力和物体的平衡
高中物理复习:力与物体的平衡

14
C 考点二 力学中物体的平衡
[知能必备] 1.平衡中的“三看”与“三想” (1)看到“缓慢”,想到“物体处于动态平衡状态”. (2)看到“轻绳、轻环”,想到“绳、环的质量可忽略不计”. (3)看到“光滑”,想到“摩擦力为零”.
栏目导航
15
2.“四点”注意 (1)杆的弹力方向不一定沿着杆的方向. (2)摩擦力的方向总是与物体的相对运动方向或相对运动趋势方向相反,但与物 体的运动方向无必然的联系. (3)如果物体受多个力作用处于平衡状态,其中任何一个力与其余力的合力大小 相等,方向相反. (4)物体受到三个或三个以上力的作用时,可采用正交分解法求解.
栏目导航
8
解析:D 对物体B受力分析可知,B一定受重力、支持力,将重力分解可知重 力有沿斜面向下的分力,B能匀速下滑,受力一定平衡,故A对B应有沿斜面向上的静 摩擦力;根据力的相互作用规律可知,A受到B的静摩擦力应沿斜面向下,故A、B错 误;对A、B整体受力分析,并将整体重力分解,可知沿斜面方向上,重力的分力与 摩擦力等大反向,故A受的滑动摩擦力沿斜面向上,大小为2mgsin θ,C错误;对A、 B整体受力分析,受重力、支持力和滑动摩擦力,由于匀速下滑,故重力沿斜面方向 的分力与滑动摩擦力平衡,故2mgsin θ=μ·2mgcos θ,解得μ=tan θ,选项D正确.
栏目导航
29
C 考点三 电磁学中的平衡问题
1.电磁场中的常见力
[知能必备]
栏目导航
30
2.处理电磁场中平衡问题的方法 与纯力学问题的分析方法大致相同,具体如下:
栏目导航
31
[典例剖析] 角度1 电场中的平衡问题
(2021·陕西咸阳三模)如下图所示,甲、乙两带电小球的质量均为m,所 带电荷量分别为+q和-q,两球间用绝缘细线2连接,甲球用绝缘细线1悬挂在天花 板上,在两球所在空间有沿水平方向向左的匀强电场,场强为E,且有qE=mg,平衡 时细线都被拉直.则平衡时的可能位置图是( A )
新人教版物理课件:力和物体的平衡01力的基本概念

例2.图中AC为竖直墙面,AB为均匀横梁,其重量为G,处于水平 位置.BC为支持横梁的轻杆,A、 B、C三处均用铰链连接.试画出 横梁B端所受弹力的方向. 解:轻杆BC只有两端受力,所以B端所受压力沿 杆向斜下方,其反作用力轻杆对横梁的弹力F沿 轻杆延长线方向斜向上方. A F B
C
轻杆处于平衡状态,利用二力平衡条件,根据力产生的效果进行受力分 析。
⑶作用点:①概念:物体的各部分都受重力的作用,但从 效果(产生加速度或使物体发生形变)上看,我们可以认为物 体各部分受到的重力都集中在一点(各部分重力的合力的作用 点) ,这个点就是重力的作用点,叫做物体的重心.②测 量:薄板可用悬挂法测出
物体的重心位置与物体的质量分布和形状两个因素有关,只有质量分 布均匀的有规则几何形状的物体的重心才在其几何中心。
有相 对运 动趋 势 有相 对运 动
1.与 弹力 方向 垂直 2.与 接触 面相 切
与相对 0<f≤fm 运动趋 牛顿定律或 势方向 平衡条件计 算 相反
与相对 运动方 向相反
f N
两个有关 两个无关
弹力和静摩 擦力是被动 力,它们由 主动力和物 体的运动状 态(加速度) 共同决定。 通常用平衡 条件或牛顿 运动定律判 断方向和求 解大小。 滑动摩擦力大 小可根据 f=μN直接求 解或根据牛顿 定律和平衡条 件间接求解
例5. 在一粗糙的斜面上放置一正方形的箱子,其内部刚好放入 一个质量一定的金属球,现在从斜面顶端释放箱子,在其加速 下滑的过程中,下列关于球对箱子的作用力说法正确的是 A.球对箱子a面有压力 B.球对箱子b面有压力 C.球对箱子c面有压力 D.球对箱子d面有压力 FN 解:金属球刚好放入箱子,什么球与箱子以共同的 ( M m ) g cos 加速度向下运动,先以整体为研究对象,进行受 力分析,根据牛顿第二定律得
[高中物理物体的平衡的知识点] 共点力作用下物体的平衡的知识点
![[高中物理物体的平衡的知识点] 共点力作用下物体的平衡的知识点](https://img.taocdn.com/s3/m/ddeec9f0c850ad02df80410f.png)
