初二数学下册证明题中等难题.doc含答案

合集下载

人教版初二数学8年级下册 第18章(平行四边形)含辅助线证明题训练(含答案)

人教版初二数学8年级下册 第18章(平行四边形)含辅助线证明题训练(含答案)

人教版数学八年级下期第十八章平行四边形含辅助线证明题训练1.已知边长为2的正方形ABCD中,P是对角线AC上的一个动点(与点A,C不重合),过点P作PE⊥PB,PE交DC于点E,过点E作EF⊥AC,垂足为点F.(1)求证:PB=PE;(2)在点P的运动过程中,PF的长度是否发生变化?若不变,求出这个不变的值;若变化,试说明理由.2.在▱ABCD中,BE平分∠ABC交AD于点E.(1)如图1,若∠D=30°,AB=6,求△ABE的面积;(2)如图2,过点A作AF⊥DC,交DC的延长线于点F,分别交BE,BC于点G,H,且AB=AF.求证:ED-AG=FC.3.如图,在平行四边形ABCD中,AC,BD交于点O,且AO=BO,∠ADB的平分线DE交AB于点E.(1)求证:四边形ABCD是矩形.(2)若AB=8,OC=5,求AE的长.4.如图,在正方形ABCD中,E是边AB上一动点(不与点A,B重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E 作EH⊥DE交DG的延长线于点H,连接BH.(1)求证:GF=GC;(2)用等式表示线段BH与AE的数量关系,并证明.5.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于F,以EC,CF为邻边作平行四边形ECFG.(1)证明平行四边形ECFG是菱形;(2)若∠ABC=120°,连接BG,CG,DG,①求证:△DGC≌△BGE;②求∠BDG的度数;(3)若∠ABC=90°,AB=8,AD=14,M是EF的中点,求DM的长.6.已知正方形ABCD如图所示,连接其对角线AC,∠BCA的平分线CF交AB于点F,过点B作BM⊥CF于点N,交AC于点M,过点C作CP⊥CF,交AD延长线于点P.(1)求证:DP=BF;(2)若正方形ABCD的边长为4,求DP的长;(3)求证:CP=BM+2FN.7.如图,四边形ABCD是菱形,E是AB的中点,AC的垂线EF交AD于点M,交CD的延长线于点F.(1)求证:AM=AE;(2)连接CM,DF=2.①求菱形ABCD的周长;②若∠ADC=2∠MCF,求ME的长.8.在菱形ABCD中,AB=4,∠ABC=60°,E是对角线AC上一点,F是线段BC延长线上一点.且CF=AE,连接BE、EF.(1)如图1,若E是线段AC的中点,求EF的长;(2)如图2.若E是线段AC延长线上的任意一点,求证:BE=EF.AC,将菱形ABCD绕着点B (3)如图3,若E是线段AC延长线上的一点,CE=12顺时针旋转α°(0≤α≤360),请直接写出在旋转过程中DE的最大值.9.如图所示,在边长为1的菱形ABCD中,∠DAB=60°,M是AD上不同于A,D两点的一动点,N是CD上一动点,且AM+CN=1.(1)证明:无论M,N怎样移动,△BMN总是等边三角形;(2)求△BMN面积的最小值.10.如图,正方形ABCD中,F在CD上,AE平分∠BAF,E为BC的中点.求证:AF=BC+CF.11.已知:如图(1),点E、F分别为正方形ABCD的边BC、DC上的点,线段AE和AF分别交BD于点M和点N,连接MF,MF⊥AE于点M.(1)求证:∠EAF=45°;(2)如图(2),连接EF,当AD=5,DF=1时,求线段EF的长度;BD.(3)如图(3),作FR⊥BD于R.求证:RM=12BC,CE⊥AB于点E,F是AD的中点,连接12.如图,在平行四边形ABCD中,AB=12EF,CF.求证:(1)EF=CF;(2)∠EFD=3∠AEF.13.如图1,点E为正方形ABCD的边AB上一点,EF⊥EC,且EF=EC,连接AF.(1)求∠EAF的度数;(2)如图2,连接FC交BD于M,交AD于N.求证:BD=AF+2DM.14.已知:如图,G为平行四边形ABCD中BC边的中点,点E在AD边上,且∠1=∠2.(1)求证:E是AD的中点;(2)若F为CD延长线上一点,连接BF,得∠3=∠2,求证:CD=BF+DF.15.如图,四边形ABCD是平行四边形,AD=AC,AD⊥AC,E是AB的中点,F是AC延长线上一点.(1)若ED⊥EF,求证:ED=EF:(2)在(1)的条件下,若DC的延长线与FB交于点P,试判断四边形ACPE是否为平行四边形.并证明你的结论(请先补全图形,再解答):(3)若ED=EF,则ED与EF垂直吗?若垂直给出证明,若不垂直说明理由.16.在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F。

(必考题)初中数学八年级数学下册第一单元《三角形的证明》测试(含答案解析)(2)

(必考题)初中数学八年级数学下册第一单元《三角形的证明》测试(含答案解析)(2)

