运算放大器及典型应用分享

合集下载

运放典型应用电路

运放典型应用电路

运放典型应用电路一、什么是运放运放,即运算放大器,是一种集成电路芯片,主要用于放大、滤波、求导等信号处理方面。

它的特点是输入阻抗高、输出阻抗低,增益高、带宽宽广,可以通过外接电路改变其工作方式。

二、基本运放电路1. 非反馈式基本运放电路非反馈式基本运放电路由一个差动输入级和一个单端输出级组成。

其中差动输入级由两个晶体管组成,用于将输入信号转换为差模信号;单端输出级由一个共射极晶体管组成,用于将差模信号转换为单端输出信号。

2. 反馈式基本运放电路反馈式基本运放电路在非反馈式基本运放电路的基础上加入了反馈网络。

反馈网络可以改变增益、频率响应等特性,使得运放可以适应不同的应用场合。

三、典型应用电路1. 反相比例放大器反相比例放大器是一种常见的运放应用电路。

它的原理是将输入信号经过一个负反馈网络后再输入到非反相输入端口上。

这样可以实现对输入信号进行负反馈放大,从而达到比例放大的效果。

2. 非反相比例放大器非反相比例放大器与反相比例放大器类似,只是将输入信号输入到非反相输入端口上。

这样可以实现对输入信号进行正反馈放大,从而达到比例放大的效果。

3. 仪表放大器仪表放大器是一种高精度、高稳定性的运放应用电路。

它通过差分输入、高增益、低噪声等设计特点,实现对小信号的高精度测量和处理。

4. 滤波器滤波器是一种常见的运放应用电路。

它通过选择不同的电容和电感组合,可以实现不同类型的滤波功能,如低通滤波、高通滤波、带通滤波等。

5. 稳压电源稳压电源是一种常见的运放应用电路。

它通过反馈网络控制输出电压,使得输出电压保持稳定不变。

稳压电源广泛应用于各种电子设备中。

6. 正弦波振荡器正弦波振荡器是一种常见的运放应用电路。

它通过选择合适的RC组合和反馈网络,可以实现正弦波振荡输出。

正弦波振荡器广泛应用于各种信号发生器中。

四、总结运放是一种功能强大的集成电路芯片,可以应用于放大、滤波、求导等信号处理方面。

不同的运放应用电路具有不同的特点和功能,可以满足各种不同的应用需求。

运算放大器工作原理及应用

运算放大器工作原理及应用

运算放大器工作原理及应用
运算放大器是一种基本的放大器电路,其主要作用是将输入信号放大并输出。

它采用了差分放大电路,将两个输入信号进行放大和差分运算,并输出放大后的差分信号。

运算放大器具有以下几个重要特点:
1. 高增益:运算放大器具有非常高的增益,通常在几千到几百万倍之间,使得输入信号可以得到大幅度放大。

2. 差分输入:运算放大器有两个输入端,称为非反相输入端(+)和反相输入端(-)。

它可以对这两个输入信号进行差分放大,从而实现对输入信号的放大和运算。

3. 可调增益:运算放大器具有可调增益的特性,可以通过外部电阻进行调节,以满足不同的放大需求。

4. 高输入阻抗和低输出阻抗:运算放大器的输入阻抗非常高,几乎不消耗输入信号的能量;而输出阻抗非常低,可以驱动各种负载。

运算放大器广泛应用于各种电子电路中,例如:
1. 仪器测量:运算放大器可以对微弱的传感器信号进行放大和处理,从而实现精确的测量和控制。

2. 运算放大器放大电路:在电路中,运算放大器可以用于对电
压、电流、频率等信号进行放大。

3. 模拟计算机:运算放大器可以用于实现各种模拟计算机的基本运算,例如加法、减法、乘法等。

4. 滤波器:运算放大器可以与电容、电感等元件组成滤波电路,用于对信号进行滤波和去噪。

总之,运算放大器是一种非常重要的放大器电路,具有高增益、可调增益、差分输入和广泛的应用领域。

它在电子工程中有着非常重要的作用。

集成电路运算放大器的线性应用