[高中物理物体的平衡的知识点] 共点力作用下物体的平衡的知识点1、平衡状态:物体受到几个力的作用,仍保持静止状态,或匀速直线运动状态,或绕固定的转轴匀速转动状态,这时我们说物体处于平衡状态,简称平衡。
在力学中,平衡有两种情况,一种是在共点力作用下物体的平衡;另一种是在几个力矩作用下物体的平衡(既转动平衡)。
2、要区分平衡状态、平衡条件、平衡位置几个概念。
平衡状态指的是物体的运动状态,即静止匀速直线运动或匀速转动状态;而平衡条件是指要使物体保持平衡状态时作用在物体上的力和力矩要满足的条件。
至于平衡位置这个概念是指往复运动的物体,当该物体静止不动的位置或物回复力为零的位置。
它是研究物体振动规律时的重要概念,简谐振动的物体在平衡位置时其合力不一定零,所以也不一定是平衡状态。
例如单摆振动到平衡位置时后合力是指向圆心的。
3、共点力的平衡⑴共点力:物体同时受几个共面力的作用,如果这几个力都作用在物体的同一点,或这几个力的作用线都相交于同一点,这几个力就叫做共点力。
⑵共点力作用下物体的平衡条件是物体所受的合外力为零。
⑶三力平衡原理:物体在三个力作用下,处于平衡状态,如果三力不平行,它们的作用线必交于一点,例如图1所示,不均匀细杆AB长1米,用两根细绳悬挂起来,当AB在水平方向平衡时,二绳与AB夹角分别为30°和60°,求AB重心位置?根据三力平衡原理,杆受三力平衡,TA、TB、G必交于点O只要过O作AB垂线,它与AB交点C 就是AB杆的重心。
由三角函数关系可知重心C到A距离为0.25米。
⑷具体问题的处理①二力平衡问题,一个物体只受两个力而平衡,这两个力必然大小相等,方向相反,作用在一条直线上,这也就是平常所说的平衡力。
平衡力的这些特点就成为了解决力的平衡问题的基础,其他平衡问题最终要转化为这个基础问题。
②三力平衡问题:往往先把两个加合成,这个合力与第三个力就转化成了二力平衡问题,即三力平衡中任意两个力的合力与第三个力的大小相等,方各相反,作用在一条直线上。
高中物理-专题一第1讲力与物体的平衡

第1讲 力与物体的平衡 专题复习目标学科核心素养 高考命题方向 1.本讲主要解决力学和电学中的受力分析和共点力的平衡问题,涉及的力主要有重力、弹力、摩擦力、电场力和磁场力等。
2.掌握力的合成法和分解法、整体法与隔离法、解析法和图解法等的应用。
科学思维:用“整体和隔离”的思维研究物体的受力。
科学推理:在动态变化中分析力的变化。
高考以生活中实际物体的受力情景为依托,进行模型化受力分析。
主要题型:受力分析;整体法与隔离法的应用;静态平衡问题;动态平衡问题;电学中的平衡问题。
一、五种力的理解1.弹力 (1)大小:弹簧在弹性限度内,弹力的大小可由胡克定律F =kx 计算;一般情况下物体间相互作用的弹力可由平衡条件或牛顿运动定律来求解。
(2)方向:一般垂直于接触面(或切面)指向形变恢复的方向;绳的拉力沿绳指向绳收缩的方向。
2.摩擦力(1)大小:滑动摩擦力F f =μF N ,与接触面的面积无关;静摩擦力的增大有一个限度,具体值根据牛顿运动定律或平衡条件来求解。
(2)方向:沿接触面的切线方向,并且跟物体的相对运动或相对运动趋势的方向相反。
3.电场力(1)大小:F =qE 。
若为匀强电场,电场力则为恒力;若为非匀强电场,电场力则与电荷所处的位置有关。
点电荷间的库仑力F =k q 1q 2r 2。
(2)方向:正电荷所受电场力方向与电场强度方向一致,负电荷所受电场力方向与电场强度方向相反。
4.安培力(1)大小:F =BIL ,此式只适用于B ⊥I 的情况,且L 是导线的有效长度,当B∥I时,F=0。
(2)方向:用左手定则判断,安培力垂直于B、I决定的平面。
5.洛伦兹力(1)大小:F=q v B,此式只适用于B⊥v的情况。
当B∥v时,F=0。
(2)方向:用左手定则判断,洛伦兹力垂直于B、v决定的平面,洛伦兹力不做功。
二、共点力的平衡1.平衡状态:物体静止或做匀速直线运动。
2.平衡条件:F合=0或F x=0,F y=0。
物体的平衡与力的平衡

物体的平衡与力的平衡物体的平衡与力的平衡是物理学中很重要的概念。