一、选择题1.已知如图,C为线段AE上一动点(不与A,E重合),在AE同侧分别作等边三角形ABC和等边三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ,OC,以下四个结论:①AD=BE;②△CPQ是等边三角形;③AD⊥BC;④OC平分∠AOE.其中正确的结论是()A.①②③④B.③④C.①②③D.①②④2.已知点P是ABC内一点,且它到三角形的三个顶点距离之和最小,则P点叫ABC的费马点(Fermat point).已经证明:在三个内角均小于120︒的ABC中,当APB APC BPC时,P就是ABC的费马点.若点P是腰长为6的等120++=()腰直角三角形DEF的费马点,则PD PE PFA.6 B.33+C.63D.93.如图,在四边形ABCD中,点E在边AD上,∠BCE=∠ACD,∠BAC=∠D=40°,AB=DE,AC=AE,则∠B的度数为()A.100°B.110°C.120°D.130°4.已知等腰三角形的两边长分别为a,b,且a,b满足3a-+|b﹣4|=0,则此等腰三角形的周长为()A.7 B.10 C.11 D.10或115.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于点D.若∠A=30°,AE=10,则CE的长为()A.5 B.4 C.3 D.26.如图,在平面直角坐标系中,点A1在x轴的正半轴上,B1在第一象限,且△OA1B1是等边三角形.在射线OB 1上取点B 2,B 3,…,分别以B 1B 2,B 2B 3,…为边作等边三角形△B 1A 2B 2,△B 2A 3B 3,…使得A 1,A 2,A 3,…在同一直线上,该直线交y 轴于点C .若OA 1=1,∠OA 1C =30°,则点B 9的横坐标是( )A .2552B .5112C .256D .51327.下列说法错误的是( ) A .有两边相等的三角形是等腰三角形 B .直角三角形不可能是等腰三角形C .有两个角为60°的三角形是等边三角形D .有一个角为60°的等腰三角形是等边三角形8.如图,在ABC 中,AB AC =,以点C 为圆心,CB 长为半径 画弧,交AB 于点B 和点D ,再分别以点,B D 为圆心,大于12BD 长为半径画弧,两弧相交于点M ,作射线CM 交AB 于点E .若4,1AE BE ==,则EC 的长度是( )A .3B .5C 5D 7 9.如图,ABC 中,AB AC =,BD DC =,若80BAC ∠=︒,AD AE =,则CDE∠的度数为( )A .40°B .30°C .20°D .10° 10.如图,ABC 为等边三角形,BO 为中线,延长BA 至D ,使AD AO =,则DOB∠的度数为( )A .105︒B .120︒C .135︒D .150︒ 11.如图,在平面直角坐标系中,点A 的坐标为()1,0,以线段OA 为边在第四象限内作等边ABO ,点C 为x 轴正半轴上一动点(1OC >),设点C 的坐标为(),0x ,连结BC ,以线段BC 为边的第四象限内作等边CBD ,直线DA 交y 轴于点E ,点E 的坐标是( )A .(3B .0,2x ⎛⎫ ⎪⎝⎭C .()0,3D .30,2x ⎛⎫ ⎪ ⎪⎝⎭ 12.若以Rt ABC △的一边为边画一个等腰三角形,使它的第三个顶点也在Rt ABC △的其他边上,则这样的等腰三角形最多能画出( )A .3个B .5个C .6个D .7个二、填空题13.如图,OA OB OC ==且30ACB ∠=︒,则AOB ∠的大小是______度.14.如图,在等边ABC中,点D在AC边上,点E在ABC外部,若∠=∠,CE BDACE ABD=,连接AE,DE,则ADE的形状是______.15.如图,△ACD是等边三角形,若AB=DE,BC=AE,∠E=115°,则∠BAE=_____°.16.如图,BD是△ABC的角平分线,DE⊥AB,垂足为E,△ABC的面积为60,AB=16,BC=14,则DE的长等于_____.17.如图,∠MON=33°,点P在∠MON的边ON上,以点P为圆心,PO为半径画弧,角OM于点A,连接AP,则∠APN=____.18.如图,∠AOB=30°,点P在∠AOB的内部,OP=6cm,点E、F分别为OA、OB上的动点,则△PEF周长的最小值为________cm.19.如图,在ABC 中,AB BC =,30C ∠=︒,过点B 作BD BC ⊥,交AC 于点D ,若2CD =,则AD 的长为__________.20.如图,AD 平分BAC ∠,DE AC ⊥,垂足为E ,//BF AC 交ED 的延长线于点F ,若BC 恰好平分ABF ∠.则下列结论中:①AD 是ABC ∆的高;②ABC ∆是等边三角形;③ED FD =;④AB AE BF =+.其中正确的是______________(填写序号)三、解答题21.如图,Rt △ABC 中,∠BCA =90°,AC =BC ,点D 是BC 的中点,CE ⊥AD 于E ,BF ∥AC 交CE 的延长线于点F .(1)求证:△ACD ≌△CBF ;(2)连结DF ,求证:AB 垂直平分DF ;(3)连结AF ,试判断△ACF 的形状,并说明理由.22.如图,在△ABC 中,∠BAC =62°,∠B =78°,AC 的垂直平分线交BC 于点D . (1)求∠BAD 的度数;(2)若AB =8,BC =11,求△ABD 的周长.23.如图.在△ABC 中,∠C =90 °,∠A =30°.(1)用直尺和圆规作AB 的垂直平分线,分别交AB 、AC 于D 、E ,交BC 的延长线于F ,连接EB .(不写作法,保留作图痕迹)(2)求证:EB 平分∠ABC .(3)求证:AE =EF .24.在△DEF 中,DE =DF ,点B 在EF 边上,且∠EBD =60°,C 是射线BD 上的一个动点(不与点B 重合,且BC≠BE ),在射线BE 上截取BA =BC ,连接AC .(1)当点C 在线段BD 上时,①若点C 与点D 重合,请根据题意补全图1,并直接写出线段AE 与BF 的数量关系为 ; ②如图2,若点C 不与点D 重合,请证明AE =BF +CD ;(2)当点C 在线段BD 的延长线上时,用等式表示线段AE ,BF ,CD 之间的数量关系(直接写出结果,不需要证明).25.如图,已知等腰ABC 的底边13BC cm =,D 是腰BA 延长线上一点,连接CD ,且12BD cm =,5CD cm =.(1)判断BDC 的形状,并说明理由;(2)求ABC 的周长.26.已知:如图,,,C D Rt AC BD AD ∠=∠=∠=与BC 相交于点P .≌.求证:(1)Rt ABC Rt BAD△是等腰三角形.(2)PAB【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】先由SAS判定△ACD≌△BCE,证得①正确;再由ASA证△ACP≌△BCQ,得到CP=CQ,②正确,同理证得CM=CN,得到④正确;易得③不正确.【详解】解:∵△ABC和△DCE均是等边三角形,∴BC=AC,CD=CE,∠ACB=∠ECD=60°,∴∠ACB+∠BCD=∠BCD+∠ECD,∠BCD=60°,∴∠ACD=∠BCE,∴△ACD≌△BCE(SAS),∴AD=BE,故①正确;∠CAD=∠CBE,∵∠BCA=∠BCD=60°,AC=BC,∴△ACP≌△BCQ(ASA),∴CP=CQ,又∵∠PCQ=60°,∴△CPQ是等边三角形,故②正确;过C作CM⊥BE于M,CN⊥AD于N,∵△ACD≌△BCE,∴∠ADC=∠BEC,∵CD=CE,∠CND=∠CMA=90°,∴△CDN≌△CEM(AAS),∴CM=CN,∵CM⊥BE,CN⊥AD,∴OC平分∠AOE,故④正确;当AC =CE 时,AP 平分∠BAC ,则∠PAC =30°,此时∠APC =180°﹣30°﹣60°=90°,则AD ⊥BC ,故③不正确;故选:D .【点睛】本题考查了全等三角形的判定与性质、等边三角形的判定与性质等知识;熟练掌握等边三角形的判定与性质,证明三角形全等是解题的关键,属于中考常考题型.2.B解析:B【分析】根据题意首先画出图形,过点D 作DM EF ⊥于点M ,在BDE ∆内部过E 、F 分别作30MEP MFP ∠=∠=︒,则120EPF FPD EPD ∠=∠=∠=︒,点P 就是费马点,求出PE ,PF ,DP 的长即可解决问题.【详解】解:如图:过点D 作DM EF ⊥于点M ,在BDE ∆内部过E 、F 分别作30MEP MFP ∠=∠=︒,则120EPF FPD EPD ∠=∠=∠=︒,点P 就是费马点,在等腰Rt DEF △中,6DE DF ==DM EF ⊥,223EF DE ∴==3EM DM ∴=∵∠PEM =30°,∠PME =90°,∴EP =2PM ,则()2222PM EM PM +=,解得:1PM =,则2PE =, 故31DP ,同法可得2PF =, 则312233PD PE PF ++++=故选:B .【点睛】此题主要考查了等腰三角形的性质,正确画出图形进而求出PE的长是解题关键.3.B解析:B【分析】先ASA证明△BAC≌△EDC,再利用全等三角形的性质,等腰三角形的两底角相等即可求解.【详解】解:∵∠BCE=∠ACD,又∵∠BCE=∠BCA+∠ACE,∠ACD=∠DCE+∠ACE,∴∠BCA=∠DCE,∵∠BAC=∠D=40°,AB=DE,∴△BAC≌△EDC(ASA),∴AC=CD,∴∠CAE=∠D=40°,∵AC=AE,∴∠AEC=∠ACE=1(180°﹣∠CAE)=70°,2∵∠AEC=∠D+∠DCE,∴∠DCE=30°,∴∠ACB=30°,∴∠B=180°﹣∠ACB﹣∠BAC=110°.故选:B.【点睛】考查了全等三角形的判定与性质,等腰三角形的性质,关键是根据ASA证明△BAC≌△EDC.4.D解析:D【分析】先根据非负数的性质列式求出a、b的值,再分4是腰长与底边两种情况讨论求解.【详解】解:根据题意得,a-3=0,b-4=0,解得a=3,b=4,①4是腰长时,三角形的三边分别为4、4、3,∵4+4>3,∴能组成三角形,4+4+3=11,②4是底边时,三角形的三边分别为3、3、4,能组成三角形,周长=3+3+4=10,所以,三角形的周长为11或10.故选:D.【点睛】本题考查了等腰三角形的性质,绝对值非负数,偶次方非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0求出a 、b 的值是解题的关键,难点在于要分情况讨论并且利用三角形的三边关系进行判断.5.A解析:A【分析】先根据含30°角的直角三角形的性质求出DE =5,再根据角平分线的性质求出CE =DE =5即可.【详解】解:∵DE ⊥AB ,∴∠ADE =90°,在Rt △ADE 中,∠A =30°,AE =10,∴DE =12AE =5, ∵BE 平分∠ABC ,DE ⊥AB ,∠ACB =90°,∴CE =DE =5,故选:A .【点睛】本题考查的是角平分线的性质、含30°角的直角三角形的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.6.B解析:B【分析】利用待定系数法求得两条直线的解析式,根据等边三角形的性质,点的坐标规律,即可求解.【详解】解:∵OA 1=1,∠OA 1C=30︒,∴OC=3,∴点C 的坐标为(0,-,∵A 1、A 2、A 3所在直线过点A 1(1,0),C (0,,设直线A 1A 2的解析式为y kx =-∴03k =-,∴3k =∴直线A 1A 2的解析式为33y x =-, ∵△OA 1B 1为等边三角形,∴点B 1的坐标为(12,∵B 1、B 2、B 3所在直线过点O(0,0),B 1 (12,2),同理可求得直线O B 1的解析式为y =,∵△OA 1B 1和△B 1A 2B 2为等边三角形,∴∠B 1OA 1=∠B 2 B 1A 2=60︒,∴B 1A 2∥OA 1,∵B 1 (12,∴A 2的纵坐标为2,则233x =-, 解得:52x =,∴点A 2的坐标为(52,2), ∴B 1A 2=2,同理点B 2的坐标为(32,点B 3的坐标为(72,点B 4的坐标为(152, ,总结规律: B 1的横坐标为12, B 2的横坐标为13122+=, B 3的横坐标为171222++=, B 4的横坐标为11512422+++=,,∴B 9的横坐标为1511124816326422+++++++=, 故选:B【点睛】本题考查了待定系数法求一次函数的解析式,点的坐标规律,等边三角形的性质,解决本题的关键是寻找点的坐标规律. 7.B解析:B【分析】利用等腰三角形和等边三角形的判定解答即可.【详解】A.有两边相等的三角形是等腰三角形,所以A 选项正确;B.等腰直角三角形就是等腰三角形,故B 选项错误;C.有两个角为60°的三角形是等边三角形,正确;D.有一个角为60°的等腰三角形是等边三角形,正确.故选B .【点睛】本题考查了等腰三角形和等边三角形的判定,解题的关键是熟练掌握有关性质. 8.A解析:A【分析】利用基本作图得到CE AB ⊥,再根据等腰三角形的性质得到5AC =,然后利用勾股定理计算即可;【详解】由做法得CE AB ⊥,则90AEC ∠=︒,145AC AB BE AE ==+=+=,在Rt △ACE 中,3CE ===; 故答案选A .【点睛】 本题主要考查了等腰三角形的性质,准确计算是解题的关键.9.C解析:C【分析】 根据已知可求得∠DAC 及∠ADE 的度数,根据∠CDE=90°-∠ADE 即可得到答案.【详解】解:∵AB =AC ,BD=DC∴ AD⊥BC(等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合)∴∠ADC=90°,∵∠BAC=80°,∴∠BAD=∠DAC= 80°÷2=40°(等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合),∵AD=AE,∴∠ADE=( 180°−40°)÷2=70°,∴∠CDE=∠ADC-∠ADE=90°-70°=20°,故答案为:C.【点睛】本题主要考查了等腰三角形的性质,三角形内角和定理,掌握等腰三角形的性质,三角形内角和定理是解题的关键.10.B解析:B【分析】由△ABC为等边三角形,可求出∠BOA=90°,由△ADO是等腰三角形求出∠ADO=∠AOD=30°,即可求出∠BOD的度数.【详解】解:∵△ABC为等边三角形,BO为中线,∴∠BOA=90°,∠BAC=60°∴∠CAD=180°﹣∠BAC=180°﹣60°=120°,∵AD=AO,∴∠ADO=∠AOD=30°,∴∠BOD=∠BOA+∠AOD=90°+30°=120°,故选:B.【点睛】本题主要考查了等边三角形的性质及等腰三角形的性质,解题的关键是熟记等边三角形的性质及等腰三角形的性质.11.A解析:A【分析】由等边三角形的性质可得AO=OB=AB=1,BC=BD=CD,∠OBA=∠CBD=60°,可证△OBC≌△ABD,可得∠BAD=∠BOC=60°,可求∠EAO=60°,即可求OE点E坐标.【详解】解:∵△AOB,△BCD是等边三角形,∴AO=OB=AB=1,BC=BD=CD,∠OBA=∠CBD=60°,∴∠OBC=∠ABD,且OB=AB,BC=BD,∴△OBC≌△ABD(SAS),∴∠BAD=∠BOC=60°,∴∠EAO=180°−∠OAB−∠BAD=60°,在Rt△AOE中,AO=1,∠EAO=60°,∠OEA=30°,∴AE=2 AO=2,∴OE=22=3,21∴点E坐标(0,3),故选A.【点睛】本题考查了全等三角形的判定和性质,等边三角形的性质,坐标与图形性质,灵活运用全等三角形的判定和性质是本题的关键.12.D解析:D【分析】先以Rt△ABC三个顶点分别为圆心,再以每个顶点所在的较短边为半径画弧,即可确定等腰三角形的第三个顶点,也可以作三边的垂直平分线确定等腰三角形的第三个顶点.