,如反证法,以获得更好的证明效果。
总结:在几何证明中,反证法和归纳法是两种常见的证明方法。
反证法通过假设问题的对立面,推导出矛盾的结论,以此证明命题的正确性。
归纳法则通过从特殊到一般的推广方式,证明命题在所有情况下的正确性。
九年级数学下册 第29章几何的回顾29.2反证法习题课件 华东师大版

类命题.
3.关于唯一性、存在性的问题.
4.结论的反面是比原结论更具体更容易研究的命题.
知识点 2
中点四边形
【例2】(2013·恩施中考)如图所示,在梯形ABCD中,
AD∥BC,AB=CD,E,F,G,H分别为边AB,BC,CD,DA的中点,求证:
反面
矛盾
论的_____出发,引出_____,从而证明命题成立的方法.
(2)证明命题的一般步骤:
正确
①假设结论的反面是_____的;
②通过逻辑推理,推出与公理、已证的定理、定义或已知条件
相矛盾;
不成立
原结论
③由矛盾说明假设_______,从而得到_______正确.
2.中点四边形:
中点
(1)概念:顺次连结四边形的各边_____所组成的四边形.
•2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独
立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/212022/3/212022/3/213/21/2022
•3、做老师的只要有一次向学生撒谎撒漏了底,就可能使他的全部教育成果从此为之失败。 2022/3/212022/3/21March 21, 2022
正方形.( ×)
(4)顺次连结平行四边形各边中点所得到的四边形是矩形.( ×)
知识点 1
反证法
【例1】用反证法证明:四边形中至少有一个角是钝角或直
角.
【思路点拨】根据题设与结论,写出已知、求证,然后按反证
法的步骤进行证明.
【自主解答】已知:四边形ABCD.
初中几何反证法专题
初中几何反证法专题学习要求停了解反证法的意义,懂得什么是反证法。
® 理解反证法的基本思路,并掌握反证法的一般证题步骤。
知识讲解证法就是一种间接证法,它不是直接去证明命题的结论成立,而是去证明命题结论的反面不能成立。
从而推岀命题的结论必然成立,它给我们提供了一种可供选择的新的证题途径,掌握这种方法,对于提升推理论证的水平、探索新知识的水平都是非常必要的。
下而我们对反证法作一个简单介绍。
1.反证法的概念:不直接从题设推出结论,而是从命题结论的反面出发,引出矛盾,从而证明命题成立,这样的证明方法叫做反证法。
2.反证法的基本思路:首先假设所要证明的结论不成立,然后再在这个假左条件下实行一系列的准确逻辑推理,直至得出一个矛盾的结论来,并据此否左原先的假设,从而确认所要证明的结论成立。
这里所说的矛盾是指与题目中所给的已知条件矛盾,或是与数学中已知立理、公理和定义相矛盾,还能够是与日常生活中的事实相矛盾,甚至还能够是从两个不同角度实行推理所得岀的结论之间相互矛盾(即自相矛盾)。
3.反证法的一般步骤:(1)假设命题的结论不成立:(2)从这个假设岀发,经过推理论证得出矛盾:(3)由矛盾判定假设不准确,从而肯左命题的结论准确。
简来说之就是“反设-归谬一结论"三步曲。
相平分。
证明:假设AB与CD互相平分于点M、则由已知条件AB. CD均非OO直径, 可判泄M不是圆心0,连结OA、OB. 0NLVOA=OB, M 是AB 中点.・.OM丄AB (等腰三角形底边上的中线垂直于底边)同理可得:OM丄CD,从而过点M有两条直线AB、CD都垂直于OM这与已知的泄理相矛盾。
故AB与CD不能互相平分。
例2.已知:在四边形ABCD中,M、N分别是AB、DC的中点,丄且MN= 2 (AD+BC)o求证:AD〃BC(2)证明:假设AD*BC,连结ABD,并设P是BD的中点,再连结NIP、PN。
在AABD中VBM=MA, BP=PD丄1_AMP= 2 AD,同理可证PN^ 2BC1_从而MP+PN= 2 (AD+BC)①这时,BD的中点不在MN上若不然,则由MN〃AD, MN〃BC,得AD〃BC与假设AD*BC矛盾, 于是M、P、N 三点不共线。
反证法在几何解题中的应用
上 ,而体现在整体与综合之中. 有效 ,是通过我们诸 多美术教师
美术课 给学生 的不仅仅是美 术. 蔡元培在任教育总长 ( 民国 长期的 、共 同的努力形成的.
