大学物理习题分析与解答
大学物理下习题册答案详解

解 : a 30cm ,d 0.6m m , b=2.2m
D =a+b 2.5m ,
x 2.25m m
x D dx 5400 A
d
D
第 4级 明 纹 至 中 心 距 离 满 足 :
dx 4 x 4 D 9.00m m
D
ቤተ መጻሕፍቲ ባይዱ
d
练习34 光的干涉(2)
1.在双缝装置中,用一折射率为n的薄云母片覆盖其中
光的程亮差度2 分,, 2别则. 5为 有 , :3 .5
,比较 P、Q、R 三点
(1)P点最亮、Q点次之、R点最暗;
注意。单击此处添加正文,文字是您思想的提炼,为了演示发布的良好效果,请言简意赅地阐述您的观点。您的 内容已经简明扼要,字字珠玑,但信息却千丝万缕、错综复杂,需要用更多的文字来表述;但请您尽可能提炼思
20D 想 的 精 髓 , 否 则 容 易 造 成 观 者 的 阅 读 压 力 , 适 得 其 反 。 正 如 我 们 都 希 望 改 变 世 界 , 希 望 给 别 人 带 去 光 明 , 但 更 多
x 20x= 0.11m 时候我们只需要播下一颗种子,自然有微风吹拂,雨露滋养。恰如其分地表达观点,往往事半功倍。当您的内容 a 到 达 这 个 限 度 时 , 或 许 已 经 不 纯 粹 作 用 于 演 示 , 极 大 可 能 运 用 于 阅 读 领 域 ; 无 论 是 传 播 观 点 、 知 识 分 享 还 是 汇 报
n 1 题 目 中 k=-7
所 以 : e 7 n 1
答案为:(1)
2.迈克耳逊干涉仪可用来测量单色光的波长,当干涉仪
的动镜M2移动d距离时,测得某单色光的干涉条纹移 动N条,则该单色光的波长为:( )
《大学物理》各章练习题及答案解析

《大学物理》各章练习题及答案解析第1章 质点运动学一、选择题:1.以下五种运动中,加速度a保持不变的运动是 ( D ) (A) 单摆的运动。
(B) 匀速率圆周运动。
(C) 行星的椭圆轨道运动。
(D) 抛体运动。
(E) 圆锥摆运动。
2.下面表述正确的是( B )(A)质点作圆周运动,加速度一定与速度垂直; (B) 物体作直线运动,法向加速度必为零; (C)轨道最弯处法向加速度最大; (D)某时刻的速率为零,切向加速度必为零。
3.某质点做匀速率圆周运动,则下列说法正确的是( C )(A)质点的速度不变; (B)质点的加速度不变 (C)质点的角速度不变; (D)质点的法向加速度不变4.一运动质点在某瞬时位于矢径()y x r , 的端点处,其速度大小为( D )()()(()22⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛dt dy dt dx D C dtrd B dt drA5. 一质点在平面上运动,运动方程为:j t i t r222+=,则该质点作( B )(A)匀速直线运动 (B)匀加速直线运动(C)抛物线运动 (D)一般曲线运动6.一质点做曲线运动,r 表示位置矢量,v 表示速度,a表示加速度,s 表示路程,a t 表示切向加速度,对下列表达式,正确的是( B )(A)dt dr v = (B) dt ds v = (C) dtdv a = (D) dt vd a t=7. 某质点的运动方程为 3723+-=t t X (SI ),则该质点作 [ D ](A)匀加速直线运动,加速度沿 x 轴正方向; (B)匀加速直线运动,加速度沿 x 轴负方向; (C)变加速直线运动.加速度沿 x 轴正方向; (D)变加速直线运动,加速度沿 x 轴负方向8.一质点沿x 轴运动,其运动方程为()SI t t x 3235-=,当t=2s 时,该质点正在( A )(A)加速 (B)减速 (C)匀速 (D)静止1.D2. B3. C4.D5.B ,6B ,7A 8 A二 、填空题1. 一质点的运动方程为x =2t ,y =4t 2-6t ,写出质点的运动方程(位置矢量)j t t i t r)64(22-+=,t =1s 时的速度j i v22+=,加速度j a 8=,轨迹方程为x x y 32-=。
大学物理课后习题全解及辅导

列平衡方程:
(2)研究AB(二力杆),受力如图:
可知:
(3)研究O1B杆,受力分析,画受力图:
列平衡方程:
第三章
习题3-1.求图示平面力系的合成结果,长度单位为m。
解:(1)取O点为简化中心,求平面力系的主矢:
求平面力系对O点的主矩:
(2)合成结果:平面力系的主矢为零,主矩不为零,力系的合成结果是一个合力偶,大小是260Nm,转向是逆时针。
由图知:
(2)研究铰C,受力分析,画力三角形:
由图知:
习题2-7.夹具中所用的两种连杆增力机构如图所示,书籍推力P作用于A点,夹紧平衡时杆AB与水平线的夹角为;求对于工件的夹紧力Q和当α=10o时的增力倍数Q/P。
解:(1)研究滑块A,受力分析,画力三角形:
由图知:
研究AB杆(二力杆)和滑块B,受力分析,画力三角形:
(2)由力三角形得:
(3)列平衡方程:
由(2)、(3)得:
(4)求摩擦系数:
习题5-3.尖劈顶重装置如图所示,尖劈A的顶角为α,在B块上受重物Q的作用,A、B块间的摩擦系数为f(其他有滚珠处表示光滑);求:(1)顶起重物所需力P之值;(2)取支力P后能保证自锁的顶角α之值。
解:属平面汇交力系;
合力大小和方向:
习题2-2.图示简支梁受集中荷载P=20kN,求图示两种情况下支座A、B的约束反力。
解:(1)研究AB,受力分析:
画力三角形:
相似关系:
几何关系:
约束反力:
(2)研究AB,受力分析:
画力三角形:
相似关系:
几何关系:
约束反力:
习题2-3.电机重P=5kN放在水平梁AB的中央,梁的A端以铰链固定,B端以撑杆BC支持。求撑杆BC所受的力。
大学物理3第11章习题分析与解答

大学物理3第11章习题分析与解答-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN习 题 解 答11-1 在双缝干涉实验中,若单色光源S 到两缝21S S 、距离相等,则观察屏上中央明纹位于图中O 处。
现将光源S 向下移动到示意图中的S '位置,则( )(A )中央明条纹也向下移动,且条纹间距不变 (B )中央明条纹向上移动,且条纹间距不变 (C )中央明条纹向下移动,且条纹间距增大 (D )中央明条纹向上移动,且条纹间距增大解 由S 发出的光到达21S S 、的光成相等,它们传到屏上中央O 处,光程差0=∆,形成明纹,当光源由S 向下移动S '时,由S '到达21S S 、的两束光产生了光程差,为了保持原中央明纹处的光程差为0,它将上移到图中O '处,使得由S '沿21S S 、传到O '处的两束光的光程差仍为0.而屏上各级明纹位置只是向上平移,因此条纹间距不变。
故选B11-2 单色平行光垂直照射在薄膜上,经上下两表面反射的两束光发生干涉,如附图所示,若薄膜厚度为e , 且n 1<n 2,n 3<n 2, λ1为入射光在n 1中的波长,则两束反射光的光程为( )(A )e n 22 (B )11222n e n λ-3n S S ’OO ’(C )22112λn e n - (D )22122λn e n - 习题11-2图解 由于n 1〈n 2,n 3〈n 2,因此光在表面上的反射光有半波损失,下表面的反射光没有半波损失,所以他们的光程差222λ-=∆e n ,这里λ是光在真空中的波长,与1λ的关系是11λλn =。
故选C11-3 如图所示,两平面玻璃板构成一空气劈尖,一平面单色光垂直入射到劈尖上,当A 板与B 板的夹角θ增大时,干涉图样将发生( )变化(A )干涉条纹间距增大,并向O 方向移动 (B )干涉条纹间距减小,并向B 方向移动 (C )干涉条纹间距减小,并向O 方向移动 (D )干涉条纹间距增大,并向B 方向移动解 空气劈尖干涉条纹间距θλsin 2n l =∆,劈尖干涉又称为等厚干涉,即k相同的同一级条纹,无论是明纹还是暗纹,都出现在厚度相同的地方. 当A 板与B 板的夹角θ增大时,△l变小. 和原厚度相同的地方向顶角方向移动,所以干涉条纹向O 方向移动。
大学物理习题册及解答第二版第一章质点的运动

7 汽车在半径为200m的圆弧形公路上刹车,刹车开始阶段的路程
随时间的变化关系为 S 20t 0.2t3(SI),汽车在t=1s时的切向加速
度
,法向加速度大小为 ,加速度的大小和方向为
和
。
at
d 2S dt 2
1.2t
1.2m / s2
an
2
R
1 dS R dt
2
(20 0.6t 2 )2 R
第一章 质点的运动(一)
一、选择题
1 某质点作直线运动的运动学方程为x=3t-5t3+6(SI),则
该质点作 (A)匀加速直线运动,加速度沿x轴正方向. (B)匀加速直线运动,加速度沿x轴负方向. (C)变加速直线运动,加速度沿x轴正方向. (D)变加速直线运动,加速度沿x轴负方向.