【详解】解:如图1,以B为圆心,BC长为半径画弧,交AB于点D,连接CD,则△BCD是等腰三角形;如图2,以A为圆心,AC长为半径画弧,交AB于点D,连接CD,则△ACD是等腰三角形;如图3,作AB的垂直平分线,交AC于点D,连接BD,则△BCD是等腰三角形;如图4,以C为圆心,BC长为半径画弧,交AC于点D,交AB于点F,连接BD,CF 则△BCD、△BCF是等腰三角形;如图5,作BC的垂直平分线,交AB于点D,连接CD,则△BCD是等腰三角形;如图6,作AC的垂直平分线,交AB于点D,连接CD,△ACD是等腰三角形,∴符合题意的等腰三角形最多能画7个,故选:D.【点睛】本题考查等腰三角形的判定的应用,通过作垂直平分线或者画弧的方法确定相等的边是解题关键.二、填空题13.【分析】设∠OAC=x ∠CAB=y 根据等腰三角形的性质则∠OCA=x ∠OBA=x+y ∠OBC=x+30°利用三角形内角和定理计算即可【详解】解:设∠OAC=x ∠CAB=y ∵OA=OC ∴∠OCA=x ∵解析:60.【分析】设∠OAC=x ,∠CAB=y ,根据等腰三角形的性质,则∠OCA=x ,∠OBA=x+y ,∠OBC=x+30°,利用三角形内角和定理计算即可.【详解】解:设∠OAC=x ,∠CAB=y ,∵OA=OC ,∴∠OCA=x ,∵OA=OB ,∴∠OBA=x+y ,∵OC=OB ,∴∠OBC=x+30°,∵30ACB ∠=︒,∴∠CAB+∠OBA+∠OBC=150°,∴y+x+y+ x+30°=150°,∴2(x+y)=120°,∵∠AOB=180°-2∠OBA=180°-2(x+y),∴∠AOB=180°-120°=60°,故答案为:60.【点睛】本题考查了等腰三角形的性质,三角形内角和定理,熟练应用性质,合理引进未知数,采用设而不求的思想计算是解题的关键.14.等边三角形【分析】由等边三角形的性质可以得出AB=AC ∠BAD=60°由条件证明△ABD ≌△ACE 就可以得出∠CAE=∠BAD=60°AD=AE 就可以得出△ADE 为等边三角形【详解】解:的形状是等边解析:等边三角形【分析】由等边三角形的性质可以得出AB=AC , ∠BAD=60°,由条件证明△ABD ≌△ACE 就可以得出∠CAE=∠BAD=60°,AD=AE ,就可以得出△ADE 为等边三角形.【详解】解:ADE 的形状是等边三角形,理由:∵ABC 为等边三角形,∴AB=AC , ∠BAD=60°,在∆ABD 和∆CAE 中 AB AC ACE ABD CE BD =⎧⎪∠=∠⎨⎪=⎩, ∴∆ABD ≌∆ACE ,∴∠CAE=∠BAD=60°,AD=AE ,∴∆ADE 为等边三角形,故答案为:等边三角形.【点睛】本题考查了全等三角形的判定与性质及等边三角形的判定与性质,解题的关键是灵活运用相关性质.15.125【分析】先证明得到再根据三角形内角和得到所求角中两角的和最后与等边三角形内角相加就得到结果【详解】解:是等边三角形在与中故答案为125【点睛】这道题考察的是等边三角形的性质全等三角形的判定和性 解析:125【分析】先证明ABC DEA ≌,得到BAC ADE ∠∠=,再根据三角形内角和得到所求角中两角的和BAC DAE ∠+∠,最后与等边三角形内角CAD ∠相加就得到结果.【详解】解:ACD 是等边三角形,AC AD ∴=,60CAD ∠︒=在ABC 与DEA 中, =⎧⎪=⎨⎪=⎩AB DE BC AE AC AD ABC DEA SSS ∴≌()BAC ADE ∴∠∠=18011565BAC DAE ADE DAE ∴∠+∠∠+∠︒-︒︒===6560125BAE BAC DAE CAD ∴∠∠+∠+∠︒+︒︒===故答案为125.【点睛】这道题考察的是等边三角形的性质,全等三角形的判定和性质,三角形内角和的概念.解题的关键在于熟练掌握这些相关知识点.16.【分析】过点D 作DF ⊥BC 垂足为F 根据角平分线的性质得到FD=DE 再利用面积求DE 即可【详解】解:过点D 作DF ⊥BC 垂足为F ∵BD 是△ABC 的角平分线DE ⊥ABDF ⊥BC ∴FD=DEDE=4故答案为解析:【分析】过点D 作DF ⊥BC ,垂足为F ,根据角平分线的性质得到FD=DE ,再利用面积求DE 即可.【详解】解:过点D 作DF ⊥BC ,垂足为F ,∵BD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥BC ,∴FD=DE ,182ABD SAB DE DE =⋅=, 172CBDS BC DF DE =⋅=, ABC ABD DBC S S S =+△△△,8760DE DE +=,DE=4,故答案为:4.【点睛】本题考查是角平分线的性质,解题关键是熟知角平分线性质,作垂线,利用面积求DE . 17.66°【分析】根据等腰三角形的性质可知∠MON=∠PAO 再用外角的性质求解即可【详解】解:由作图可知PO=PA ∴∠MON=∠PAO=33°∠APN=∠MON+∠PAO=66°故答案为:66°【点睛】解析:66°【分析】根据等腰三角形的性质可知∠MON=∠PAO ,再用外角的性质求解即可.【详解】解:由作图可知,PO=PA ,∴∠MON=∠PAO=33°,∠APN =∠MON+∠PAO=66°,故答案为:66°.【点睛】本题考查了等腰三角形的性质和外角的性质,解题关键是通过作图得到等腰三角形,依据等腰三角形的性质熟练计算.18.6【分析】作点P 关于OA 对称的点作点P 关于OB 对称的点连接与OA 交于点E 与OB 交于点F 此时△PEF 的周长最小然后根据∠AOB=30°结合轴对称的性质证明△是等边三角形从而可得答案【详解】解:如图作点解析:6【分析】作点P 关于OA 对称的点1P ,作点P 关于OB 对称的点2P ,连接1122,,,OP PP OP 12PP 与OA 交于点E ,与OB 交于点F ,此时△PEF 的周长最小,然后根据∠AOB=30°,结合轴对称的性质证明△12OPP 是等边三角形,从而可得答案.【详解】解:如图,作点P 关于OA 对称的点1P ,作点P 关于OB 对称的点2P ,连接1122,,,OP PP OP 12PP 与OA 交于点E ,与OB 交于点F ,此时△PEF 的周长最小.此时△PEF 的周长就是12PP 的长,由轴对称的性质可得:12,,POE POE P OF POF ∠=∠∠=∠12OP OP OP ==()122222,POP POE POF POE POF AOB ∴∠=∠+∠=∠+∠=∠∵∠AOB=30°,∴1260POP ∠=︒,∴△12OPP 是等边三角形.6OP =,∴121 6.PP OP OP ===∴△PEF 周长的最小值是6.故答案为:6.【点睛】本题考查轴对称最短路径问题,关键是确定E ,F 的位置,本题的突破点是证明△12OPP 是等边三角形.19.【分析】利用等腰三角形的性质判定证明BD=AD 利用直角三角形中30°角的性质计算BD 即可得解【详解】∵∴∠A=30°∠ABC=120°∵∴∠CBD=90°BD=1∴∠DBA=30°∴∠DBA=∠A ∴ 解析:1.【分析】利用等腰三角形的性质,判定,证明BD=AD ,利用直角三角形中30°角的性质计算BD 即可得解.【详解】∵AB BC =,30C ∠=︒,∴∠A=30°,∠ABC=120°,∵BD BC ⊥,2CD =,∴∠CBD=90°,BD=1,∴∠DBA=30°,∴∠DBA=∠A ,∴BD=AD ,∴AD=1.【点睛】本题考查了等腰三角形的判定和性质,直角三角形的性质,熟练掌握性质,并灵活运用性质是解题的关键.20.①③④【分析】利用平行线的性质∠C=∠FBD 则可证明∠C=∠ABC 于是可根据等腰三角形的性质对①②进行判断;过D 点作DH ⊥AB 如图利用角平分线的性质得到DE=DHDH=DF 则可对③进行判断;证明△A解析:①③④【分析】利用平行线的性质∠C=∠FBD ,则可证明∠C=∠ABC ,于是可根据等腰三角形的性质对①②进行判断;过D 点作DH ⊥AB ,如图,利用角平分线的性质得到DE=DH ,DH=DF ,则可对③进行判断;证明△ADE ≌△ADH 得到AH=AE ,同理可得BH=BF ,则可对④进行判断.【详解】解:∵BC 恰好平分∠ABF ,∴∠ABC=∠FBD ,∵AC ∥BF ,∴∠C=∠FBD ,∴∠C=∠ABC ,∴△ABC 为等腰三角形,∵AD 平分∠BAC ,∴AD ⊥BC ,CD=BD ,∴AD 是ABC ∆的高;ABC ∆是等腰三角形;所以①正确;②错误;过D 点作DH ⊥AB 于H ,如图,∵AD 平分∠BAC ,DE ⊥AC ,DH ⊥AB ,∴DE=DH ,∵AC ∥BF ,DE ⊥AC ,∴DF ⊥BF ,∵BD 平分∠ABF ,DH ⊥AB ,∴DH=DF ,∴DE=DF ,所以③正确;在△ADE 和△ADH 中,AD AD DE DH =⎧⎨=⎩, ∴△ADE ≌△ADH (HL ),∴AH=AE ,同理可得BH=BF ,∴AB=AH+BH=AE+BF ,所以④正确.故答案为:①③④.【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了平行线的性质和等腰三角形的性质.三、解答题21.(1)见解析;(2)见解析;(3)△ACF 是等腰三角形,理由见解析【分析】(1)由AAS 证明△ACD ≌△CBF 即可;(2)由全等三角形的性质得CD =BF ,由CD =BD ,得BF =BD ,证出∠ABC =∠ABF ,由等腰三角形的性质即可得出结论;(3)由全等三角形的性质得AD =CF ,由垂直平分线的性质得AD =AF ,得出AF =CF 即可.【详解】(1)证明:∵CE ⊥AD ,∠BCF +∠ADC =90°,∵∠BCA =90°,BF ∥AC ,∴∠CBF =180°﹣∠BCA =90°,∴∠BCF +∠CFB =90°,∴∠CFB =∠ADC ,在△ACD 和△CBF 中,ACD CBF ADC CFB AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△CBF (AAS );(2)证明:由(1)得:△ACD ≌△CBF ,∴CD =BF ,∵D 为BC 的中点,∴CD =BD ,∴BF =BD ,∵∠BCA =90°,AC =BC ,∴∠ABC =45°,∴∠ABF =90°﹣∠ABC =45°,∴∠ABC =∠ABF ,∵BF =BD ,∴AB 垂直平分DF ;(3)解:△ACF 是等腰三角形,理由如下,如图:连接AF由(1)得:△ACD ≌△CBF ,∴AD =CF ,由(2)得:AB垂直平分DF,∴AD=AF,∴AF=CF,∴△ACF是等腰三角形.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的判定和性质,直角三角形的性质,线段垂直平分线的性质等知识,熟练掌握等腰三角形的判定与性质,全等三角形的判定定理是解题关键.22.(1)22°;(2)19.【分析】(1)利用三角形内角和求得∠C=40°,利用垂直平分线的性质,求得∠DAC=40°,最后计算∠BAD的度数即可;(2)利用周长的定义,垂直平分线的性质计算即可.【详解】解:(1)∵∠BAC=62°,∠B=78°,∴∠C=180°﹣∠BAC﹣∠B=180°﹣62°﹣78°=40°,∵DE垂直平分AC,∴AD=CD,∴∠CAD=∠C=40°,∴∠BAD=∠BAC﹣∠CAD=62°﹣40°=22°;(2)∵AD=CD,AB=8,BC=11,∴△ABD的周长=AB+AD+BD=AB+CD+BD=AB+BC=8+11=19.【点睛】本题考查了三角形的内角和定理,线段垂直平分线的性质,熟练运用定理和性质是解题的关键.23.见解析【分析】(1)先作线段AB的垂直平分线DE,再延长BC即可;(2)先利用直角三角形的性质求∠ABC= 60︒,再垂直平分线的性质得到∠ABE=∠A=30︒,再求出∠EBC=∠ABC-∠ABE=30︒,即可得到∠EBC=∠ABE,得到答案;(3)证明:先利用直角三角形的性质求∠DEB=90︒-∠ABE =60︒再利用三角形外角的性质求∠EFB=∠DEB-∠EBC=60︒-30︒=30︒,进而得∠EFB=∠EBC,证得BE=EF,又因为AE= BE,利用等量代换即可求得答案.【详解】(1)如图,即为所求;(2)证明:∵DE是AB的垂直平分线∴DE⊥AB∴AE=BE∵∠A=30︒,∠ACB=90︒∴∠ABE=∠A=30︒,∠ABC=90︒-∠A=60︒∴∠EBC=∠ABC-∠ABE=60︒-30︒=30︒∴∠EBC=∠ABE∴EB平分∠ABC.(3)证明:∵DE是AB的垂直平分线∴DE⊥AB∴∠DEB=90︒-∠ABE =60︒∴∠EFB=∠DEB-∠EBC=60︒-30︒=30︒∴∠EFB=∠EBC∴BE=EF又∵AE= BE∴AE=EF【点睛】本题考查了尺规作图和垂直平分线性质得应用,解决此题的关键利用尺规作图,画出图形.24.(1)①AE=BF;②见解析;(2)AE=BF﹣CD或AE=CD﹣BF【分析】(1)①如图1,根据已知条件得到△ABC是等边三角形,由等边三角形的性质得到AD=AB=BC,∠DAB=∠ABC=60°,由邻补角的性质得到∠EAD=∠FBD=120°,推出△ADE≌△BDF,根据全等三角形的性质即可得到结论;②证明:在BE上截取BG=BD,连接DG,得到△GBD是等边三角形.同理,△ABC也是等边三角形.求得AG=CD,通过△DGE≌△DBF,得到GE=BF,根据线段的和差即可得到结论;(2)如图3,连接DG,由(1)知,GE=BF,AG=CD,根据线段的和差和等量代换即可得到结论;如图4,连接DG,由(1)知,GE=BF,AG=CD,根据线段的和差和等量代换即可得到结论.【详解】解:(1)①如图1,∵BA=BC,∠EBD=60°,∴△ABC是等边三角形,∴AD=AB=BC,∠DAB=∠ABC=60°,∴∠EAD=∠FBD=120°,∵DE=DF,∴∠E=∠F,在△AEC与△BCF中,E FEAD FBDAD BD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADE≌△BDF(AAS),∴AE=BF;故答案为:AE=BF;②证明:在BE上截取BG=BD,连接DG,∵∠EBD=60°,BG=BD,∴△GBD是等边三角形.同理,△ABC也是等边三角形.∴AG=CD,∵DE=DF,∴∠E=∠F.又∵∠DGB=∠DBG=60°,∴∠DGE=∠DBF=120°,在△DGE与△DBF中,E FEGD FBDDG BD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DGE≌△DBF(AAS),∴GE=BF,∴AE=BF+CD;(2)如图3,在BE上截取BG=BD,连接DG,由(1)知,GE=BF,AG=CD,∴AE=EG﹣AG;∴AE=BF﹣CD,如图4,在BE上截取BG=BD,连接DG,由(1)知,GE=BF,AG=CD,∴AE=AG﹣EG;∴AE=CD﹣BF,故AE=BF﹣CD或AE=CD﹣BF.【点睛】本题考查等腰三角形的性质、等边三角形的判定与性质、全等三角形的判定与性质,解答的关键是熟练掌握相关知识的运用,利用截长补短的方法做辅助线构造全等三角形和等边三角形,运用类比的方法解决问题.25.(1)直角三角形,理由见解析;(2)325 12cm【分析】(1)根据勾股定理的逆定理得出答案即可;(2)根据勾股定理求出AC,再求出ABC的周长即可.【详解】解:(1)BDC是直角三角形,理由是:∵BC=13cm,BD=12cm,CD=5cm,∴BD2+CD2=BC2,∴∠D=90°,即BDC是直角三角形;(2)设AB=AC=x cm,在Rt ADC中,由勾股定理得:AD2+DC2=AC2,即(12-x)2+52=x2,解得:x=169 24,∴AB=AC=16924(cm),∵BC=13cm,∴△ABC的周长=AB+AC+BC=16924+16924+13=32512(cm).【点睛】本题考查了勾股定理和勾股定理的逆定理,熟记勾股定理的逆定理是解此题的关键.26.(1)见解析;(2)见解析【分析】(1)利用HL即可证明;(2)根据全等三角形的性质可得∠ABP=∠BAP,从而得到PA=PB,即可得证.【详解】解:(1)∵∠C=∠D=Rt∠,AC=BD,AB=BA,∴Rt△ABC≌Rt△BAD(HL);(2)∵Rt△ABC≌Rt△BAD,∴∠ABP=∠BAP,∴PA=PB,∴△PAB是等腰三角形.【点睛】本题主要考查了全等三角形的判定及性质,证明Rt△ABC≌Rt△BAD是解题的关键.。