3 4
硅教 育论蛞 [ 2 0 1 3 年第 8 期]
证 明:假设 AC和 B D不 是异面 直线 ,那 么 AC和 B D在 同 也有. 这类题 目用直接证法证明相当困难 ,因此一般情况下都采
具来创作一样 的东西 . 美 术课应 给学生一种 或几种创 造美 的技 是给学生 以创造美的技艺 ,更在于对美的认同或创造.所以美术 术 ,而这种技术是 因人而异 的 ,教育 中应 给学生提供 多种 方式 课要 给学生美的体验.给学生提供发现美 、感受美 的眼睛 ,给学 让其选择 .同时 ,向学生提供 的技术也应是考虑学生的不同年龄 生创造美 的意识及精 神 ,当学生 具有 了审美 的眼睛及创 造美的 及控 制相应成本.不能为了学校的特色而不考虑学生的个性及经 意识及 能力 ,学生就有了一个美好 的生活及美好 的明天. 济 ,不能 以学校 的特色取代学 生的特性 ,为了学校 的名誉 而牺 从 学校 的地位 看 ,美 术是 门小学科 ,但 从培 养学生 来讲 , 牲 了 学生 的利 益 . 美术又有其他学科 所无法取代 的功能 ,甚 至在某种程度 上会超 让 学生掌握鉴 赏美的方法及 知识也是美 术教育 的一个 重要 黑色六月 ”的离去 ,而被学 内容 ,对一般学 生来讲 ,这方 面 的知 识及 能力反 而更为重 要 , 越其他学科.当其他学科随着高考 “
会不会作 画对 大部分学生来讲 不是很重要 的 ,但有没有 审美能 生抛置九霄云外 之时 ,美术依然 会以其独特 的方式长久 地影响 力却会影响学 生的生活质量及学识修养.中学美术教育主要不是 着学生 ,陪伴其一生.
反证法证明初二几何难题,难为初中同学,典型过渡问题
反证法证明初二几何难题,难为初中同学,典型过渡问题如图:在梯形ABCD中,AD//BC,BD=BC,CD=CO,∠ABD=15°,求证:△ABC是等腰直角三角形[思路导航] 因为求证的△ABC是等腰直角三角形,而15°不好直接用,所以联系和15°角一条边相关的条件BD=BC,以此为切入点作等边三角形(可出45°角),将已知条件结合起来,构造出与所求相同的等腰直角三角形,再利用全等得出∠DBC的度数再计算如图:以BD为边作等边三角形BDE,连接AE•明显,如果∠EAB=90°就好办•问题出现了但不论如何∠EAB的大小只有大于、小于或等于90°三种情况所以转化为对这个角的大小情况分类讨论(1)假设∠EAB=90°∵△BDE是等边三角形,∠ABD=15°∴∠ABE=45°∴△AEB是等腰Rt△,∠AEB=45°在△ADE与△ADB中AE=AB,AD=AD,DE=DB∴△ADE≌△ADB(SSS)∴∠ADB=∠ADE=30°∵AD//BC∴∠DBC=30°∵BD=BC∴∠BDC=∠BCD =75°∵CD=CO∴∠DCO =30°∴∠BCO =45°∴△ABC是等腰Rt△(2)假设∠EAB<90°如下图:过E作EF⊥BA,交BA于F,连接DF证明:同(1)可得△FEB是等腰Rt△,∠FEB=45°△FDE≌△FDB(SSS)∴∠FDE=∠FDB=30°∴∠ADB=∠FDB+∠ADF>30°∵AD//BC∴∠DBC=∠ADB>30°∴∠BDC<75°(i)∠EBC>90°如下图,过B作BM⊥BE,交EF延长线于M∵∠EBC>90°∴M在△BCD内∵∠FEB=45°∴△EBM是等腰Rt△∴BM=BE=BD易得∠MBD=30°∴∠MDB=75°(ii)显然(i)与(ii)矛盾所以假设的∠EAB<90°不成立(3)假设∠EAB>90°作图如下,方法类似(2),也可证也不成立综上所述:△ABC是等腰Rt△小结:本题出现在初二几何,作辅助线的难度适中,其意义在于分类讨论结合反证法,可作为初中向高中及以后学习“过渡”的一个问题,“分类+反证法”具有一定的价值。