平衡是指物体处于稳定的状态,既不向任何方向倾斜,也不发生任何运动。
力的平衡则是指物体上施加的各个力以及它们之间的关系使得物体保持平衡。
本文将探讨物体的平衡以及力的平衡的相关概念和原理。
一、物体的平衡物体的平衡是指物体在各个方向上的受力之和为零,既不受到任何外力的作用,也不受到任何外力的影响而发生运动。
物体的平衡可以分为静态平衡和动态平衡两种情况。
1. 静态平衡静态平衡是指物体处于静止的状态,并且不发生任何运动。
在静态平衡下,物体的受力之和为零,既不受到任何合力的作用,也不受到任何合力的影响。
2. 动态平衡动态平衡是指物体处于匀速直线运动的状态,并且受到的合力等于零。
在动态平衡下,物体的受力之和也为零,但是物体会保持一定的运动状态。
二、力的平衡力的平衡是指物体上施加的各个力以及它们之间的关系使得物体保持平衡。
力的平衡可以分为平行力的平衡和非平行力的平衡两种情况。
1. 平行力的平衡平行力的平衡是指作用在物体上的各个平行力以及它们之间的关系使得物体保持平衡。
在平行力的平衡下,各个力的大小、方向和作用点之间需要满足平衡条件。
根据平衡条件,可以求解平行力的大小和作用点位置。
2. 非平行力的平衡非平行力的平衡是指作用在物体上的各个非平行力以及它们之间的关系使得物体保持平衡。
在非平行力的平衡下,各个力的大小、方向和作用点之间需要满足平衡条件。
一般情况下,非平行力的平衡需要通过向量分解和求解力矩的方法来进行分析。
三、平衡条件和力矩物体的平衡和力的平衡需要满足一定的条件,即平衡条件。
平衡条件包括力的平衡条件和力矩的平衡条件。
1. 力的平衡条件力的平衡条件是指作用在物体上的合力等于零。
即物体受到的所有力的矢量和为零,力的平衡条件可以用方程表示为∑F=0。
2. 力矩的平衡条件力矩的平衡条件是指作用在物体上的合力矩等于零。
力矩是力对于某一点的转动效果的量度,力矩的平衡条件可以用方程表示为∑M=0。
1、力和物体的平衡

第一部分力物体的平衡一、高考趋势从近年高考试题可以看出,本章的核心内容即高考热点主要有三个:一是有关摩擦力问题,二是物体平衡问题,三是共点的两个力的合成问题.预计这些热点随高考题的难度、区分度的稳定将不会改变.值得注意的是,近年高考多是多方面的综合,考查更细、更全面,特别是高考提出的考查学生的多种能力.更重要的是学生的创新意识和能力,经常是这部分知识和牛顿定律、功和能、气体的性质、电磁学等内容综合考查,以难度较大的题目出现高考中,考查本章内容的试题多以解答题出现.单纯考查本章内容的题型多以选择为主.占分4%,难度适中.二、知识结构三、夯实基础知识考点一:力、重力、弹力1.力的物质性是各种形式的力所具有的共同属性,它反映了任何一个力必定和两个物体发生联系.而且,这两个物体问的力的作用是“相互”的.力的物质世要求我们在认识一个力时,首先要稿清该力的施力物体和受力物体,没有受力物体(或施力物体)的力是不存在的.2.力的作用总是要产生一定的效果,它只能从受力物体上体现出来,且这个效果与力的大小、方向作用点相联系,力的图示就准确简洁地反映了某一个力的三要素情况.3.地球周围的物体,总是要受到地球的吸引而产生重力,它与该物体的运动状况及所处的周边环境无关.4.物体的各个部分都应受到重力的作用,而从效果上看,这与作用在某一点是相同的,这个点相当于整个物体重力的作用点,即物体的重心.上述处理是“等效原理”的应用.用悬挂法貌重心,要注意它的局限性,它只适用于薄板状物体.5.从力的物质性来认识弹力,它存在于两个直接接触且发生弹性形变的两个物体之间.弹力的大小情况由形变的程度决定,而物体的形变程度主要由外部条件决定,因此弹力随外部条件的变化而改变,属于被动力.6.如果物体间存在微小形变,不易直接判断,可用假设法进行判断,即假设接触的两物体没有弹力,由此得到的结论是否符合题意.如符合,则说明不存在弹力,反之存在弹力.7.判断弹力的方向应注意到接触处的情况:平面产生成受到的弹力(压力或支持力)垂直于平面;曲面上某处的弹力垂直于曲面该处的切面;某一个点的弹力垂直于与它接触的平面(或曲面)的切线.考点二:摩擦力1.在两个相互接触的物体间产生摩擦力必须具备三个条件:(1)两个物体相互接触,相互间存在压力;(2)两个物体的接触面不光滑;(3)两个物体间存在着相对运动或相对运动的趋势.2.