2
一质点在某瞬时位于位矢 r(
2
4 一质点沿x方向运动,其加速度随时间变化关系为a =3+2t(SI) , 如果初始时质点的速度v0为5m/s,则当t为3s时,质点的速度v
=_2__3_m_/_s_
5.一质点作半径为 0.1 m的圆周运动,其角位置的运动学方程为:
π
1 t2
(SI)
42
则其切向加速度为 a
R
R d 2
0.1m / s2
定要经过2m的路程. (B) 斜向上抛的物体,在最高点处的速度最小,加速度最大. (C) 物体作曲线运动时,有可能在某时刻的法向加速度为零. (D) 物体加速度越大,则速度越大.
3. 在相对地面静止的坐标系内, A、B 二船都以3m/s 的速率匀
速行驶, A 船沿x轴正向, B船沿y轴正向,今在船 A 上设置与静
(A)
1 2
大学物理习题分析与解答

大学物理1 习题分析与解答 第1章 质点运动学习题分析与解答1.1 云室为记录带电粒子轨迹的仪器。
当快速带电粒子射入云室时,在其经过的路径上产生离子,使过饱和蒸气以离子为核心凝结成液滴,从而可采用照相方法记录该带电粒子的轨迹。
若设作直线运动带电粒子的运动方程为: (SI 单位),12C C α、、均为常量,并在粒子进入云室时计时,试描述其运动情况.解:分析 本题为一维直线运动问题,为已知运动学方程求带电粒子其他物理量的问题,属于运动学第一类问题,该类问题可直接应用求导方法处理。
即由带电粒子运动学方程对时间t 求导得到带电粒子的速度、加速度,进一步得到其初、终状态的位置、速度、加速度等运动学信息。
作如图1.1所示一维坐标系,选择计时处为坐标原点,则有Ox图1.1 1.1题用图12222e d e d d e d t tt x C C xv C t v a C vtαααααα---=-∴====-=- (1.1.1) 故带电粒子的初始状态为 2012020200t x C C v C a C v ααα=⇒=-==-=-、、 (1.1.2) 带电粒子的最终状态为 100t x C v a ∞∞∞=∞⇒===、、 (1.1.3) 讨论:(1)由(1.1.1)式知,粒子进入云室后作减速运动,其加速度为速度的一次函数;(2)由(1.1.2)式得到粒子的初始位置、初始速度和初始加速度; (3)由(1.1.3)式得到粒子的终态位置、终态速度和终态加速度;(4)由(1.1.1)式的加速度、速度及初始条件,对时间t 积分可得速度和运动学方程,此类问题属于运动学第二类问题,一般可直接应用积分方法处理。
1.2 将牛顿管抽为真空且垂直于水平地面放置,如图1.2所示自管中O 点向上抛射小球又落至原处用时2t ,球向上运动经h 处又下落至 h 处用时1t 。
现测得1t 、2t 和 h ,试由此确定当地重力加速度的数值.解:分析 本题为匀加速直线运动问题,由该类问题的运动学方程出发即可求解。
大学物理基础教程答案第05章习题分析与解答

5-1 若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻尔兹曼常数,R 为摩尔气体常数,则该理想气体的分子数为( )。
(A )PV m (B )PV kT (C )PV RT (D ) PVmT解:由N p nkT kT V ==得,pVN kT=,故选B 5-2 两个体积相同的容器,分别储有氢气和氧气(视为刚性气体),以1E 和2E 分别表示氢气和氧气的内能,若它们的压强相同,则( )。
(A )12E E = (B )12E E > (C )12E E < (D ) 无法确定 解:pV RT ν=,式中ν为摩尔数,由于两种气体的压强和体积相同,则T ν相同。
又刚性双原子气体的内能52RT ν,所以氢气和氧气的内能相等,故选A 5-3 两瓶不同种类的气体,分子平均平动动能相同,但气体分子数密度不同,则下列说法正确的是( )。