立体几何中的反证法
立体几何中的反证法方法总结1.位置关系:(1)两条异面直线相互横向证明方法:①证明两条异面直线所成角为90o;②证明线面垂直,得到线线垂直;③证明两条异面直线的方向量相互垂直。
(2)直线和平面相互平行证明方法:①证明直线和这个平面内的一条直线相互平行;②证明这条直线的方向量和这个平面内的一个向量相互平行;③证明这条直线的方向量和这个平面的法向量相互垂直。
(3)直线和平面横向证明方法:①证明直线和平面内两条相交直线都垂直,②证明直线的方向量与这个平面内不共线的两个向量都垂直;③证明直线的方向量与这个平面的法向量相互平行。
(4)平面和平面相互横向证明方法:①证明这两个平面所成二面角的平面角为90o;②证明一个平面内的一条直线垂直于另外一个平面;③证明两个平面的法向量相互垂直。
2.谋距离:求距离的重点在点到平面的距离,直线到平面的距离和两个平面的距离可以转化成点到平面的距离,一个点到平面的距离也可以转化成另外一个点到这个平面的距离。
(1)两条异面直线的距离求法:利用公式法。
(2)点至平面的距离求法:①“一找二证三求”,三步都必须要清楚地写出来。
②等体积法。
③向量法。
3.谋角(1)两条异面直线所成的角带发修行:①先通过其中一条直线或者两条直线的位移,找到这两条异面直线阿芒塔的角,然后通过求解三角形回去求出;②通过两条异面直线的方向量阿芒塔的角去求出,但是注意到异面直线阿芒塔角得范围就是,向量阿芒塔的角范围就是,如果算出的就是钝角,必须特别注意转化成适当的.锐角。
(2)直线和平面所成的角带发修行:①“一打听二证三求”,三步都必须必须确切地写下出。
②向量法,先求直线的方向量于平面的法向量阿芒塔的角α,那么所建议的角为或。
(3)平面与平面所成的角带发修行:①“一打听二证三求”,找到这个二面角的平面角,然后再去证明我们打听出的这个角是我们建议的二面角的平面角,最后就通过求解三角形xi。
②向量法,先求两个平面的法向量阿芒塔的角为α,那么这两个平面阿芒塔的二面角的平面角为α或π-α。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中几何反证法专题
学习要求
了解反证法的意义,懂得什么是反证法。
理解反证法的基本思路,并掌握反证法的一般证题步骤。
知识讲解
对于一个几何命题,当用直接证法比较困难时,则可采用间接证法,反证法就是一种间接证法,它不是直接去证明命题的结论成立,而是去证明命题结论的反面不能成立。
从而推出命题的结论必然成立,它给我们提供了一种可供选择的新的证题途径,掌握这种方法,对于提高推理论证的能力、探索新知识的能力都是非常必要的。
下面我们对反证法作一个简单介绍。
1.反证法的概念:
不直接从题设推出结论,而是从命题结论的反面出发,引出矛盾,从而证明命题成立,这样的证明方法叫做反证法。
2.反证法的基本思路:
首先假设所要证明的结论不成立,然后再在这个假定条件下进行一系列的正确逻辑推理,直至得出一个矛盾的结论来,并据此否定原先的假设,从而确认所要证明的结论成立。
