抽油机的工作原理
抽油机工作原理

抽油机工作原理
抽油机是一种用于从油田中抽取原油的设备,它是油田开发中
不可或缺的重要设备。
那么,抽油机是如何工作的呢?下面就让我
们来详细了解一下抽油机的工作原理。
首先,抽油机通常由电机、减速器、抽油泵和液面控制系统等
部分组成。
当电机启动时,通过减速器的传动,将电机的高速旋转
转换成低速高扭矩的动力,然后传递给抽油泵。
抽油泵是将液体从
井底抽到地面的关键设备,它通过往复运动产生负压,将油井中的
原油吸出。
其次,抽油机的工作原理是利用抽油泵的工作原理,通过不断
的往复运动来产生负压,使得井底的原油被吸出。
在抽油泵的作用下,原油被抽到地面后,通过管道输送到储油罐或者处理设备中进
行进一步的处理和加工。
此外,液面控制系统也是抽油机工作原理中不可或缺的一部分。
液面控制系统通过感应井口的液位高低,控制电机的启停,保证抽
油机在适当的时间工作,避免出现空载运转或者过载运转的情况,
从而保护设备和节约能源。
总的来说,抽油机的工作原理是通过电机驱动抽油泵产生负压,将井底的原油抽到地面,再通过液面控制系统实现自动控制,确保
设备的正常运转。
这种工作原理在油田开发中起着至关重要的作用,能够高效、稳定地将原油从井底抽到地面,为后续的加工和利用提
供了可靠的原料保障。
综上所述,抽油机工作原理简单清晰,通过电机、减速器、抽
油泵和液面控制系统的协同作用,实现了从油田中抽取原油的过程。
这种工作原理的稳定性和高效性为油田开发提供了坚实的技术支持,也为油田的生产运营提供了可靠的保障。
抽油机工作原理

抽油机工作原理
抽油机是一种用于从地下储层中抽取原油的设备,它在石油工业中起着至关重要的作用。
了解抽油机的工作原理对于石油工程师和相关领域的人员来说是非常重要的,因此本文将对抽油机的工作原理进行详细介绍。
首先,抽油机的工作原理可以简单地描述为利用机械设备将地下的原油抽到地面。
具体来说,抽油机主要由井下泵和地面动力机构两部分组成。
井下泵通常由抽油杆、抽油泵和阀门等部件组成,它被安装在井下并与地面动力机构相连。
地面动力机构则包括发动机、传动装置和控制系统等部分。
在工作时,地面动力机构通过传动装置将动力传输到井下泵,驱动抽油泵进行工作。
抽油泵通过抽油杆连接到地面动力机构,当地面动力机构提供动力时,抽油泵就能够在井下抽取原油。
同时,控制系统能够监控和调节抽油机的工作状态,确保其正常运行。
在实际工作中,抽油机的工作原理还涉及到一系列的物理原理和技术细节。
例如,抽油泵的设计和选型需要考虑原油的粘度、密度以及井下的工作环境等因素。
此外,地面动力机构的选型和维护也是影响抽油机工作效率的重要因素。
总的来说,抽油机的工作原理是通过地面动力机构驱动井下泵,利用机械设备将地下的原油抽到地面。
在实际工作中,抽油机的工作原理还涉及到一系列的物理原理和技术细节,需要综合考虑各种因素才能确保其正常运行和高效工作。
对于石油工程师和相关领域的人员来说,了解抽油机的工作原理是非常重要的,能够帮助他们更好地进行石油开采工作。
抽油机工作原理

抽油机工作原理
抽油机是一种用来抽取和移除液体或气体的设备。
它的工作原理主要基于流体力学和压力差的原理。
以下是抽油机的工作原理的详细描述。
1. 机械驱动力:抽油机通常通过电动机、柴油机或其他能源提供的动力来驱动。
这种机械驱动力产生的动能会转化为机械能,以驱动抽油机的运转。
2. 轴和叶轮:抽油机内部有一根轴,轴上安装有叶轮。
当机械驱动力作用在轴上时,轴会旋转,带动叶轮一起旋转。
3. 叶轮旋转:叶轮通常具有多个叶片,当叶轮旋转时,叶片会使周围的液体或气体产生剪切力和动能。
4. 压力差:由于叶轮的旋转,液体或气体被迫通过叶片间隙或叶片表面的通道。
这个过程会产生压力差,即在叶轮进口和出口之间形成的差压。
5. 流体抽取:叶轮旋转时产生的压力差会导致液体或气体流动,并被抽入抽油机的进口。
随着叶轮的旋转,流体被强制排出抽油机的出口。
6. 排液或排气:抽油机将液体或气体移到出口,然后将其排放到另一个位置,如储罐、管道或其他设备中。
这样就实现了液体或气体的抽取和移除。
总结:抽油机基于机械驱动力、轴和叶轮的旋转以及压力差的产生,通过带动液体或气体流动,实现了液体或气体的抽取和移除。
它广泛应用于石油、化工、水处理等行业中。
抽油机的工作原理