(A )温度和压强都相同 (B )温度相同,压强不同 (C )温度和压强都不同(D )温度相同,内能也一定相等解:所有气体分子的平均平动动能均为32kT ,平均平动动能相同则温度相同,又由p nkT =可知,温度相同,分子数密度不同,则压强不同,故选B5-4 两个容器中分别装有氦气和水蒸气,它们的温度相同,则下列各量中相同的量是( )。
(A )分子平均动能 (B )分子平均速率 (C )分子平均平动动能 (D )最概然速率解:分子的平均速率和最概然速率均与温度的平方根成正比,与气体摩尔质量的平方根成反比,两种气体温度相同,摩尔质量不同的气体,所以B 和D 不正确。
分子的平均动能2i kT ε=,两种气体温度相同,自由度不同,平均动能则不同,故A 也不正确。
而所有分子的平均平动动能均为k 32kT ε=,只要温度相同,平均平动动能就相同,如选C 5-5 理想气体的压强公式 ,从气体动理论的观点看,气体对器壁所作用的压强是大量气体分子对器壁不断碰撞的结果。
大学物理习题及解答(热学)

1.如图所示,开始在状态A ,其压强为Pa100.25⨯,体积为33m 100.2-⨯,沿直线AB 变化到状态B 后,压强变为5100.1⨯Pa ,体积变为33m 100.3-⨯,求此过程中气体所作的功。
(150J )2.一定量的空气,吸收了1.71⨯103J 的热量,并保持在 1.0⨯105Pa 下膨胀,体积从1.0⨯10-2 m 3 增加到1.5⨯10-2 m 3,问空气对外作了多少功?它的内能改变了多少?(5.0×102J, 1.21×103J )3.一压强为1.0⨯105 Pa ,体积为1.0⨯10-3m 3的氧气自0 ℃加热到100 ℃。
问:(1)当压强不变时,需要多少热量?当体积不变时,需要多少热量?(2)在等压或等体过程中各作了多少功?解:根据题给初态条件得氧气的物质的量为mol1041.42111-⨯===RT V p M mn已知氧气的定压摩尔热容R C Pm 27=,定体摩尔热容R C Vm 25=(1)求Q p 、Q V等压过程氧气(系统)吸热()J8.129d 12m p,p =-=∆+=⎰T T nC E V p Q等体过程氧气(系统)吸热()J1.9312m V,V =-=∆=T T nC E Q(2)按分析中的两种方法求作功值①利用公式⎰=VV p W d )(求解。
在等压过程中,T R M mV p W d d d ==,则得⎰⎰===21J 6.36d d p T T T R M mW W而在等体过程中,因气体的体积不变,故作功为d )(p ==⎰V V p W②利用热力学第一定律WE Q +∆=求解。
氧气的内能变化为 ()J 1.9312m V,=-=∆T T C M mE由于在(1)中已求出Q p 与Q V ,则由热力学第一定律可得在等压、等体过程中所作的功分别为J7.36p p =∆-=E Q WV V =∆-=E Q W4.如图所示,系统从状态A 沿ABC 变化到状态C 的过程中,外界有326 J 的热量传递给系统,同时系统对外作功126 J 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章 恒定磁场 8-1 均匀磁场的磁感强度B 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为[ ]。
(A) B r 22π (B) B r 2π (C) 0 (D) 无法确定
分析与解 根据高斯定理,磁感线是闭合曲线,穿过圆平面的磁通量与穿过半球面的磁通量相等。
正确答案为(B )。
8-2 下列说法正确的是[ ]。
(A) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过
(B) 闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零