这里所说的矛盾是指与题目中所给的已知条件矛盾,或是与数学中已知定理、公理和定义相矛盾,还可以是与日常生活中的事实相矛盾,甚至还可以是从两个不同角度进行推理所得出的结论之间相互矛盾(即自相矛盾)。
3.反证法的一般步骤:
(1)假设命题的结论不成立;
(2)从这个假设出发,经过推理论证得出矛盾;
(3)由矛盾判定假设不正确,从而肯定命题的结论正
确
简而言之就是“反设-归谬-结论”三步曲。
例题:
例1.已知:AB、CD是⊙O内非直径的两弦(如图1),求证AB与CD不能互相平分。
证明:
假设AB与CD互相平分于点M、则由已知条件AB、CD均非⊙O直径,可判定M不是圆心O,连结OA、OB、OM。
∵OA=OB,M是AB中点
(1)
∴OM⊥AB (等腰三角形底边上的中线垂直于底边)
同理可得:
OM⊥CD,从而过点M有两条直线AB、CD都垂直于OM
这与已知的定理相矛盾。
故AB与CD不能互相平分。
例2.已知:在四边形ABCD中,M、N分别是AB、DC
的中点,且MN=(AD+BC)。
求证:AD∥BC
(2)
证明:假设AD BC,连结ABD,并设P是BD的中点,再连结MP、PN。
在△ABD中
∵BM=MA,BP=PD
∴MP AD,同理可证PN BC
从而MP+PN=(AD+BC)①
这时,BD的中点不在MN上
若不然,则由MN∥AD,MN∥BC,得AD∥BC与假设AD BC矛盾,
于是M、P、N三点不共线。
从而MP+PN>MN ②
由①、②得(AD+BC)>MN,这与已知条件MN=(AD+BC)
相矛盾,
故假设AD BC不成立,所以AD∥BC。
课堂练习
1.求证:三角形中至少有一个角不大于60°。
2.求证:一直线的垂线与斜线必相交。
已知:设m,n分别为直线l的垂线
和斜线(如图),垂足为A,斜足为B。
求证:m和n必相交。
3.在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于H,
求证:AD与BE不能被点H互相平分。
4.求证:直线与圆最多只有两个交点。
5.求证:等腰三角形的底角必为锐角。
已知:△ABC中,AB=AC,求证:∠B、∠C必为锐角。
参考答案:
1.证明:假设△ABC中的∠A、∠B、∠C都大于60°
则∠A+∠B+∠C>3×60°=180°
这与三角形内角和定义矛盾,所以假设不能成立。
故三角形中至少有一个角不大于60°。
2.证明:假设m和n不相交则
m∥n
∵m⊥l ∴n⊥l
这与n是l的斜线相矛盾,所以假设不能成立。
故m和n必相交。
3.证明:假设AD、BE被交点H互相平分,则ABDE是平行四边形。
∴AE∥BD,即AC∥BC
这与AC、BC相交于C点矛盾,
故假设AD、BE被交点H平分不能成立。
所以AD与BE不能被点H互相平分。
4.证明:假设一直线l与⊙O有三个不同的交点A、B、C,
M、N分别是弦AB、BC的中点。
∵OA=OB=OC
∴在等腰△OAB和△OBC中
OM⊥AB,ON⊥BC
从而过O点有两条直线都垂直于l,这是不可能的,故假设不能成立。
因此直线与圆最多只有两个交点。
5.证明:假设∠B、∠C不是锐角,
则可能有两种情况:
(1)∠B=∠C=90°
(2)∠B=∠C>90°
若∠B=∠C=90°,则∠A+∠B+∠C>180°,
这与三角形内角和定理矛盾。
若∠B=∠C>90°,则∠A+∠B+∠C>180°,