抽油机的工作原理抽油机是一种用于从井底抽取原油的设备,它在石油开采过程中起着至关重要的作用。
了解抽油机的工作原理对于石油工业从业人员来说至关重要。
本文将介绍抽油机的工作原理,帮助读者更好地理解这一关键设备的运作方式。
首先,抽油机的工作原理可以分为机械部分和液压部分。
机械部分包括曲柄连杆机构、泵杆和泵体等组成部分,液压部分包括液压缸、液压油管和液压阀等组成部分。
这两部分共同协作,实现了抽油机的正常工作。
在工作时,抽油机的机械部分通过驱动装置带动曲柄连杆机构运动,曲柄连杆机构再通过泵杆的连动,使得泵体内的抽油泵运动。
液压部分则通过液压缸产生的液压力传递到液压油管和液压阀,控制抽油机的启停和运行方向。
这样,抽油机就能够将原油从井底抽取到地面。
抽油机的工作原理还涉及到液压系统的工作原理。
液压系统是通过液体传递压力和动能来实现能量转换和传递的装置。
在抽油机中,液压系统起着至关重要的作用,它能够通过液压缸产生的液压力来控制泵体的运动,实现抽油机的启停和运行方向的控制。
液压系统的工作原理对于抽油机的正常运行起着决定性的作用。
除此之外,抽油机的工作原理还涉及到泵体的工作原理。
泵体是抽油机的核心部件,它通过泵杆的连动来实现对井底原油的抽取。
泵体内部通过活塞的运动,产生了对原油的吸入和排出。
这种通过活塞运动产生的吸入和排出就实现了对原油的抽取。
泵体的工作原理对于抽油机的抽油效率和工作稳定性有着重要的影响。
总的来说,抽油机的工作原理涉及到机械部分、液压部分、液压系统和泵体的工作原理。
这些部分共同协作,实现了抽油机对原油的抽取。
了解抽油机的工作原理对于石油工业从业人员来说至关重要,只有深入了解抽油机的工作原理,才能够更好地保障抽油机的正常运行,提高原油的生产效率。
油田抽油机原理

油田抽油机原理油田抽油机是一种用于从地下油层中抽取原油的设备,它的工作原理主要是利用泵将原油从井底抽上地面。
在油田开采过程中,抽油机是非常重要的设备,它的运行状态直接影响着原油的产量和质量。
因此,了解油田抽油机的工作原理对于油田开采工作具有重要意义。
首先,油田抽油机的工作原理是基于地面泵与井下泵的协同作用。
地面泵通过驱动机构带动井下泵进行上下运动,从而实现原油的抽取。
井下泵则位于井下,负责将原油从井底抽到地面。
整个系统通过连杆和泵杆相连接,形成一个连续的运动链条,使得地面泵的运动能够传递到井下泵,从而实现原油的连续抽取。
其次,油田抽油机的工作原理还涉及到液体的运动规律。
在抽油机工作时,地面泵产生的往复运动会使得井下泵内的液体产生压力变化,从而推动原油向上运动。
这种液体的压力变化是通过连杆和泵杆的传动实现的,地面泵的运动将机械能转化为液体动能,从而实现原油的抽取。
此外,油田抽油机的工作原理还与井下油层的地质条件密切相关。
在不同的油田地质条件下,抽油机的工作原理会有所不同。
例如在稠油油田中,由于原油的黏度较大,需要采用更强大的地面泵来推动井下泵,以实现原油的抽取。
而在高温高压油田中,抽油机的工作原理也会有所调整,以适应地下高温高压环境下的原油抽取需求。
总的来说,油田抽油机的工作原理是一个复杂的系统工程,涉及到机械传动、液体动力学以及地质条件等多个方面的知识。
只有深入了解其工作原理,才能更好地指导油田开采工作,提高原油的产量和质量,实现油田开采的经济效益。
因此,对于油田工作者来说,掌握油田抽油机的工作原理是非常重要的。
只有深入理解其工作原理,才能更好地指导油田开采工作,提高原油的产量和质量,实现油田开采的经济效益。
同时,科研人员也需要不断探索新的抽油机工作原理,以适应不同地质条件下的油田开采需求,推动油田开采技术的进步和发展。
抽油机