滑动摩擦力的大小F=μF N,在计算中要充分注意到两物体接触面向压力F N随外部条件变化而改变的特点.滑动摩擦力的方向一定与物体相对运动方向相反,而与物体的运动方向没有必然关系.3.静摩擦力的大小随沿相对运动趋势方向的外力的增大而增大,但它有一个范围(0~最大静摩擦力f m).在物体处于平衡的情况下,静摩擦力大小可用平衡条件进行计算,其方向也必定和沿相对运动趋势方向的外力相反.4.当两物体在接触面上开始相对滑动时,接触面上出现最大静摩擦力.对一个在确定条件下的接触面而言,最大静摩擦力是个定值,有时可近似认为等于在接触面上出现的滑动摩擦力.5.判断物体间有无摩擦力及确定静摩擦力方向时常用的方法是:(1)假设法,即假设接触面光滑,看物体是否发生相对运动;若发生相对运动,则说明物体原来的静止是有运动趋势的静止,且假设接触面光滑后物体发生的相对运动方向即为相对运动趋势的方向,从而确定静摩擦力的方向.(2)根据物体所处的运动状态,应用力学规律判定.考点三:受力分析1.物体受力分折步骤:①明确研究对象,把其从周围物体中隔离出来.⑦按重力、弹力、摩擦力顺序逐一分析.③规范地圆好受力图.在画支持力、压力和摩擦力的方向时容易出错,要牢记弹力的方向一定与接触面或接触点的切面垂直,摩擦力的方向一定沿接触面与物体相对运动(或趋势)方向相反.2.在受力分折中要特别注意“漏力”和“添力”.这是正确进行受力分析的关键.按正确的顺序进行受力分析是防止“漏力”的有效措施.画好受力图后,再寻找各力的施力物体,找不出施力物体,这个力一定不存在,就是凭空增添的力.考点四:力的合成与分解1.力的合成是“等效思维”在解决实际问题中的应用,它可使几个同时作用于同一物体的力被一个力所“等效替代”,从而使物体的受力情况得到简化.这种“等效替代”是高中物理中常用的方法之一.2.求某几个力的合力必须以这几个力同时作用在同一个物体上为前提.若这几个力分别作用在不同的物体上,求这几个力的合力是毫无意义的.3.通过计算法求不同情况下力的合成,首先必须根据题意准确作出对应的平行四边形示意图,然后根据数学知识计算合力F的大小和方向.4.与力合成相反,力的分解是通过“等效替代”的原理用几个力来替代实际的某一个力,从而使实际问题得到解决.5.由于合力与分力之间是“等效替代”的关系,在对物体进受力分所时,不能将合力与分力都认为是作用在物体上的力,否则就为“添力”.6.理论上,按照平行四边形定则将一个力分解,可以有无数多种解,而在实际问题中,只有符合实际情况的一组解,才能使该问题得到解决.因此在将一个实际问题中的力分解时.必须要从该力的实际效果出发.确定该力的两个分解方向,再画出相关的平行四边形.这是通过力的分解达到解决具体问题的关键所在.考点五:共点力作用下物体的平衡1.应用共点力平衡条件解题的一般步骤是:明确研究对象,进行受力分析;选择合适方法,根据平衡条件列方程求解,合理选择研究对象.关系到能否得到解答或能否顺利得到解答.我们常用的方法是隔离法和整体法.通常在分析外力对系统的作用时.用整体法;在分析系统内各物体(各部分)向相互作用时,用隔离法.2.对受三个共点力作用而处于平衡状态的物体来说,这三个力可构成一个封闭的矢量三角形,我们一般都运用解三角形的有关数学知识去求解.对直角三角形可利用三角函数或勾股定理求解.对任意三角形可利用正弦定理或余弦定理求解.有时还要利用力的矢量三角形与物体间构成的几何三角形相似来求解.3.对于受三个以上互成角度的共点力作用的平衡问题,通常采用正交分解法,即以物体的重心为坐标原点O,建立直角坐标x O y,然后将各力沿x轴和y轴分解,即可根据平衡条件ΣF x=0,ΣF y=0列方程求解.在建立直角坐标系时,要考虑尽量减少力的分解,要让尽可能多的力落在坐标轴上.4.要善于利用共点力平衡条件的一些推论解题,例如:“当物体平衡时.其中的某个力必定与余下的其他力的合力等大反向”,“若物体受三个非平行力的作用而处于平扬状态,则该三个力的作用线(或延长线)必共点且共面”等.