初二下册数学证明题及答案

初二下册数学证明题及答案
AC.
D
A ( 1)求证: BG FG;
(2)若 AD DC 2,求 AB 的长.
B
G
C
E
2016 全新精品资料 - 全新公文范文 -全程指导写作 –独家原创 1 / 48
精品文档
二:如图,已知矩形 ABCD,延长 CB 到 E,使 CE=CA,连结 AE 并取中点 F,连结 AE 并取中点 F,连结 BF、DF,求证 BF ⊥ DF。
2016 全新精品资料 - 全新公文范文 -全程指导写作 –独家原创 4 / 48
精品文档 k 的图象过点 D,则其 x
于点 F, 一:解:( 1
, DE⊥ AC ABC 90°
ABC AFE.
A AC AE EAF
CAB,
ABC≌△ AFE AB AF. 连接 AG,
AG= AG,AB= AF, B D F
2016 全新精品资料 - 全新公文范文 -全程指导写作 –独家原创 10 / 48
G
E 篇二 : 《初二数学下册证明题 ( 中等难题 _含答案 ) 》
一.计算题
21
66 ( 6)6
(6x
40 39(简便计算)
4)(3x
2)
2016 全新精品资料 - 全新公文范文 -全程指导写作 –独家原创 7 / 48
精品文档 33
( a b)( a b)
(a
(a b c)2
b c)(a b c)
六、 (6 分 ) 、如图, P 是正方形 ABCD对角线 BD上一点, PE ⊥DC,PF⊥ BC,E、F 分别为垂足, 若 CF=3,CE=4,求 AP的长 .
七、 (8 分 ) 如图,等腰梯形 ABCD中, AD∥ BC,M、 N 分别是 AD、 BC的中点, E、 F 分别是 BM、

(完整版)初二数学经典难题(带答案及解析)

(完整版)初二数学经典难题(带答案及解析)

初二数学经典难题一、解答题(共10小题,满分100分)1.(10分)已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=15°.求证:△PBC是正三角形.(初二)2.(10分)已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN 于E、F.求证:∠DEN=∠F.3.(10分)如图,分别以△ABC的边AC、BC为一边,在△ABC外作正方形ACDE和CBFG,点P是EF的中点,求证:点P到AB的距离是AB的一半.4.(10分)设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA.求证:∠PAB=∠PCB.5.(10分)P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长.6.(10分)一个圆柱形容器的容积为V立方米,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水.向容器中注满水的全过程共用时间t分.求两根水管各自注水的速度.7.(10分)(2009•郴州)如图1,已知正比例函数和反比例函数的图象都经过点M(﹣2,﹣1),且P(﹣1,﹣2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B.(1)写出正比例函数和反比例函数的关系式;(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;(3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.8.(10分)(2008•海南)如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在线段BC上,且PE=PB.(1)求证:①PE=PD;②PE⊥PD;(2)设AP=x,△PBE的面积为y.①求出y关于x的函数关系式,并写出x的取值范围;②当x取何值时,y取得最大值,并求出这个最大值.9.(10分)(2010•河南)如图,直线y=k1x+b与反比例函数(x>0)的图象交于A(1,6),B(a,3)两点.(1)求k1、k2的值.(2)直接写出时x的取值范围;(3)如图,等腰梯形OBCD中,BC∥OD,OB=CD,OD边在x轴上,过点C作CE⊥OD于点E,CE和反比例函数的图象交于点P,当梯形OBCD的面积为12时,请判断PC和PE的大小关系,并说明理由.10.(10分)(2007•福州)如图,已知直线y=x与双曲线交于A,B两点,且点A的横坐标为4.(1)求k的值;(2)若双曲线上一点C的纵坐标为8,求△AOC的面积;(3)过原点O的另一条直线l交双曲线于P,Q两点(P点在第一象限),若由点A,B,P,Q为顶点组成的四边形面积为24,求点P的坐标.初二数学经典难题参考答案与试题解析一、解答题(共10小题,满分100分)1.(10分)已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=15°.求证:△PBC是正三角形.(初二)考点:正方形的性质;全等三角形的判定与性质;等边三角形的性质;等边三角形的判定。

北师大版初中数学八年级下册第一单元《三角形的证明》(困难)(含答案解析)

北师大版初中数学八年级下册第一单元《三角形的证明》(困难)(含答案解析)

北师大版初中数学八年级下册第一单元《三角形的证明》(困难)(含答案解析)考试范围:第一单元;   考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项)1. 如图,DA=DB=DC,则x的值是.( )A. 10B. 20C. 30D. 402. 在△ABC中,∠A=∠B,则.( )A. AB=ACB. BA=BCC. CA=CBD. 不能确定3. 在△ABC中,已知a,b,c分别是∠A,∠B,∠C的对边,则下列条件中,不能判定△ABC是等腰三角形的是( )A. a=3,b=3,c=4B. a:b:c=2:3:4C. ∠B=50∘,∠C=80∘D. ∠A:∠B:∠C=1:1:24. 在如图所示的4×4正方形网格中,∠1+∠2+∠3+∠4+∠5+∠6+∠7为.( )A. 330∘B. 315∘C. 310∘D. 320∘5. 将一副三角尺按如图所示的方式放置,则∠1与∠2的和是.( )A. 60∘B. 45∘C. 30∘D. 25∘6. 如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC为0.7米,梯子顶端到地面的距离AC为2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离A′D为1.5米,则小巷的宽为( )A. 2.5米B. 2.6米C. 2.7米D. 2.8米7. 如图,要用“HL”判断Rt△ABC和Rt△DEF全等的条件是( )A. AC=DF,BC=EFB. ∠A=∠D,AB=DEC. AC=DF,AB=DED. ∠B=∠E,BC=EF8. 如果三角形两条边上的垂直平分线的交点在第三条边上,那么这个三角形是.( )A. 锐角三角形B. 等腰三角形C. 直角三角形D. 等腰直角三角形9. 如图,AC垂直平分BD,垂足为点E,连接AB,AD,BC,CD,下列结论不一定成立的是.( )A. AB=ADB. CA平分∠BCDC. AB=BDD. △BEC≌△DEC10. 如图,三个居民小区在△ABC的顶点上,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在.( )A. AC,BC两边高线的交点处B. AC,BC两边中线的交点处C. AC,BC两边中垂线的交点处D. ∠A,∠B两角平分线的交点处11. 如图,在四边形ABCD中,BE⊥AC于点E,连接DE,四边形ABCD的面积为12cm2,若BE平分∠ABC,则四边形ABED的面积为.( )A. 4cm2B. 6cm2C. 8cm2D. 10cm212. ▵ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线交于点O,则S△ABO∶S△BCO∶S△CAO=( )A. 1:1:1B. 1:2:3C. 2:3:4D. 3:4:5第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 如图,∠A=20∘,∠C=40∘,∠ADB=80∘,则图中等腰三角形共有个,分别是.14. 如图,小明和小芳以相同的速度分别同时从A,B出发,小明沿AC行走,小芳沿BD行走,并同时到达C,D.若CB⊥AB,DA⊥AB,则CB DA.(填“>”“<”或“=”)15. 如图,过正方形ABCD的顶点B作直线a,分别过点A,C作直线a的垂线,垂足分别为点E,F.若AE=1,CF=3,则AB=.16. 如图,D是∠ABC平分线上一点,E,F分别在AB,BC上,且DE=DF.若∠BED=130∘,则∠BFD等于.三、解答题(本大题共9小题,共72.0分。