这与三角形内角和定理矛盾。
所以假设不能成立。
故∠B、∠C必为锐角。
本讲小结
对于一个几何命题,当用直接法证比较困难或甚至不能证明时,则可采用简接证法,反证法就是一种最常见的间接证明方法、掌握并运用好这种方法,对思维能力的提高大有裨益。
所谓反证法,就是先假设命题的结论不成立,从结论的反面入手,进行正确的逻辑推理,导致结果与已知学过的公理、定理,从而得出结论的反面不成立,于是原结论成立。
反证法证题的一般步骤是:
(1)反设:将结论的反面作为假设;
(2)归谬:由“反设”出发,利用已学过的公理、定理,推出与已知矛盾的结果;
(3)结论:由推出的矛盾判断“反设”错误,从而肯定命题的结论正确。
运用“反证法”的关键:
反证法的主要手段是从求证的结论的反面出发,导出矛盾的结
果,因此,如何导出矛盾,就
成了使用反证法的关键。
“反证法”宜用于证明否
定性命题、唯一性命题、“至少”“至多”命题和某些逆命题等,
一般地说“正难则反”凡是直接法很难证明的命题都可考虑用反
证法。
课后作业
1.求证:在平面上,不存在这样的凸四边形ABCD,使△ABC、△BCD、△CDA、△DAB都是锐角三角形。
2.在△ABC中,AB=AC,P是内部一点且∠APB>∠APC,求证:PB<PC。
3.求证:在一个三角形中,至少有一个内角大于或者等于60°。
4.求证:在△ABC的BC边上任取一点D、AC边上任意取一点E,连结AD、BE,则AD 和BE必定不能互相平分。
5.已知△ABC为不等边三角形,AD⊥BC于D点,求证:D点到AB、AC边的距离必不相等。
参考答案:
1.证明:假设存在凸四边形ABCD,
使△ABC、△BCD、△CDA、△DAB都是锐角三角形。
则∠A+∠B+∠C+∠D<360°。
这与四边形ABCD中
∠A+∠B+∠C+∠D=360°矛盾。
故假设不能成立,所以原命题成立。
2.证明:假设PB PC,即PB>PC或PB=PC (1)当PB>PC时(如图)
在△PBC中,可得<PCB>∠PBC
∵AB=AC
∴∠ABC=∠ACB,从而∠ABP>∠ACP ①
在△BAP与△CAP中
∵AB=AC,AP=AP,PB>PC
∴∠BAP>∠CAP ②
由①②和三角形内角和定理,可得∠APB<∠APC,这与已知∠APB>∠APC相矛盾。
(2)当PB=PC时,在△APB与△APC中
∵AP=AP,BP=CP,AB=AC
∴△ABP≌△ACP,∴∠APB=∠APC
这与已知∠APB>∠APC相矛盾,
由(1)(2)可知假设PB PC不成立。
故PB>PC。
3.证明:不妨设三角形的三个内角为∠A、∠B、∠C假设∠A、∠B、∠C中设有一个大于或等于60°,
则它们都小于60°。
即∠A<60°、∠B<60°、∠C<60°
∴∠A+∠B+∠C<180°这与三角形内角和定理矛盾,这说明假设不成立。
故∠A、∠B、∠C中至少有一个大于或等于60°。
4.证明:假设AD和BE互相平分于P点,则ABDE应是一个平行四边形。
所以AE∥EB,即AC∥BC
这与AC与BC相交于C点矛盾,
故假设AD与BE互相平分不能成立。
所以AD和BE必定不能互相平分。
5.证明:作BE⊥AB于E,DF⊥AC于F
假设DE=DF,则∠1=∠2
∵AD⊥BC
∴∠B=90°-∠1
∠C=90°-∠2
∴∠B=∠C
∴AB=AC这与△ABC为不等边三角形矛盾。
故假设不能成立,即D点到AB、AC边的距离必不相等。