四、受力分析步骤先重力、后弹力、第三考虑摩擦力、其它外力再分析(如电场力、安培力、洛仑兹力等)一、《力》高考过关试题1、关于物体受静摩擦力作用的叙述中,正确的是()A.静摩擦力的方向一定与物体的运动方向相反B.静摩擦力的方向不可能与物体的运动方向相同C.静摩擦力的方向可能与物体的运动方向垂直D.静止的物体所受的静摩擦力一定为零2、如图所示,位于斜面上的物块M在沿斜面向上的力F作用下,处于静止状态,则斜面作用于物块的静摩擦力的()A.方向可能沿斜面向上B.方向可能沿斜面向下C.大小可能等于零D.大小可能等于F3、A、B、C三物块的质量分别为M,m和m0,作如图所示的联结.绳子不可伸长,且绳子和滑轮的质量、滑轮的摩擦均可不计.若B随A一起沿水平桌面做匀速运动,则可以断定()A.物块A与桌面之间有摩擦力,大小为m0gB.物块A与B之间有摩擦力,大小为m0gC.桌面对A,B对A,都有摩擦力,两者方向相同,合力为m o gD.桌面对A,B对A,都有摩擦力,两者方向相反,合力为m0g4、如图所示,C是水平地面,A、B是两个长方形物块,F是作用在物块B上沿水平方向的力,物体A和B以相同的速度做匀速直线运动.由此可知,A、B间的动摩擦因数μ1和B、C间的动摩擦因数μ2有可能是()A.μ1=0,μ2=0B.μ1=0,μ2≠0C.μ1≠0,μ2=0D.μ1≠0,μ2≠05、如图所示,在粗糙的水平面上放一三角形木块a,若物体b在a的斜面上匀速下滑,则()A.a保持静止,而且没有相对于水平面运动的趋势B.a保持静止,但有相对于水平面向右运动的趋势C.a保持静止,但有相对于水平面向左运动的趋势D.因未给出所需数据,无法对a是否运动或有无运动趋势做出判断6、如图所示,在粗糙水平面上有一个三角形木块abc,在它的两个粗糙斜面上分别放两个质量为m1和m2的木块,m1>m2,已知三角形木块和两物体都是静止的,则粗糙水平面对三角形木块()A.有摩擦力的作用,摩擦力的方向水平向右B.有摩擦力的作用,摩擦力的方向水平向左C.有摩擦力的作用,但摩擦力的方向不能确定,因为m1、m2、θ1、θ2的数值并未给出。
高中物理竞赛专题一力物体的平衡(含习题及答案)

专题一力物体的平衡第一讲力的处理矢量的运算1、加法表达:a + b = c o名词:c为“和矢量”。
法则:平行四边形法则。
如图1所示和矢量大小:c = a2b22abco^ ,其中a为a和b的夹角。
和矢量方向:c在a、b之间,和a夹角B = arcs in ------2 2.a b 2abcos:-2、减法表:达:a = c — b o名词:c为“被减数矢量”,b为“减数矢量”,a为“差矢量”法则:三角形法则。
如图2所示。
将被减数矢量和减数矢量的起始端平移到一点,然后连接两时量末端,指向被减数时量的时量,即是差矢量。
差矢量大小:a = ;b2• c2- 2bccosr,其中B为c和b的夹角。
差矢量的方向可以用正弦定理求得。
一条直线上的矢量运算是平行四边形和三角形法则的特例。
例题:已知质点做匀速率圆周运动,半径为R,周期为T,求它在-T内和4 1在-T内的平均加速度大小。
21解说:如图3所示,A到B点对应-T的过程,A4到C点对应1T的过程。
这三点的速度矢量分别设为2v A、v B和 v C。
图3_v t —V 。
/曰 __V B —V A . _v c —V A a =得:a AB = , a Ac =-tt ABt AC由于有两处涉及矢量减法,设两个差矢量.:V 1= V B — V A ,厶v 2= v c — V A ,根据三角形法则,它们在图3中的大小、方向已绘出(:V2的“三角形”已被拉 伸成一条直线)。
本题只关心各矢量的大小,显然:V A = V B = V c = 2JI R且.T■:v 1 = . 2 v A =2 2二 RTL V2 = :2 V A =4 二 R 'T2 2 二R4二 R所以: a AB =v 1 _ T =8 2 二Ra■ A V 2T - 8二 Rt ABT T 2ACt ACT T 242观察与思考:这两个加速度是否相等,匀速率圆周运动是不是匀变速运动? 答:否;不是。
平衡物体受力平衡时的运动状态

平衡物体受力平衡时的运动状态在物理学中,平衡是指物体处于稳定的状态,不受外界力的影响而保持静止或匀速直线运动。