(word完整版)八年级数学几何证明题技巧(含答案),推荐文档

(word完整版)八年级数学几何证明题技巧(含答案),推荐文档

D 几何证明题的技巧1.几何证明是平面几何中的一个重要问题,它有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。

这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。

2.掌握分析、证明几何问题的常用方法:(1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题解决;(2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止;(3)分析综合法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。

3.掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。

在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。

1、证明线段相等或角相等两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。

很多其它问题最后都可化归为此类问题来证。

证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。

例1. 已知:如图1 所示,∆ABC 中,∠C = 90︒,AC =BC,AD =DB,AE =CF 。

求证:DE=DF AEC F B图1分析:由∆ABC 是等腰直角三角形可知,∠A =∠B = 45︒,由D 是AB 中点,可考虑连结CD,易得CD =AD ,∠DCF = 45︒。

从而不难发现∆DCF ≅∆DAE证明:连结CDAC =BC∴∠A =∠B∠ACB = 90︒,AD =DB∴CD =BD =AD,∠DCB =∠B =∠AAE =CF,∠A =∠DCB,AD =CD∴∆ADE ≅∆CDF∴DE =DF说明:在直角三角形中,作斜边上的中线是常用的辅助线;在等腰三角形中,作顶角的平分线或底边上的中EF2 3 1线或高是常用的辅助线。

八年级下册数学期中好题必刷 专题01 三角形的证明(北师大版)(解析版)

八年级下册数学期中好题必刷 专题01 三角形的证明(北师大版)(解析版)