集成电路运算放大器的线性应用

高开环增益
输入端几乎不吸收电流, 使得输入信号源不受负
载影响。
输出端具有很低的内阻, 可以驱动较大的负载。
无反馈时的电压放大倍数 极高,使得运算放大器具
有很高的放大能力。
高共模抑制比
对共模信号(两个输入端共 有的信号)有很强的抑制能
力,提高了抗干扰性能。
常见集成电路运算放大器类型
通用型运算放大器
高精度运算放大器
故障诊断与排除方法
01 02 03 04
当运算放大器出现故障时,首先检查电源和接地是否正常,排除电源 故障。
检查输入信号是否正常,以及输入电路是否存在短路或开路现象。
观察运算放大器的输出信号是否正常,如有异常则检查反馈电路和元 件是否损坏。
使用示波器等测试工具对运算放大器进行测试,进一步确定故障原因 并进行修复。
参考运算放大器的典型应 用电路,选择合适的外围 元件和参数。
应用注意事项与技巧
01 在使用运算放大器前,应对其进行充分的测 试和验证,确保其性能稳定可靠。
02
合理设计运算放大器的输入和输出电路,避 免引入不必要的噪声和失真。
03
注意运算放大器的电源和接地设计,确保电 源稳定且接地良好。
04
根据应用需求选择合适的反馈电路和元件, 以实现所需的放大倍数和带宽。
音频滤波器
通过配置运算放大器和外围元件,构成 各种滤波器,如低通、高通、带通等, 对音频信号进行频率选择和处理。
传感器信号调理电路
传感器信号放大电路
01
针对传感器输出的微弱信号,利用运算放大器进行放大,提高
信号的幅度和信噪比。
传感器信号滤波电路
02
去除传感器信号中的噪声和干扰,提取有用的信号成分,提高

LM358双运算放大器电路的典型应用

LM358双运算放大器电路的典型应用

脚位排列图概述(Description):LM358内部包括有两个独立的、高增益、内部频率补偿的双运算放大器,适合于电源电压范围很宽的单电源使用,也适用于双电源工作模式,在推荐的工作条件下,电源电流与电源电压无关。

它的使用范围包括传感放大器、直流增益模块和其他所有可用单电源供电的使用运算放大器的场合。

LM358的封装形式有塑封8引线双列直插式和贴片式。

特性(Features):∙内部频率补偿∙直流电压增益高(约100dB)∙单位增益频带宽(约1MHz)∙电源电压范围宽:单电源(3—30V);双电源(±1.5一±15V)∙低功耗电流,适合于电池供电∙低输入偏流∙低输入失调电压和失调电流∙共模输入电压范围宽,包括接地∙差模输入电压范围宽,等于电源电压范围∙输出电压摆幅大(0至Vcc-1.5V)下载资料(英文PDF-477K)红外线探测报警器该报警器能探测人体发出的红外线,当人进入报警器的监视区域内,即可发出报警声,适用于家庭、办公室、仓库、实验室等比较重要场合防盗报警。

工作原理该装置电路原理见图1。

由红外线传感器、信号放大电路、电压比较器、延时电路和音响报警电路等组成。

红外线探测传感器IC1探测到前方人体辐射出的红外线信号时,由IC1的②脚输出微弱的电信号,经三极管VT1等组成第一级放大电路放大,再通过C2输入到运算放大器IC2中进行高增益、低噪声放大,此时由IC2①脚输出的信号已足够强。

IC3作电压比较器,它的第⑤脚由R10、VD1提供基准电压,当IC2①脚输出的信号电压到达IC3的⑥脚时,两个输入端的电压进行比较,此时IC3的⑦脚由原来的高电平变为低电平。

IC4为报警延时电路,R14和C6组成延时电路,其时间约为1分钟。

当IC3的⑦脚变为低电平时,C6通过VD2放电,此时IC4的②脚变为低电平,它与IC4的③脚基准电压进行比较,当它低于其基准电压时,IC4的①脚变为高电平,VT2导通,讯响器BL通电发出报警声。