对于平衡物体来说,其受力平衡的运动状态可以通过力的合成和分解来解释。
平衡物体受力平衡时的运动状态可以分为两种情况:静止和匀速直线运动。
一、静止状态当一个物体处于静止状态时,它受到的合力为零。
这意味着对物体施加的外力与物体内部的反作用力相互抵消,使得物体的加速度为零,保持静止。
在静止状态下,物体不会发生位移,它所处的位置保持不变。
为了更好地理解平衡物体处于静止状态的运动特点,我们可以通过以下例子进行说明:考虑一个平放在桌面上的书本。
该书本受到重力向下的作用力,同时桌面向上施加一个与重力大小相等但方向相反的支持力。
这两个力相互抵消,使得书本处于静止状态。
在这种情况下,书本不会发生运动,它保持在桌面上的位置不变。
二、匀速直线运动除了静止状态外,平衡物体还可以通过受力平衡来实现匀速直线运动。
当一个物体处于匀速直线运动状态时,它同样受到的合力为零。
这意味着对物体施加的外力与物体内部的反作用力相互抵消,使得物体的加速度为零,保持匀速直线运动。
在匀速直线运动状态下,物体将保持相同的速度和方向,直到受到外界力的干扰。
下面以一个例子来说明平衡物体处于匀速直线运动的情况:考虑一个质量为1千克的小汽车以10米每秒的速度向东行驶。
在水平直线上,小汽车受到向西的摩擦力阻碍,这个阻碍力与小汽车的向东速度大小相等但方向相反。
当两个力相互抵消时,小汽车处于受力平衡的状态。
在这种情况下,小汽车将保持以10米每秒的速度向东匀速移动,直到受到其他外界力的影响。
综上所述,平衡物体受力平衡时的运动状态分为静止和匀速直线运动两种情况。
静止状态下,物体不会发生位移,保持在原来的位置。
而在匀速直线运动状态下,物体将保持相同速度和方向移动。
这些运动状态的实现都依赖于受力平衡,即对物体施加的外力与物体内部的反作用力相互抵消,使得物体的加速度为零。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 力 物体的平衡一、知识体系1、物体的受力分析:场力 弹力 摩擦力1)场力:重力 电场力 磁场力2)弹力:(1)产生条件:A 接触;B 发生形变。
(2)方向的判断:垂直接触面。
例1: 例2:(3)大小:Kx F = (有关弹簧弹力的计算)3)摩擦力:(1)产生条件:A 接触不光滑; B 正压力不为零; C 有相对运动或相对运动趋势(2)方向:与相对运动趋势或相对运动方向相反(3)分类:静摩擦力:随外力的变化而变化 M s f f ≤≤0滑动摩擦力:N f μ=例2:如图所示,ABC 叠放在一起放在水平面上,水平外力F 作用于B 。
ABC 保持静止,则ABC 所受摩擦力的情况?若水平面光滑有怎样?2、物体的平衡(平衡状态:静止或匀速) 3、 力矩平衡:L F M ⨯=(L 为固定转轴到力的作用线的垂直距离)平衡条件:0=∑M 逆顺=M M4、 力的合成:判断三力是否平衡?21321F F F F F +≤≤-二、思路体系1、受力分析首先选取研究对象,选取原则是要使对物体的研究尽量简便。
2、“隔离法”的运用,按照场力、弹力、摩擦力的顺利进行受力分析,并画出正确的受力图。
3.力的合成遵循:平行四边形定则。
三、题型体系弹力和摩擦力1.关于摩擦力,下列说法正确的是A .静摩擦力产生在两个静止的物体之间,滑动摩擦力产生在两个运动的物体之间B .静摩擦力可以作为动力、阻力,而滑动摩擦力只能作为阻力C .有摩擦力一定存在弹力,且摩擦力的方向总与相对应的弹力方向垂直D .摩擦力的大小与正压力大小成正比2.关于相互接触的两物体之间的弹力和摩擦力,下列说法正确的是 ( )A .两物体接触面上的摩擦力方向一定与弹力方向垂直B .有摩擦力必有弹力,而有弹力时未必有摩擦力C .摩擦力的大小与弹力的大小总是成正比D .弹力有时是动力,有时是阻力,而摩擦力总是阻力3.物体b 在力F 作用下将物体a 向光滑的竖起墙壁挤压,如图所示,a 处于静止状态,( )A .a 受到的摩擦力有二个B .a 受到的摩擦力大小不随F 变化C .a 受到的摩擦力大小随F 的增大而增大D .a 受到的摩擦力方向始终竖起向上5、如图所示,A 、B 两长方体叠放在光滑的水平面上,第一次用水平恒力F 拉A ,第二次用相同的水平恒力F 拉B ,都能使它们一起沿水平面运动,而AB 之间没有相对滑动,则两种情况( )A B C FA. 加速度相同B. AB间摩擦力的大小两次一定不相同C. 加速度可能为零D. AB间摩擦力不可能为零6.如图所示,质量为m的木块在质量为M的长木板上受到向右的拉力F的作用向右滑行,长木板处于静止状态,已知木块与木板间的动摩擦因数为μ1,木板与地面间的动摩擦因数为μ2。