(C) 磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零
(D) 磁感强度沿闭合回路的积分不为零时,回路上任意点的磁感强度必定为零 分析与解 由磁场中的安培环路定理,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和一定为零。
正确答案为(B )。
8-3 磁场中的安培环路定理∑⎰=μ=⋅n
L I 1i i 0d l B 说明稳恒电流的磁场是[ ]。
(A) 无源场 (B) 有旋场 (C) 无旋场 (D) 有源场
分析与解 磁场的高斯定理与安培环路定理是磁场性质的重要表述,在恒定磁场中B 的环流一般不为零,所以磁场是涡旋场;而在恒定磁场中,通过任意闭合曲面的磁通量必为零,所以磁场是无源场;静电场中E 的环流等于零,故静电场为保守场;而静电场中,通过任意闭合面的电通量可以不为零,故静电场为有源场。
正确答案为(B )。
8-4 一半圆形闭合平面线圈,半径为R ,通有电流I ,放在磁感强度为B 的均匀磁场中,磁场方向与线圈平面平行,则线圈所受磁力矩大小为[ ]。
(A) B R I 2π (B) B R I 221π (C) B R I 24
1π (D) 0 分析与解 对一匝通电平面线圈,在磁场中所受的磁力矩可表示为B e M ⨯=n IS ,而且对任意形状的平面线圈都是适用的。
正确答案为(B )。
8-5 一长直螺线管是由直径d =0.2mm 的漆包线密绕而成。
当它通以I =0.5A 的电流时,其内部的磁感强度B =_____________。
(忽略绝缘层厚度,μ0=4π×10-7N/A 2)
分析与解 根据磁场中的安培环路定理可求得长直螺线管内部的磁感强度大小为nI B 0μ=,方向由右螺旋关系确定。
正确答安为(T 1014.33-⨯)。
8-6 如图所示,载流导线在平面内分布,电流为I ,则在圆心O 点处的磁感强度大小为_____________,方向为
_____________ 。
分析与解 根据圆形电流和长直电
流的磁感强度公式,并作矢量叠加,可得圆心O 点的总
D C O B A 的磁感强度。
正确答案为(⎪⎭
⎫ ⎝⎛π-μ1120R I ,向里)。
8-7 如图所示,平行的无限长直载流导线A 和B ,电流强度均为I ,垂直纸面向外,两根载流导线之间相距为a ,则(1)AB 中点的磁感应强度B P =_____________。
(2)
磁感应强度沿图中环路l 的线积分
=⋅⎰L
l B d _____________。
分析与解 根据长直电流的磁感强度公式
和电流分布的对称性,P 点的磁感强度是两电流产生的磁感强度的矢量叠加;B 的环流只与回路内的电流代数和有关,电流的正负由右螺旋关系确定。
正确答案为(0、I 0μ-)。
8-8 导线ABCD 如图所示,载有电流I ,其中BC 段为半径为R 的半圆,O 为其圆心,AB 、CD 沿直径方向,载流导线在O 点的磁感应强度为_____________,其方向为_____________。
分析与解 根据圆形电流和长直
电流的磁感强度公式,O 点的磁感强度是两电流
产生的磁感强度的矢量叠加;B 的方向由右螺旋
关系确
定。
正确答案为(向里,40R I μ)。
8-9 如图所示,一根载流导线被弯成半径为R 的
1/4圆弧,其电流方向由a →b ,放在磁感强度为B 的均匀磁场中,则载流导线ab 所受磁场的作用力的大小为____________ ,方向_________________。
分析与解 根据安培力公式B l F ⨯=d d I 及载流导线的对称性,可计算导线ab 所受磁场力,根据矢积可确定磁场力的方向。
正确答案为(RBI 2、沿y 轴正向)。
8-10 宽度为a 的薄长金属板中通有电流I ,电流沿薄板宽度方向均匀分布。
求在薄板所在平面内距板的边缘为b 的P 点处磁感强度大小和方向。