专题01 三角形的证明一、单选题1.(广东韶关·八年级期中)若三角形内一点到三边的距离相等,则这个点是()A.三条边的垂直平分线的交点B.三条中线的交点C.三条高的交点D.三条角平分线的交点【答案】D【提示】根据角平分线的判定定理到角两边距离相等的点在角平分线上,得出到到三边的距离相等的点是三角形三个角的平分线交点即可.【解答】解:根据角平分线的判定定理:到角两边距离相等的点在角平分线上,∴到到三边的距离相等的点是三角形三个角的平分线交点.故选择D.【点睛】本题考查角平分线的判定,以及角平分线交点的性质,掌握角平分线的判定与性质是解题关键.2.(湖北省直辖县级单位·八年级期中)如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB =10,S△ABD=15,则CD的长为()A.3 B.4 C.5 D.6【答案】A【提示】过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后利用△ABD的面积列式计算即可得解.【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC, ∴DE=CD,∴S△ABD=12AB×DE=12×10×DE=15,解得DE=3,∴CD=DE=3,故选:A.【点睛】本题考查了三角形的面积和角平分线的性质,能熟记角平分线上的点到角两边的距离相等是解此题的关键.3.(黑龙江·牡丹江四中八年级期中)等腰三角形底边长为5,一腰上的中线把周长分成两部分的差为3cm,则腰长为()A.8cm或2cm B.2cm C.8cm D.8cm或25cm【答案】C【提示】根据题意,画出图形,然后分两种情况讨论,即可求解.【解答】解:如图,CD为△ABC的中线,AB=AC,底边BC=5cm,∴AD=BD,根据题意得:当(AD+AC+CD)-(BD+BC+CD)=3cm时,则AC-BC=3cm,∴AB=AC=8cm;当(BD+BC+CD)-(AD+AC+CD)=3cm时,则BC -AC =3cm,∴AB=AC=2cm,∵4AB AC BC +=<,不合题意,舍去; 综上所述,腰长为8cm . 故选:C 【点睛】本题主要考查了等腰三角形的性质,熟练掌握等腰三角形的两腰相等是解题的关键. 4.(山东济宁·八年级期中)如图,已知ABC 是等边三角形,点B ,C ,D ,E 在同一直线上,且CG CD =,DF DE =,则E ∠=( )A .30°B .20°C .15°D .10°【答案】C 【提示】由于△ABC 是等边三角形,那么∠B =∠1=60°,而CD =CG ,那么∠CGD =∠2,而∠1是△CDG 的外角,可得∠1=2∠2,同理有∠2=2∠E ,等量代换有4∠E =60°,即可求得∠E . 【解答】 解:如图所示,∵△ABC 是等边三角形, ∴∠B =∠1=60°, ∵CD =CG , ∴∠CGD =∠2,∴∠1=∠CGD +∠2=2∠2, ∵DF =DE , ∴∠DFE =∠E ,∴∠2=∠DFE +∠E =2∠E , ∴4∠E =60°, ∴∠E =15°. 故选:C . 【点睛】本题考查了等边三角形的性质、等腰三角形的性质、三角形外角的性质,解题的关键是利用外角性质得出∠1=2∠2,∠2=2∠E .5.(辽宁·沈阳市第四十三中学八年级期中)如图,在△ABC 中,∠C =90°,∠B =15°,AB 的垂直平分线交BC 于D ,交AB 于E ,若DB =10cm,则CD 的长为( )A .5B .3C .55D .10【答案】B 【提示】利用线段垂直平分线的性质求得AD =BD =10 cm,及∠ADC =30°,再利用含30度角的直角三角形的性质以及勾股定理即可求解. 【解答】解:∵AB 的垂直平分线交BC 于D ,交AB 于E , ∴AD =BD =10 cm,∠DBA =∠BAD =15°, ∴∠ADC =30°, ∴AC =12AD =5(cm ),CD 222210553AD AC --=cm ). 故选:B 【点睛】本题考查了含30°角的直角三角形,勾股定理,解题的关键是:熟记含30°角的直角三角形的性质,线段垂直平分线的性质及三角形的外角性质.6.(重庆市凤鸣山中学八年级期中)如图,在ABC 中,AB AC =,36A ∠=︒,AB 的中垂线DE 交AC 于点D ,交AB 于点E ,下述结论中正确的是( )A .点D 是线段AC 的中点B .AD BD BC == C .BDC 的周长等于AB CD + D .BD 平分EDC ∠【答案】B 【提示】由在△ABC 中,AB =AC ,∠A =36°,根据等边对等角与三角形内角和定理,即可求得∠ABC 与∠C 的度数,又由AB 的垂直平分线是DE ,根据线段垂直平分线的性质,即可求得AD =BD ,继而求得∠ABD 的度数,则可知BD 平分∠ABC ;可得△BCD 的周长等于AB +BC ,又可求得∠BDC 的度数,求得AD =BD =BC ,则可求得答案;注意排除法在解选择题中的应用. 【解答】解:∵36A ∠=︒,AB AC =, ∴72ABC C ∠=∠=︒, ∵DE 垂直平分AB , ∴AD BD =, ∴36ABD A ∠=∠=︒, ∴36DBC ∠=︒, ∵C DBC ∠>∠, ∴BD >CD , ∴AD >CD ,∴点D 不是线段AC 的中点,故A 错误; ∵∠DBC =36°,∠C =72°,∴∠BDC =180°−∠DBC −∠C =72°, ∴∠BDC =∠C , ∴BD =BC ,∴AD =BD =BC ,故B 正确;∴△BCD 的周长为:BC +CD +BD =BC +CD +AD =BC +AC =BC +AB ,故C 错误; ∵在△ABC 中,AB =AC ,∠A =36°,∴∠ABC=∠C=180362︒-︒=72°,∵AB的垂直平分线是DE,∴AD=BD,∴∠ABD=∠A=36°,∴∠DBC=∠ABC−∠ABD=72°−36°=36°,∴72BCD BDC∠=∠=︒,∵9054EDB ABD∠=︒-∠=︒,∴EDB BDC∠≠∠,故D错误;故选:B.【点睛】此题考查了等腰三角形的性质,线段垂直平分线的性质以及三角形内角和定理等知识.此题综合性较强,但难度不大,解题的关键是注意数形结合思想的应用,注意等腰三角形的性质与等量代换.7.(江苏苏州·八年级期中)如图,四边形ABCD中,AC、BD是对角线,△ABC是等边三角形,∠ADC=30°,AD=4,BD=6,则CD的长为()A.25B.5 C.2 D.213【答案】A【提示】将△BCD绕点C顺时针旋转60°得到△ACE,连接CE,DE,由旋转的性质知DC=EC、∠DCE=∠ACB=60°、BD=AE=6,即可得△DCE为等边三角形,根据∠ADC=30°得到∠ADE=90°,根据勾股定理即可得到结论.【解答】解:如图所示,将△BCD绕点C顺时针旋转60°得到△ACE,连接CE,DE,由旋转的性质知DC =EC ,∠DCE =∠ACB =60°,BD =AE =6, 则△DCE 为等边三角形, ∵∠ADC =30°, ∴∠ADE =90°, ∴AD 2+DE 2=AE 2, ∴42+DE 2=62, ∴DE =CD =25. 故选:A . 【点睛】本题考查旋转变换,熟练掌握旋转变换的性质、等边三角形的判定与性质、勾股定理,正确的作出辅助线是解题的关键.8.(福建·龙岩二中八年级期中)如图,在Rt ACB 中,90BAC ∠=︒,AD BC ⊥垂足为D .ABD △与'ADB 关于直线AD 对称,点B 的对称点是点'B ,若'14B AC ∠=︒,则B 的度数为( )A .38︒B .48︒C .52︒D .54︒【答案】D 【提示】通过折叠角相等,∠BAD +∠B ´AD +∠B ´AC =90°计算得∠BAD ,进而用余角进行计算. 【解答】解:∵∠BAD +∠B ´AD +∠B ´AC =90°,且∠BAD =∠B ´AD ,∠B ´AC =14°, ∴∠BAD =38°, ∴∠B =90°−38°=52°. 故选:D . 【点睛】本题考查折叠以及直角三角形中角的转化与计算,属于中考常考题型.9.(福建师范大学附属中学初中部八年级期中)如图,直线m 是△ABC 中BC 边的垂直平分线,点P是直线m 上的一动点,若AB =5,AC =4,BC =6,则△APC 周长的最小值是( )A .9B .10C .11D .12.5【答案】A 【提示】根据垂直平分线的性质BP PC =,所以APC △周长9AC AP PC AC AP BP AC AB =++=++≥+=. 【解答】∵直线m 是ABC 中BC 边的垂直平分线, ∴BP PC =∴APC △周长AC AP PC AC AP BP =++=++ ∵两点之间线段最短 ∴AP BP AB +≥APC ∴的周长AC AP BP AC AB =++≥+ 4AC =,5AB =∴APC △周长最小为9AC AB += 故选:A 【点睛】本题主要考查线段垂直平分线的性质定理,以及两点之间线段最短.做本题的关键是能得出AP BP AB +≥,做此类题的关键在于能根据题设中的已知条件,联系相关定理得出结论,再根据结论进行推论.10.(2022·全国·八年级期中)如图,等腰ABC 中,AB AC =,120BAC ∠=︒,AD DC ⊥于D ,点O 是线段AD 上一点,点P 是BA 延长线上一点,若OP OC =,则下列结论:①30APO DCO ∠+∠=︒;②APO DCO ∠=∠;③POC △是等边三角形;④AB OA AP =+.其中正确的是( )A.①③④B.①②③C.②③④D.①②③④【答案】A【提示】①利用等边对等角得:∠APO=∠ABO,∠DCO=∠DBO,则∠APO+∠DCO=∠ABO+∠DBO=∠ABD,据此即可求解;②因为点O是线段AD上一点,所以BO不一定是∠ABD的角平分线,可作判断;③证明∠POC=60°且OP=OC,即可证得△OPC是等边三角形;④证明△OP A≌△CPE,则AO =CE,得AC=AE+CE=AO+AP.【解答】解:①如图1,连接OB,∵AB=AC,AD⊥BC,∴BD=CD,∠BAD=12∠BAC=12×120°=60°,∴OB=OC,∠ABC=90°﹣∠BAD=30°∵OP=OC,∴OB=OC=OP,∴∠APO=∠ABO,∠DCO=∠DBO,∴∠APO+∠DCO=∠ABO+∠DBO=∠ABD=30°,故①正确;②由①知:∠APO=∠ABO,∠DCO=∠DBO,∵点O是线段AD上一点,∴∠ABO与∠DBO不一定相等,则∠APO与∠DCO不一定相等,故②不正确;③∵∠APC+∠DCP+∠PBC=180°,∴∠APC+∠DCP=150°,∵∠APO+∠DCO=30°,∴∠OPC+∠OCP=120°,∴∠POC=180°﹣(∠OPC+∠OCP)=60°, ∵OP=OC,∴△OPC是等边三角形,故③正确;④如图2,在AC上截取AE=P A,∵∠P AE=180°﹣∠BAC=60°,∴△APE是等边三角形,∴∠PEA=∠APE=60°,PE=P A,∴∠APO+∠OPE=60°,∵∠OPE+∠CPE=∠CPO=60°,∴∠APO=∠CPE,∵OP=CP,在△OP A和△CPE中,PA PEAPO CPEOP CP=⎧⎪∠=∠⎨⎪=⎩,∴△OP A≌△CPE(SAS),∴AO=CE,∴AC=AE+CE=AO+AP,∴AB=AO+AP,故④正确;正确的结论有:①③④,故选:A.【点睛】本题主要考查了全等三角形的判定与性质、等腰三角形的判定与性质、等边三角形的判定与性质等知识,正确作出辅助线是解决问题的关键.二、填空题11.(云南·弥勒市长君实验中学八年级期中)一个等腰三角形一腰上的高与另一腰的夹角为50°,则该等腰三角形的顶角度数为__________.【答案】40°或140°【提示】本题要分情况讨论.当等腰三角形的顶角是钝角或者等腰三角形的顶角是锐角两种情况.【解答】解:①当为锐角三角形时,如图1,∵∠ABD=50°,BD⊥AC,∴∠A=90°−50°=40°,∴三角形的顶角为40°;②当为钝角三角形时,如图2,∵∠ABD=50°,BD⊥AC,∴∠BAD=90°−50°=40°,∵∠BAD+∠BAC=180°,∴∠BAC=140°∴三角形的顶角为140°,故答案为40°或140°.【点睛】本题主要考查了等腰三角形的性质及三角形内角和定理,做题时,考虑问题要全面,必要的时候可以做出模型帮助解答,进行分类讨论是正确解答本题的关键,难度适中.12.(上海市西南位育中学八年级期中)如图在△ABC中,AB=AC,BF=CD,BD=CE,∠FDE=70°,那么∠A=_____.【答案】40°【提示】先证明△BDF≌△CED,得到∠BFD=∠CDE,根据三角形的内角和与平角的定义推出∠FDE与∠B相等,再利用三角内角和定理整理即可得出结论.【解答】解:∵AB=AC,∴∠B=∠C,在△BDF和△CED中,BF CDB CBD CE⎧⎪∠∠⎨⎪⎩===,∴△BDF≌△CED(SAS),∴∠BFD=∠CDE,∴∠FDE=180°-∠CDE-∠BDF=180°-∠BFD-∠BDF=∠B,∵∠FDE=70°,∴∠B=70°,∵∠B+∠C+∠A=180°,∴∠A=40°.故答案为:40°.【点睛】本题考查了三角形全等的性质与判定.解题的关键是通过三角形全等利用角的等量代换得到∠FDE =∠B .13.(山东济宁·八年级期中)如图,AD 是ABC 中BAC ∠的角平分线,DE AB ⊥于点E ,7ABC S =△,2DE =,4AB =,则AC 长是______.【答案】3 【提示】作DF ⊥AC 于点F ,由角平分线的性质可得DF =DE =2,然后根据三角形的面积公式求解. 【解答】解:作DF ⊥AC 于点F ,∵AD 是ABC 中BAC ∠的角平分线,DE AB ⊥, ∴DF =DE =2, ∵11722AB DE AC DF ⋅+⋅=, ∴11422722AC ⨯⨯+⨯=, ∴AC =3, 故答案为:3.【点睛】本题考查了角平分线的性质,熟练掌握角平分线上的点到角两边的距离相等是解答本题的关键. 14.(北京市师达中学八年级期中)如图,BD 是∠ABC 的平分线,点P 是射线BD 上一点,PE ⊥BA 于点E ,2PE =,点F 是射线BC 上一个动点,则线段PF 的最小值为_________.【答案】2【提示】过P作PH⊥BC,根据垂线段最短得出此时PH的长最小,根据角平分线的性质得出PE=PH,再求出答案即可.【解答】解:过P作PH⊥BC,此时PH的长最小,∵BD是∠ABC的平分线,PH⊥BC,PE⊥BA,∴PE=PH,∵PE=2,∴PH=2,即PF的最小值是2,故答案为:2.【点睛】本题考查了垂线段最短和角平分线的性质,能找出当PF最小时点F的位置是解此题的关键.∠+∠+∠=______°.15.(浙江杭州·八年级期中)如图是单位长度为1的正方形网格,则123【答案】135如图,证明ABC≌AEF可得1390∠+∠=︒,根据等腰直角三角形的性质可得245∠=︒,进而即可求得答案.【解答】解:如图,在ABC与AEF 中AB AEB EBC FE=⎧⎪∠=∠⎨⎪=⎩∴ABC≌AEF∴4=3∠∠1490∠+∠=︒1390∴∠+∠=︒245∴∠=︒123135∴∠+∠+∠=︒故答案为:135【点睛】本题考查了全等三角形的性质与判定,等腰直角三角形的性质,掌握全等三角形的性质与判定是解题的关键.16.(江苏·无锡市江南中学八年级期中)已知直角三角形△ABC的三条边长分别为3,4,5,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画___条.【答案】6【提示】根据等腰三角形的性质分别利用AB,AC为底以及为腰得出符合题意的图形即可.解:如图所示:当BC 2=CC 2,AC 1=AC ,BC =BC 3,BC =CC 4,BC =CC 5,C 6A =C 6B 都能得到符合题意的等腰三角形. 故答案为:6. 【点睛】此题主要考查了等腰三角形的判定以及应用设计与作图等知识,正确利用图形分类讨论得出是解题关键.17.(福建·厦门市湖里中学八年级期中)如图,ABC 中,6AB =,4AC =,AD 平分∠BAC ,DE ⊥AB 于点E ,BF ⊥AC 于点F ,2DE =,则BF 的长为______.【答案】5 【提示】过点D 作DG AC ⊥,根据角平分线的性质可得2DG DE ==,结合图形得出6ABDS=,4ACDS=,10ABCS=,利用等面积法计算即可得出结果.【解答】解:如图所示:过点D 作DG AC ⊥,∵AD 平分BAC ∠,DG AC ⊥,DE AB ⊥,∴2DG DE ==, ∵6AB =,4AC =, ∴1·62ABDS AB DE ==,1·42ACDS AC DG ==, ∴10ABCABDACDS S S=+=,∴1·102ABCSAC BF ==, 即14?102BF ⨯=, 解得:5BF =, 故答案为:5. 