抽油机(俗称“磕头机”)1、概述抽油机是开采石油的一种机器设备,俗称“磕头机”,通过加压的办法使石油出井。
2、工作原理当抽油机上冲程时,油管弹性收缩向上运动,带动机械解堵采油器向上运动,撞击滑套产生振动;同时,正向单流阀关闭,变径活塞总成封堵油当抽油机下冲程时,油管弹性伸长向下运动,带动机械解堵采油器向下运动,撞击滑套产生振动;同时,反向单流阀部分关闭,变径活塞总成仍然封堵油套环形油道,使反向单流阀下方区域形成高压区,这一运动又对地层内的油流通道产生一种反向的冲击力。
油井内的机械解堵采油器就是利用油管柱周期性的弹性变形来产生周期性的上下往复运动,从而对地层产生抽吸挤压频繁交替变换的活塞作用。
油层内“粘连”的液滴和堵塞颗粒物受到这种频繁地抽吸力和挤压力扰动后,被迫脱离原位,最终,使不易移动的液滴开始流动,使“粘连”的堵塞颗粒物脱离油道,实现疏通油道、扩大油流增加原油产量的目的。
套环形油道,使正向单流阀下方区域形成负压区,相当于对地层产生了一个强大的抽吸力。
磕头机即游梁式抽油机是油田广泛应用的传统抽油设备,通常由普通交流异步电动机直接拖动。
其曲柄带以配重平衡块带动抽油杆,驱动井下抽油泵做固定周期的上下往复运动,把井下的油送到地面。
在一个冲次内,随着抽油杆的上升/下降,而使电机工作在电动/发电状态。
上升过程电机从电网吸收能量电动运行;下降过程电机的负载性质为位势负载,加之井下负压等使电动机处于发电状态,把机械能量转换成电能回馈到电网。
然而,井下油层的情况特别复杂,有富油井、贫油井之分,有稀油井、稠油井之别。
恒速应用问题显而易见。
如抛却这些不谈,就抽油机油泵本身而言,磨损后的活塞与衬套的间隙漏失等都是很难解决的问题,况且变化的地层因素如油中含砂、蜡、水、气等复杂情况也对每冲次抽出的油量有很大的影响。
看来,只有调速驱动才能达到最佳控制。
引进调速传动后,可根据井下状态调节抽油机冲程频次及分别调节上、下行程的速度,在提高泵的充满系数的同时减少泵的漏失,以获得最大出油量。
抽油机原理

抽油机原理
抽油机是一种用于从油井中抽取原油的设备,它在石油开采过程中扮演着至关重要的角色。
抽油机的原理是利用机械力将原油从井下抽到地面,然后进行后续的加工和利用。
下面将详细介绍抽油机的原理及其工作过程。
首先,抽油机的核心部件是抽油泵,它通过往复运动将原油从井下抽到地面。
抽油泵通常由泵体、柱塞、阀门等部件组成,其工作原理类似于活塞泵。
当泵体内形成真空时,柱塞会受到外部压力的作用而向上移动,此时泵体内的原油就会被吸入。
随后,柱塞向下移动,将原油压出泵体,最终送到地面设备中进行处理。
其次,抽油机的动力来源通常是由电机驱动。
电机通过连杆机构将旋转运动转换为往复运动,驱动抽油泵进行工作。
在实际应用中,由于油井深度、地质条件等因素的不同,抽油机的工作环境也会有所差异,因此需要根据实际情况选用合适的电机功率和抽油泵结构,以确保其正常运行。
另外,抽油机的工作过程中还需要配合其他设备,如液面计、变频器等。
液面计用于监测井下原油的液面高度,以便及时调整抽油机的工作状态;变频器则用于调节电机的转速,以适应不同的工况要求。
这些配套设备的应用,可以提高抽油机的工作效率和稳定性。
总的来说,抽油机的原理是利用机械力将原油从井下抽到地面,其核心部件是抽油泵,动力来源是电机。
在实际应用中,还需要配合其他设备进行监测和调节。
通过对抽油机原理及其工作过程的了解,可以更好地掌握石油开采技术,提高原油开采效率,确保石油资源的有效利用。
抽油机的简介和工作原理