分析 把薄长金属板分割成无限多直线电流, P 点的磁感强度是各直线电流在P 点的磁感强度的矢量叠加。
解 选取如图x 坐标,P 为坐标原点,分割的直
线电流为式得
x a I I d d =,根无限长载流导线外一点的磁感强度公根据右螺旋关系,d B 的方向向里,积分遍及薄板得
P 点的场强
正确答案为:P 点的磁感强度大小为b
b a a I +πμln 20、方向向里。
8-11 如图所示长直导线旁有一矩形线圈且CD 与长直导线平行,导线中通有电流I 1=20安培,线圈中通有电流I 2=10安培。
已知a =1.0
厘米,b =9.0厘米,l =20厘米。
求线圈每边所受的力(大小
和方
向)。
分析 根据直线电流在矩形线圈所在平面的磁感强度,由安培力公式可求得各边所受的磁场力。
解 选取如图坐标,O 为x 坐标原点,直线电流I 1的磁感强度为x
2I B 10πμ=
,方向向里,根据安培力公式B l F ⨯=d d I 可求得各边的磁场力。
CD 边:x=a ,a 2I B 10πμ=故 a
2l I I IlB F πμ210==、方向向左; EF 边:x=a+b ,)(b a 2I B 10+πμ=故)π(μ210b a 2l I I IlB F +==、方向向右; DE 边:因DE 边各处的磁感强度不同,把其分成线元,各线元所受磁场力的方向相同,求和时积分遍及DE 线段
a
b a I I x I I B I F b
a a 2b
a a DE +πμ=πμ==⎰⎰++ln 2d 2d 210210x x 、方向向上; FC 边:同理得a
b a I I F FC +πμ=ln 2210、方向向下。
8-12 若电子以速度()
s /m 100.3100.266j i v ⨯+⨯=,通过磁场()T 15.003.0j i B -=。
求:
(1)作用在电子上的力;
(2)对以同样速度运动的质子重复你的计算。
分析 运动电荷在磁场所受的力为洛伦兹力B v F ⨯=q ,力的方向由电荷的性质与运动方向决定。
解 (1)对于电子,C 106.119-⨯-=-=e q 由洛伦兹力公式,得
(2)对于质子,C 106.119-⨯==e q ,同理得
8-13 如图所示,有一根长的载流导体直圆管,内半径为a ,外半径为b ,电流强度为I ,电流沿轴线方向流动,并且均匀地分布在管壁的横截面上。
空间某—点到管轴的垂直距离为r ,求r <a ,a <r <b ,r >b 各区间的磁感应强度。
分析 直圆管导体内的电流均匀分布,其磁场呈轴对称,取半径为r 的同心圆解得各区为积分路径,⎰π⋅=⋅r B 2d l B ,利用安培环路定理,可
域的磁感强度。
解 取同心圆为积分回路,根据安培环路定理得
当r <a 时,02d 011=μ=π⋅=⋅∑⎰I r B l B ,即01=B
当a <r <b 时,
当r >b 时,r I B I I r B πμ=μ=μ=π⋅=⋅∑⎰22d 030033即l B 8.14 一平面线圈由半径为0.2m 的l/4圆弧和相互垂直的二直线组成,通以电流2A ,把它放在磁感强度为0.5T 的均匀磁场中,求
(1)线圈平面与磁场垂直时(如图所示),圆弧AC 段所受的磁力;
(2)线圈平面与磁场成600角时,线圈所受的磁力矩。
分析 根据安培力公式B l F ⨯=d d I 及载流导线的对称性,可计算导线AC 段所受
磁场力;对任意形状的通电平面线圈在磁场中所受的磁力矩均可表示为=
IS,由此可求计算线圈所受的磁力矩。
M⨯
e
B
n
解(1)由于AC圆弧与AC弦段所受磁力相同,根据安培力公式B
d I得AC圆弧所受的磁力大小为
=d
F⨯
l
=IlB
=
F,方向垂直于AC。
N
2
2.0
(2)根据磁力矩公式B
所受的
IS得线圈
=
M⨯
e
n
磁力矩大小为
π
=
=ISB
M,方向向下。
sin600⋅
3
N
200
/
m。