【点睛】题目主要考查角平分线的性质及三角形等面积法求三角形的高,理解题意,熟练掌握运用角平分线的性质是解题关键.18.(云南·云大附中八年级期中)如图,在△ABC 中,∠ABC 和∠ACB 的平分线相交于点G ,过点G 作EF //BC 交AB 于E ,交AC 于F ,过点G 作GD AC ⊥于D ,下列五个结论:①EF BE CF =+;②BE CF =;③1902BGC A ∠=︒+∠;④点G 到△ABC 各边的距离相等;⑤设GD m =,AE AF n +=,则AEF S mn =△.其中正确的结论是______(请填写序号).【答案】①③④ 【提示】①根据BG 、CG 为角平分线,且EF ∥BC ,可得△BEG 和△CFG 为等腰三角形,从而得出结论; ②G 为角平分线交点,不能得到BE 和CF 相等;③先根据角平分线的性质得出∠GBC +∠GCB =12(∠ABC +∠ACB ),再由三角形内角和定理即可得出结论;④根据角平分线定理即可得出答案;⑤连接AG,根据三角形面积公式即可得出答案. 【解答】解:①∵∠ABC 和∠ACB 的平分线相交于点G ; ∴∠EBG =∠CBG ,∠FCG =∠BCG .∵EF ∥BC ,∴∠EGB =∠CBG ,∠FGC =∠BCG ; ∴∠EBG =∠EGB ,∠FGC =∠FCG , ∴EB =EG ,FG =FC ,∴EF =EG +FG =BE +CF ,故本小题正确;②G 点是角平分线的交点,G 不一定是EF 中点,故本小题错误; ③∵∠ABC 和∠ACB 的平分线相交于点G ; ∴∠GBC +∠GCB =12ABC ACB ∠+∠()=18012A ︒-∠(),∴∠BGC =180GBC GCB ︒-∠+∠()=11180802A ︒-︒-∠()=190+2A ︒∠,故本小题正确; ④∵CG 平分∠ACB ,∴G 到AC 、BC 的距离相等; ∵BG 平分∠ABC ,∴G 到AB 、BC 的距离相等; ∴G 到三边的距离都相等,故本小题正确;⑤连接AG ,∵点G 是角平分线的交点,GD m =,AE AF n +=, ∴1122AEF S AE GD AF GD =⋅+⋅△=()12AE AF GD +⋅=12nm ,故本小题错误. 答案为:①③④【点睛】本题主要考查的是等腰三角形的性质与判定、角平分线的性质、三角形内角和定理,熟练掌握相关内容是解题的关键. 三、解答题19.(广东·深圳市福田区第二实验学校八年级期中)如图,在△ABC 中,AB =4,BC 5点D 在AB 上,且BD =1,CD =2.(1)求证:CD ⊥AB ; (2)求AC 的长. 【答案】(1)见解析 13【提示】(1)根据勾股定理逆定理证明△BCD 是直角三角形,即可得证; (2)先求得AD =AB DB -3=,在Rt △ACD 中,勾股定理求解即可. (1)证明:∵在△BCD 中,BD =1,CD =2,BC 5∴BD 2+CD 2=12+2252=BC 2, ∴△BCD 是直角三角形,且∠CDB =90°, ∴CD ⊥AB ; (2)解:∵CD ⊥AB , ∴∠ADC =90°, ∵AB =4,DB =1, ∴AD =3,在Rt △ACD 中,∵CD =2,∴AC 22AD CD +2232+13∴AC 13 【点睛】本题考查了勾股定理以及勾股定理的逆定理,掌握勾股定理是解题的关键. 20.(天津·八年级期中)如图,AC BC ⊥,BD AD ⊥,AC 与BD 交于点O ,AC BD =.(1)求证:ΔΔADB BCA ≅; (2)求证:OAB ∆是等腰三角形. 【答案】(1)见解析 (2)见解析 【提示】根据AC BC ⊥,BD AD ⊥可证角相等并等于90度,进而可证Rt ABD Rt BAC ≌; 由(1)可知Rt ABD Rt BAC ≌,进而可证OA OB =,从而可证OAB 是等腰三角形. (1) 证明:AC BC ⊥,BD AD ⊥90D C ∴∠=∠=︒,在Rt ABD △和Rt BAC 中,AC BDAB BA =⎧⎨=⎩, ∴()Rt ABD Rt BAC HL ≌. (2)∵Rt ABD Rt BAC ≌DBA CAB ∴∠=∠,OA OB ∴=,即OAB 是等腰三角形. 【点睛】本题考查直角三角形的判定,全等三角形的性质,等腰三角形的证明,能够找到判定全等所需的条件进行全等判定是解决本题的关键.21.(重庆·八年级期中)点C 、D 都在线段AB 上,且AD BC =,AE BF =,A B ∠=∠,CE 与DF 相交于点G .(1)求证:ΔΔACE BDF ≅; (2)若10CE =,4DG =,求EG 的长. 【答案】(1)见解析 (2)6 【提示】( 1)由“SAS ”可证ΔΔACE BDF ≅;( 2)由全等三角形的性质可得ACE BDF ∠=∠,可得4CG DG ==,即可求解. (1) 证明:AD BC =,AD DC BC DC ∴+=+,AC BD ∴=,在ACE ∆与BDF ∆中, AC BD A B AE BF =⎧⎪∠=∠⎨⎪=⎩, ()ΔΔACE BDF SAS ∴≅;(2)由(1)得:ΔΔACE BDF ≅,ACE BDF ∴∠=∠, 4CG DG ∴==,1046EG CE CG ∴=-=-=.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的判定与性质,证明三角形全等是解题的关键. 22.(广东·珠海市文园中学八年级期中)如图,已知:E 是∠AOB 的平分线上一点,EC ⊥OB ,ED ⊥OA ,C 、D 是垂足,连接CD ,且交OE 于点F .(1)求证:OE是CD的垂直平分线;(2)若∠AOB=60°,请直接写出OE与EF之间的数量关系.【答案】(1)见解析(2)OE=4EF【提示】(1)先根据E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA得出△ODE≌△OCE,可得出OD=OC,DE=CE,OE=OE,可得出△DOC是等腰三角形,由等腰三角形的性质即可得出OE是CD的垂直平分线;(2)先根据E是∠AOB的平分线,∠AOB=60°可得出∠AOE=∠BOE=30°,由直角三角形的性质可得出OE=2DE,同理可得出DE=2EF即可得出结论.(1)证明:∵E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,∴DE=CE,∵OE=OE,∴Rt△ODE≌Rt△OCE,∴OD=OC,∴△DOC是等腰三角形,∵OE是∠AOB的平分线,∴OE是CD的垂直平分线;(2)解:∵OE是∠AOB的平分线,∠AOB=60°,∴∠AOE=∠BOE=30°,∵EC⊥OB,ED⊥OA,∴OE=2DE,∠ODF=∠OED=60°,∴∠EDF=30°,∴OE=4EF.【点睛】本题考查的是角平分线的性质及直角三角形的性质、等腰三角形的判定与性质,熟知以上知识是解答此题的关键.23.(山东·昌乐县教学研究室八年级期中)△ABC中,AB=AC,BD平分∠ABC交AC于点D,从点A作AE∥BC交BD的延长线于点E.(1)若∠BAC=40°,求∠E的度数;(2)点F是BE上一点,且FE=BD.取DF的中点H,请问AH⊥BE吗?试说明理由.【答案】(1)∠E=35°;(2)AH⊥BE.理由见解析.【提示】(1)根据等腰三角形两底角相等,已知顶角,可以求出底角,再根据角平分线的定义求出∠CBD的度数,最后根据两直线平行,内错角相等求出;(2)由“SAS”可证△ABD≌△AEF,可得AD=AF,由等腰三角形的性质可求解.【解答】解:(1)∵AB=AC,∴∠ABC=∠ACB,∵∠BAC=40°,∴∠ABC=12(180°-∠BAC)=70°,∵BD平分∠ABC,∴∠CBD=12∠ABC=35°,∵AE∥BC,∴∠E=∠CBD=35°;(2)∵BD平分∠ABC,∠E=∠CBD, ∴∠CBD=∠ABD=∠E,在△ABD和△AEF中,AB AEE ABDBD EF=⎧⎪∠=∠⎨⎪=⎩,∴△ABD≌△AEF(SAS),∴AD=AF,∵点H是DF的中点,∴AH⊥BE.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质,证明三角形全等是解题的关键.24.(广西柳州·八年级期中)如图,在△ABC中,AB=AC,AB的垂直平分线交AB于N,交AC于M.(1)若∠B=70°,则∠NMA的度数是_________.(2)连接MB,若AB=8cm,BC=6cm.①求△MBC的周长;②在直线MN上是否存在点P,使由P,B,C构成的△PBC的周长值最小?若存在,直接写出△PBC的周长最小值;若不存在,说明理由.【答案】(1)50°;(2)①14cm;②存在,14cm.【提示】(1)根据等腰三角的性质,三角形的内角和定理,可得∠A的度数,根据直角三角形两锐角的关系,可得答案;(2)①根据垂直平分线的性质,可得AM与MB的关系,再根据三角形的周长,可得答案;②根据两点之间线段最短,可得P点与M点的关系,可得PB+PC与AC的关系.【解答】解:(1)∵∠B=70°,AB=AC,∴∠B=∠C=70°,∴∠A=180°-∠B-∠C=50°,∵MN⊥AB,∴∠ANM=90°,∴∠NMA=90°-∠A=50°,故答案为:50°;(2)如图:①∵MN垂直平分AB.∴MB=MA,又∵BC=6cm,AC=BC=8cm,∴△MBC的周长是MB+MC+BC= MA+MC+BC=AC+BC=14(cm);②当点P与M重合时,△PBC周长的值最小,理由:∵PB+PC=P A+PC,P A+PC≥AC,∴P与M重合时,P A+PC=AC,此时PB+PC最小,∴△PBC周长的最小值=AC+BC=8+6=14(cm).【点睛】本题主要考查了轴对称的性质,等腰三角形的性质,线段垂直平分线上的点到线段两端点的距离相等的性质,熟记性质是解题的关键.25.(江苏盐城·八年级期中)如图,AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高.(1)求证:AD垂直平分EF;(2)若AB+AC=10,S△ABC=15,求DE的长.【答案】(1)见解析;(2)3DE(1)由角平分线的性质得DE =DF ,再根据HL 证明Rt △AED ≌Rt △AFD ,得AE =AF ,从而证明结论; (2)根据DE =DF ,得111++()15222ABDACDS SAB ED AC DF DE AB AC ==+=,代入计算即可. 【解答】(1)证明:∵AD 是△ABC 的角平分线,DE 、DF 分别是△ABD 和△ACD 的高, ∴DE =DF ,在Rt △AED 与Rt △AFD 中,AD ADDE DF =⎧⎨=⎩, ∴Rt △AED ≌Rt △AFD (HL ), ∴AE =AF , ∵DE =DF ,∴AD 垂直平分EF ; (2)解:∵DE =DF , ∴111++()15222ABDACDSSAB ED AC DF DE AB AC ==+=, ∵AB +AC =10, ∴DE =3. 【点睛】本题考查了全等三角形的判定与性质,角平分线的性质,解题的关键是掌握这些知识点.26.(湖北武汉·八年级期中)如图,在△ABC 中,∠ACB =90°,∠A =30°,D 为AB 上一点,以CD 为边在CD 右侧作等边△CDE .(1)如图1,当点E 在边AC 上时,求证:DE =AE ;(2)如图2,当点E 在△ABC 内部时,猜想ED 和EA 数量关系;(3)当点E 在△ABC 外部时,过点E 作EH ⊥AB 点H ,EF ∥AB ,CF =2,AH =3.直接写出AB 的长为 .【答案】(1)见解析;(2)ED =EA ,理由见解析;(3)16(1)根据等边三角形的性质、三角形的外角的性质得到∠EDA=∠A,根据等腰三角形的判定定理证明;(2)取AB的中点O,连接CO、EO,分别证明△BCD≌△OCE和△COE≌△AOE,根据全等三角形的性质证明;(3)取AB的中点O,连接CO、EO、EA,根据(2)的结论得到△CEF≌△DCO,根据全等三角形的性质解答.【解答】(1)证明:∵△CDE是等边三角形,∴∠CED=∠DCE=60°,∴∠EDA=60°﹣∠A=30°,∵∠A=30°,∴∠EDA=30°,∴∠EDA=∠B,∴DE=EA;(2)结论:ED=EA,理由:如图2中,取AB的中点O、EO,∵∠ACB=90°,∠BAC=30°,∴∠B=60°,OC=OB,∴△BCO为等边三角形,∴CB=CO=BO=AO,∵△CDE是等边三角形,∴∠BCD=∠OCE,在△BCD和△OCE中,CB COBCD OCECD CE=⎧⎪∠=∠⎨⎪=⎩,∴∠COE=∠B=60°,∴∠AOE=60°,在△COE和△AOE中,OC OACOE AOEOE OE=⎧⎪∠=∠⎨⎪=⎩,∴△COE≌△AOE(SAS),∴EC=EA,∴ED=EA;(3)解:如图3中,取AB的中点O、连接EO,AE,由(2)得△BCD≌△OCE,∴∠COE=∠B=60°,∴∠AOE=60°,同法可得△COE≌△AOE,∴EC=EA,∴ED=EA,∵EH⊥AB,∴DH=AH=5,∵EF∥AB,∴∠F=180°﹣∠B=120°,∵∠FCD=∠FCE+60°=∠CDB+60°,∴∠FCE=∠CDB,在△CEF和△DCO中,F CODECF ODCCE CD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴CF=OD=2,∴OA=OD+AD=2+6=8,∴AB=2OA=16.【点睛】本题主要考查了等边三角形判定和性质,全等三角形的判定和性质,熟练掌握等边三角形判定和性质定理,全等三角形的判定和性质定理是解题的关键.27.(四川·成都外国语学校八年级期中)如图1,在△ABC中,AD⊥BC于D,CE⊥AB于E,AD与CE交于点F,∠ACE=45°.(1)求证:△AEF≌△CEB.(2)若G在BC的延长线上,连接GA,若GA=GB,求证:AC平分∠DAG.(3)如图2,在(2)的条件下,H为AG的中点,连接DH交AC于M,连接EM、ED,若S△EMC=4,∠BAD =15°,求AM的长.【答案】(1)见解析(2)见解析(3)6【提示】(1)先判断出AE=CE,再利用等角的余角相等判断出∠EAF=∠ECB,进而判断出AEF CEB△≌△,即可得出结论;(2)先利用三角形外角的性质得出∠AEF=45︒+∠CAD,进而得出∠B=45︒+∠CAD,而∠B=∠BAG,得出∠BAG=45︒+∠CAD,而∠BAG=45︒+∠CAG,即可得出结论;(3)先判断出ADH是等边三角形,进而利用含30度角的直角三角形的性质判断出AM=3CM,进而求出ACM的面积,即可求出AE,进而求出AC,即可得出结论.(1)证明:∵CE⊥AB,∴∠AEC =∠BEC =90°, ∵∠ACE =45°, ∴∠CAE =45°=∠ACE , ∴AE =CE , ∵AD ⊥BC , ∴∠ADC =90°, ∴∠ECB +∠CFD =90°, ∵∠CFD =∠AFE , ∴∠ECB +∠AFE =90°, ∵∠EAF +∠AFE =90°, ∴∠EAF =∠ECB , 在AEF 和CEB 中,90EAF ECB AE CE AEF CEB ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴AEF CEB △≌△(ASA ); (2)∵AEF CEB △≌△, ∴∠AFE =∠B ,∵∠AFE =∠ACE +∠CAD =45°+∠CAD , ∴∠B =45°+∠CAD , ∵AG =BG , ∴∠B =∠BAG , ∴∠BAG =45°+∠CAD ,∵∠BAG =∠CAE +∠CAG =45°+∠CAG , ∴∠CAD =∠CAG , ∴AC 平分∠DAG ; (3)∵∠BAD =15°,∠CAE =45°, ∴∠CAD =∠CAE ﹣∠BAD =30°, ∵∠CAD =∠CAG ,∴∠DAG=2∠CAD=60°,在Rt△ADG中,点H是AG的中点,∴DH=AH,∴△ADH是等边三角形,∴∠ADH=60°,AD=AH,∵∠CAD=∠CAG,∴AC⊥DH,即:∠AMD=∠DMC=90°∵∠ADC=90°,∴∠CDM=30°,在Rt△DMC中,DM,在Rt△AMD中,AM=3CM, ∴S△AEM=3S△CEM=3×4=12,∴S△ACE=S△CEM+S△AEM=16,∵∠AEC=90°,AE=CE,∴S△ACE=12AE2=16,∴AE=∴AC=8,∴AM+CM=8,∵AM=3CM,∴3CM+CM=8,∴CM=2,∴AM=3CM=6.【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质,等角的余角相等,等边三角形的判定和性质,三角形外角的性质,含30度角的直角三角形的性质,求出AE是解本题的关键.。