抽油机的简介和工作原理
抽油机是一种常用于工业领域的设备,主要用于将液体或气体从一个区域抽取到另一个区域。
它通常由一个驱动装置、一个抽取装置和一个排放装置组成。
工作原理:抽油机的工作原理基于负压原理。
首先,通过驱动装置,抽油机产生一个真空环境。
然后,通过抽取装置,将待抽取的液体或气体引入抽油机的空间。
在引入过程中,液体或气体充满了抽油机的工作腔室。
接下来,通过排放装置,抽油机将液体或气体释放到指定的区域。
抽油机以其高效率和可靠性而广泛应用于许多领域,如石油工业、化工工业、食品加工工业等。
它可以用于抽取各种液体,如油、水、污水等,也可以用于抽取各种气体,如气体尘埃、二氧化碳等。
抽油机的应用范围非常广泛,可满足各种不同行业的需求。
总结而言,抽油机是一种利用负压原理将液体或气体从一个区域抽取到另一个区域的设备。
其工作原理基于驱动装置产生真空环境,然后通过抽取装置将待抽取的液体或气体引入抽油机的空间,并最终通过排放装置将液体或气体释放到指定区域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
则得电机在上冲程中做的功为:
Amu = Au − AW
1.平衡条件 在下冲程中把能量储存起来,在上冲程中利用储存的 能量来帮助电动机做功,从而使电动机在上下冲程中都做 相等的正功。
下冲程: Amd = Aw − Ad 上冲程:
Amu = Au − Aw
Aw =
平衡条件:
Amd = Amu
Au + Ad 2
复合平衡
三、抽油机平衡测量与调整
利用 “上、下冲程电流峰值相等”来检测抽油机 的平衡情况。测电动机上、下冲程的电流峰值u I
I u >I
I u<I
d
和d I
平衡不足 平衡过重
d
在两个电流中有一个小的,一个大的,若 I小 / I 大 ≥ 0.8 时就认为是平衡了,否则就要重新计算平衡半径或平 衡重,重新调整平衡。
结论:为了使抽油机平衡,在下冲程中需要储存的能 量或上冲程中需要释放的能量应该是悬点载荷在上下冲程 中所做功之和的一半。
2.平衡系统达到平衡所需要的平衡功 当只考虑静载荷做功时,悬点在上冲程中 做的功为:
Au = (Wr ′ + W L ′) s
下冲程做的功为:
Ad = Wr ′s
则由前式得理论上需要的平衡功为:
(二)光杆功率
光杆功率即是抽油机悬点载荷做功的功率,是提升液体 和克服井下消耗所需要的功率。可用示功图的面积计算:
N
p
=
AsnC 600 l
由于计算示功图麻烦,常近似地按理论静载荷计算悬点 做功:
N
p
=
W l ′ sn 6 × 10 4
(三)抽油机井的效率
1.抽油机的效率--是光杆功率与电动机功率之比, 它表达了抽油机工作状况好坏及功率利用程度。 η
ηt =
NH Nr
p
=
N
p
Nr
2.油井效率--是有效功率与光杆功率之比,主要表 达了抽油泵工作状况的好坏及功率利用情况。即悬点做的功, 除了提升液体做有效功外,还要克服井下摩擦、杆柱振动、 漏失等机械损失、水力损失和容积损失做无效功。
ηH =
NH Np
3 抽油机井系统效率--为本抽油机井输出功率与 输入功率之比,表达了该抽油机井的总体效益和能量的 综合利用情况。
四、抽油机井的系统效率
抽油机井的系统效率是抽油机井做的有用功率与输入功 率的比值,这个值越高,抽油机井的效益越好。
(一)抽油机井的有用功率
有用功率或称有效功率,也称为水力功率NH, 是指在一 定时间内,将一定量的液体提升一定的距离所需要的功率:
HP
H
=
QLg 86400
=
Q l ρ l Lg η 86400
Aw = Au + Ad W′ = (Wr ′ + l ) s 2 2
二、抽油机平衡计算
游梁式抽油机的机械平衡方式 游梁平衡:游梁尾部加平衡重 机械平衡 曲柄平衡(旋转平衡):平衡块加在曲柄上 复合平衡(混合平衡):游梁尾部和曲柄上 都有平衡重。
1.游梁平衡方式计算
达到平衡所需要的游梁平衡块重:
′ ′ W1 a Wb = (Wr + ) − X uc 2 c
游梁平衡
2.曲柄平衡方式计算
平衡半径公式:
W ′ a r X W R = Wr′ + l − r ub − Rc c Wcb Wcb 2 b Wcb
曲柄平衡
3.复合平衡方式计算
平衡半径公式:
R = (Wr ′ + Wl ′ s RW cr ) − c c − ( X uc + Wb ) 2 2Wcb Wcb bWcb
(三) 平衡原理:
1.平衡条件 在抽油机游梁后端加一重 物,在下冲程中电机和下冲程 的悬点载荷一起对重物做功, 把重物升高储存位能 Aw
Aw = Ad + Amd
则得到电机在下冲程中做的功为:
Amd = Aw − Ad
1.平衡条件 在上冲程中平衡系统放出 能量,帮助电机对悬点做功:
Au = Aw + Amu
游梁式抽油机的平衡
一、 抽油机平衡的原理
(一) 不平衡原因
上下冲程中悬点载荷不同,造成电动机在上、下冲 程中所做的功不相等。
(二)不平衡造成的后果
①上冲程中电动机承受着极大的负荷,下冲程中抽 油机带着电动机运转,造成功率的浪费,降低电动机的 效率和寿命; ②由于负荷极不均匀,会使抽油机发生激烈振动, 而影响抽油装置的寿命。 ③破坏曲柄旋转速度的均匀性,影响抽油杆和泵正 常工作。