下列说法正确的是: ()A.木板受到地面的摩擦力的大小一定是μ1mgB.木板受到地面的摩擦力的大小一定是μ2(m+M)gC.当F>μ2(m+M)g时,木板便会开始运动D.无论怎样改变F的大小,木板都不可能运动7.如图所示,水平推力F使物体静止于斜面上,则()A.物体一定受3个力的作用;B.物体可能受3个力的作用;C.物体一定受到沿斜面向下的静摩擦力;D.物体可能受到沿斜面向下的静摩擦力。
8.如图所示,斜面体M 的底面粗糙,斜面光滑,放在粗糙水平面上。
弹簧的一端固定在墙面上,另一端与放在斜面上的物块m相连,弹簧的轴线与斜面平行。
若物块在斜面上做简谐运动,斜面体保持静止,则地面对斜面体的摩擦力f与时间t的关系图象应是下图中的哪一个?()9.如图所示,OA为遵从胡克定律的弹性轻绳,其一端固定于天花板上的O点,另一端与静止在动摩擦因数恒定的水平地面上的滑块A相连。
当绳处于竖直位置时,滑块A对地面有压力作用。
B为紧挨绳的一光滑水平小钉,它到天花板的距离BO等于弹性绳的自然长度。
现有一水平力F作用于A,使A向右缓慢地沿直线运动,则在运动过程中()A.水平拉力F保持不变B.地面对A的摩擦力保持不变C.地面对A的摩擦力变小D.地面对A的支持力保持不变。
10、如图所示,质量为m的质点静止地放在半径为R的半球体上,质点与半球体间的动摩擦因数为μ,质点与球心的连线与水平地面的夹角为θ,则下列说法正确的是()A.地面对半球体的摩擦力方向水平向左B.质点对半球体的压力大小为mg cosθC.质点所受摩擦力大小为mg sinθD.质点所受摩擦力大小为mg cosθ11、如图所示,光滑水平面上放置质量分别为m和2m的四个木块,其中两个质量为m 的木块间用一不可伸长的轻绳相连,木块间的最大静摩擦力是μmg。
现用水平拉力F拉其中一个质量为2 m的木块,使四个木块以同一加速度运动,则轻绳对m的最大拉力为()F BAMm FA 、5mg 3μB 、4mg 3μC 、2mg 3μ D 、mg 3μ 12.如图所示,在倾角为θ的粗糙斜面上,一个质量为m 的物体被水平力F 推着静止于斜面上,物体与斜面间的动摩擦因数为μ,且μ<tanθ,求力F解:因为μ<tan θ,所以当F =0时,物体不能静止。
若物体在力F 的作用下刚好不下滑,则物体受沿斜面向上的最大静摩擦力,且此时F 最小,对物体受力分析,如图甲所示,由平衡条件:m gsin θ=F cos θ+F ① N=m gcos θ+mg sin θ ② F =μN ③由①②③得F m in =sin cos sin cos u mg u θθθθ-+ 若物体在力F 的作用下刚好不上滑,则物体受沿斜面向下的最大静摩擦力,且此时F 最大,对物体受力分析,如图乙所示,由平衡条件:m gsin θ+F =F cos θ ①N=mg cos θ+mg sin θ ②F =μN ③ 由①②③得F m ax =cos sin cos sin u mg u θθθθ-- 摩擦力与曲线运动的综合 13、在如图所示的装置中,两个光滑的定滑轮的半径很小,表面粗糙的斜面固定在地面上,斜面的倾角为θ=30°。
用一根跨过定滑轮的细绳连接甲、乙两物体,把甲物体放在斜面上且连线与斜面平行,把乙物体悬在空中,并使悬线拉直且偏离竖直方向α=60°。
现同时释放甲乙两物体,乙物体将在竖直平面内振动,当乙物体运动经过最高点和最低点时,甲物体在斜面上均恰好未滑动。
已知乙物体的质量为m =1㎏,若取重力加速度g =10m/s 2。
求:甲物体的质量及斜面对甲物体的最大静摩擦力。