初中数学几何证明经典题(含答案)

初中数学几何证明经典题(含答案)

初中几何证明题经典题(一)1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.求证:CD=GF.(初二).如下图做GH⊥AB,连接EO.由于GOFE四点共圆,所以∠GFH=∠OEG,即△GHF∽△OGE ,可得EOGF=GOGH=COCD,又CO=EO,所以CD=GF得证。

2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150.求证:△PBC是正三角形.(初二)。

如下图做GH⊥AB,连接EO。

由于GOFE四点共圆,所以∠GFH=∠OEG,即△GHF∽△OGE,可得EOGF=GOGH=COCD,又CO=EO,所以CD=GF得证。

如下图做GH⊥AB,连接EO.由于GOFE四点共圆,所以∠GFH=∠OEG,即△GHF∽△OGE,可得EOGF=GOGH=COCD,又CO=EO,所以CD=GF得证.APCDBAFGCEBOD3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F .求证:∠DEN =∠F .经典题(二)1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二)D 2 C 2B 2 A 2D 1 C 1 B 1 C B DA A 1 AN FE CDMB· A HEOF2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.(初二经典题(三)1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .求证:CE =CF .(初二)2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA,直线EC 交DA 延长线于F .求证:AE =AF .(初二)3、设P 是正方形ABCD 一边求证:PA =PF .(初二)4、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线D .求证:AB =DC ,BC =AD .(初三)经典1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC 求:∠APB 的度数.(初二)2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二)3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .(初三)4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二)经典难题(五)1、 设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:≤L <2.2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长.C BD A F PD E CB A APCBACPDA CBPD4、如图,△ABC中,∠ABC=∠ACB=800,D、E分别是AB、AC上的点,∠DCA=300,∠EBA=200,求∠BED的度数.经典题(一)1.如下图做GH⊥AB,连接EO。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一:已知:如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,DE ⊥AC 于点F ,交BC 于点G ,交AB 的延长线于点E ,且AE AC =. (1)求证:BG FG =;
(2)若2AD DC ==,求AB 的长.
二:如图,已知矩形ABCD ,延长CB 到E ,使CE=CA ,连结AE 并取中点F ,连结AE 并取中点F ,连结BF 、DF ,求证BF ⊥DF 。

D
C E
B
G
A
F
三:已知:如图,在矩形ABCD 中,E 、F 分别是边BC 、AB 上的点,且EF=ED,EF ⊥
ED.求证:AE 平分∠BAD.
四、(本题7分)如图,△ABC 中,M 是BC 的中点,AD 是∠A 的平分线,BD ⊥AD 于D ,
AB=12,AC=18,求DM 的长。

(第23题)
E
D
B
A
F
五、(本题8分)如图,四边形ABCD 为等腰梯形,AD ∥BC ,AB=CD ,对角线AC 、BD 交
于点O ,且AC ⊥BD ,DH ⊥BC 。

⑴求证:DH=
2
1
(AD+BC ) ⑵若AC=6,求梯形ABCD 的面积。

六、(6分) 、如图,P 是正方形ABCD 对角线BD 上一点,PE ⊥DC ,PF ⊥BC ,E 、F 分别为垂足,若CF=3,CE=4,求AP 的长.
七、(8分)如图,等腰梯形ABCD 中,AD ∥BC ,M 、N 分别是AD 、BC 的中点,E 、F 分别是BM 、CM 的中点.
(1)在不添加线段的前提下,图中有哪几对全等三角形?请直接写出结论; (2)判断并证明四边形MENF 是何种特殊的四边形?
(3)当等腰梯形ABCD 的高h 与底边BC 满足怎样的数量关系时?四边形MENF 是正方形(直接写出结论,不需要证明).
选择题:
15、如图,每一个图形都是由不同个数的全等的小等腰梯形拼成的,梯形上、下底及腰长如
M
F
E
N
D
C
A
B
图,依此规律第10个图形的周长为 。

……
第一个图 第二个图 第三个图
16、如图,矩形ABCD 对角线AC 经过原点O ,B 点坐标为
(―1,―3),若一反比例函数x
k
y =的图象过点D ,则其 解析式为 。

一:解:(1)证明:90ABC DE AC ∠=°,⊥于点F , ABC AFE ∴∠=∠.
AC AE EAF CAB =∠=∠,,
ABC AFE ∴△≌△
AB AF ∴=. 连接AG ,
AG =AG,AB =AF ,
Rt Rt ABG AFG ∴△≌△. BG FG ∴=.
(2)解:∵AD =DC,DF ⊥AC ,
11
22
AF AC AE ∴=
=. 30E ∴∠=°.
30FAD E ∴∠=∠=°,
3AF ∴=
3AB AF ∴==
二:证明:∵CE=CA AF=EF ∴CF ⊥AE ∠AFC=∠EFC=90
在直角三角形AEB 中,BF 是斜边上中线 ∴BF=AF
又: AD=BC CF=CF ∴△BCF ≌△ADF ∠BFC=∠AFD
而∠AFD+∠DFC=AFC=90 ∴∠BFC+∠DFC=∠BFD=90 ∵BF ⊥DF
三:证明:∵四边形ABCD 是矩形
D C
E
B
G
A F
∴∠B=∠C=∠BAD=90° AB=CD ∴∠BEF+∠BFE=90°
∵EF ⊥ED ∴∠BEF+∠CED=90° ∴∠BEF=∠CED ∴∠BEF=∠CDE 又∵EF=ED ∴△EBF ≌△CDE ∴BE=CD
∴BE=AB ∴∠BAE=∠BEA=45° ∴∠EAD=45° ∴∠BAE=∠EAD ∴AE 平分∠BAD
四、解:延长BD 交AC 于E
∵BD ⊥AD …………………1分 ∴∠ADB=ADE=900 ∵AD 是∠A 的平分线
∴∠BAD=EAD …………………2分 在△ABD 与△AED 中
⎪⎩

⎨⎧∠=∠=∠=∠ADE ADB AD AD EAD BAD ∴△ABD ≌△AED …………………3分 ∴BD=ED AE= AB=12 …………………4分 ∴EC=AC -AE=18-12=6 …………………5分 ∵M 是BC 的中点 ∴DM=2
1
EC=3 …………………7分
五:⑴证明:过D 作DE ∥AC 交BC 延长线于E ……1分
∵AD ∥BC
∴四边形ACED 为平行四边形……………2分 ∴CE=AD DE=AC ∵ABCD 为等腰梯形 ∴BD = AC=CE
∵AC ⊥BD ∴DE ⊥BD
∴△DBE 为等腰直角三角形………………4分 ∵DH ⊥BC ∴DH=
21BE=21(CE+BC )=2
1
(AD+BC )…………………5分 ⑵∵AD=CE ∴DBE ABCD S DH BC CE DH BC AD S ∆=⋅+=⋅+=
)(2
1
)(21…………7分 ∵△DBE 为等腰直角三角形 BD=DE=6
∴18662
1
=⨯⨯=
∆DBE S ∴梯形ABCD 的面积为18……………………………………8分 注:此题解题方法并不唯一。

六:20、(5分)
解:连结PC 。

∵四边形ABCD 是正方形, ∴AD=DC ,∠ADP=∠CDP , ∵PD=PD ,
∴△APD ≌△CPD , ∴AP=CP
∵四边形ABCD 是正方形,∴∠DCB=90°, ∵PE ⊥DC ,PF ⊥BC ,∴四边形PFCE 是矩形 ∴PC=EF 。

∵∠DCB=90°,
∴CEF ∆Rt 在中,25432
2
2
2
2
=+=+=CF CE EF , ∴5=EF , ∴AP=CP=EF=5。

(其它方法证明也一样得分)
七、(8分) 解:(1)△AMB ≌△DMC ;△BEN ≌△CFN 2分 (2)判断四边形MENF 为菱形; 3分 证明:∵ABCD 为等腰梯形,
∴AB =CD ,∠A =∠D , 又∵M 为AD 的中点, ∴MA =MD ∴△AMB ≌△DMC ,∴BM =CM ; 4分 又∵E 、F 、N 分别为BM 、CM 、BC 中点, ∴MF =NE =
12MC ,ME =NF =1
2
BM ,(或MF ∥NE , ME ∥NF ;) 5分
∴EM =NF =MF =NE ;
∴四边形MENF 为菱形. 6分
(说明:第(2)问判断四边形MENF 仅为平行四边形,并正确证明的只给3分.)
(3)当h =1
2
BC (或BC =2h 或BC =2MN )时,MENF 为正方形. 8

选择题:
15、32 16、x
y 3。

相关文档
最新文档