解:设甲物体的质量为M ,所受的最大静摩擦力为f ,则当乙物体运动到最高点时,绳子上的弹力最小,设为T 1, 对乙物体 αcos 1mg T =此时甲物体恰好不下滑,有:1sin T f Mg +=θ 得:αθcos sin mg f Mg += 当乙物体运动到最低点时,设绳子上的弹力最大,设为T 2对乙物体由动能定理: ()221cos 1mv mgl =-α 又由牛顿第二定律: lv m mg T 22=- 此时甲物体恰好不上滑,则有: 2sin T f Mg =+θ 得:)cos 23(sin αθ-=+mg f Mg可解得: )(5.2sin 2)cos 3(kg m M =-=θα 物体的平衡F 图乙图甲1.如图所示,在倾角为θ的固定光滑斜面上,质量为m 的物体受外力F 1和F 2的作用,F 1方向水平向右,F 2方向竖直向上。
若物体静止在斜面上,则下列关系正确的是( )A .mg F mg F F ≤=+221,sin cos sin θθθB .mg F mg F F ≤=+221,sin sin cos θθθC .mg F mg F F ≤=-221,sin cos sin θθθD .mg F mg F F ≤=-221,sin sin cos θθθ2.如图所示,四个质量、形状相同的斜面体放在粗糙的水平面上,将四个质量相同的物块放在斜面顶端,因物块与斜面的摩擦力不同,四个物块运动情况不同,放上A 物块后A 物块匀加速下滑,B 物块获一初速度后匀速下滑,C 物块获一初速度后匀减速下滑,放上D 物块后D 物块静止在斜面上,四个斜面体均保持静止,四种情况下斜面体对地面的压力依次为F 1、F 2、F 3、F 4,则它们的大小关系是( )A .F 1=F 2=F 3=F 4B .F 1>F 2>F 3>F 4C .F 1<F 2=F 4<F 3D .F 1=F 3<F 2<F 43、如图所示,质量为m 的质点,与三根相同的螺旋形轻弹簧相连。
静止时,相邻两弹簧间的夹角均为1200.已知弹簧a 、b 对质点的作用力均为F ,则弹簧c 对质点的作用力大小可能为:( )A .FB .F + mgC .F —mgD .mg —F4、如图所示,轻绳的一端系在质量为m 的物体上,另一端系在一个圆环上,圆环套在粗糙水平横杆MN 上,现用水平力F 拉绳上一点,使物体处在图中实线位置.然后改变F 的大小使其缓慢下降到图中虚线位置,圆环仍在原来位置不动,则在这一过程中,水平拉力F 、环与横杆的摩擦力f 和环对杆的压力N 的变化情况是( )A .F 逐渐增大,f 保持不变,N 逐渐增大B .F 逐渐增大,f 逐渐增大,N 保持不变C .F 逐渐减小,f 逐渐增大,N 逐渐减小D .F 逐渐减小,f 逐渐减小,N 保持不变5、如图所示,竖直杆CB 顶端有光滑轻质滑轮,轻质杆OA 自重不计,可绕O 点自由转动,OA =OB 。
当绳缓慢放下,使∠AOB 由00逐渐增大到1800的过程中(不包括00和1800)下列说法正确的是( )A .绳上的拉力先逐渐增大后逐渐减小B .杆上的压力先逐渐减小后逐渐增大C .绳上的拉力越来越大,但不超过2GD .杆上的压力大小始终等于G6.如图所示,光滑圆球半径为1 m ,质量为6 kg ,静止于图示位置,图中距离d 为1.8 m ,求竖直墙壁与台阶对球的支持力分别为多大?(取g=10 m /s 2)7、如图所示,三根不可伸长的轻绳,一端系在半径为r 0的环1上,彼此间距相v v v A B C D132等。
绳穿过半径为r 0的第3个圆环,另一端用同样方式系在半径为2r 0的圆环2上,环1固定在水平天花上,整个系统处于平衡。
试求第2个环中心与第3个环中心之距离。
(三个环都是用同种金属丝制作的)解:因为环2的半径为环3的2倍,环2的周长为环3的2倍,三环又是用同种金属丝制成的,所以环2 的质量为环3 的2倍。
设环3的质量为m ,则三根绳承受的重量为3mg (以2、3两环的系统为研究对象),即环1与环3之间每根绳的张力T 1=mg ,是相同的。
对环2(受力如图1-6),平衡时,有 3T 2cos α=2mg又 T 1=T 2=mg得 cos α=2/3环2与环3中心间的距x= r 0ctg α= 020r 52cos -1cos r αα图1-6 T 2。