运算放大器的用法

运算放大器的用法

运算放大器的用法运算放大器(Operational Amplifier,简称Op-Amp)是一种重要的电子器件,广泛应用于各种电路中。

它具有高增益、高输入阻抗、低输出阻抗等特点,使得它在电子设计中扮演着重要的角色。

下面将介绍一些运算放大器的常见用法。

1. 比较器:运算放大器可以用作比较器,将两个输入信号进行比较,并输出一个高电平或低电平的信号。

这种应用常见于电压比较、开关控制等场景。

2. 放大器:运算放大器最常见的用途是作为信号放大器。

通过调整反馈电阻和输入电阻的比例,可以实现不同的放大倍数。

这种应用广泛用于音频放大、传感器信号处理等领域。

3. 滤波器:运算放大器可以与电容和电感等元件组成滤波电路,实现对特定频率范围内信号的增强或抑制。

这种应用常见于音频滤波、通信系统中的滤波等场景。

4. 仪表放大器:运算放大器可以通过调整反馈网络来实现对输入信号进行精确测量和调节。

这种应用常见于仪器仪表、传感器信号调理等领域。

5. 电压跟随器:运算放大器可以实现输入电压与输出电压一致的功能,即输入电压变化时,输出电压也相应变化。

这种应用常见于自动控制系统、反馈控制等场景。

6. 信号发生器:通过在运算放大器的反馈回路中引入RC网络,可以实现正弦波、方波等不同形式的信号发生。

这种应用常见于测试仪器、音频设备等领域。

总之,运算放大器作为一种重要的电子元件,在各个领域都有广泛的应用。

它的高增益、高输入阻抗和低输出阻抗等特点使得它成为了电子设计中不可或缺的工具。

无论是在信号处理、控制系统还是仪表测量等方面,运算放大器都发挥着重要作用,为我们提供了更加精确和稳定的电子系统。

四种常用放大器及应用

四种常用放大器及应用

四种常用放大器及应用常用的四种放大器是:运算放大器、功率放大器、音频放大器和射频放大器。

首先,运算放大器(Operational Amplifier,简称Op-Amp)是一种重要的电子放大器,它有很多应用。

它具有高增益、高输入阻抗和低输出阻抗的特点。

运算放大器最常见的应用是运算放大电路,用于实现各种算法和信号处理。

运算放大器还可用于比较器、振荡器、多谐波振荡器等电路。

此外,运算放大器还常用于仪器仪表、模拟计算机、数据采集系统和传感器等领域。

其次,功率放大器(Power Amplifier)是用来放大输入信号的功率的放大器,用于驱动负载。

功率放大器通常分为A类、B类、AB类、C类和D类等。

功率放大器广泛应用于音频系统、无线电通信系统、雷达系统和太阳能系统等领域。

其中,音频功率放大器用于扬声器系统,提供足够的功率以产生高音质音乐;无线电通信系统和雷达系统中的功率放大器通常需要驱动天线以产生更大的发射功率;太阳能系统中的功率放大器用于将太阳能电池板的输出电压提高到适合之后的电路或网络使用的电压。

第三种常用放大器是音频放大器,用于增强音频信号的幅度。

音频放大器一般分为低功率放大器和高功率放大器两类。

低功率放大器通常用于便携式音频设备,如手机、MP3播放器等。

高功率放大器则广泛应用于音响系统和放大器组件,以获得更高的音响质量和音响功率。

音频放大器还有各种不同类型,例如A类、B类、AB类和D类音频放大器,它们在功率效率、失真和音质上存在差异。

最后,射频放大器(Radio Frequency Amplifier)是用于放大射频信号的放大器。

射频放大器广泛应用于通信系统、雷达系统、遥控系统、卫星通信系统等领域。

射频放大器通常要求具有高增益、低噪声和高线性度。

根据应用需求,射频放大器也可分为小功率放大器和高功率放大器两类。

小功率射频放大器通常用于低功率无线电设备和无线电接收机,而高功率射频放大器则用于要求更大发射功率的无线电设备。

史上最全的运放典型应用电路及分析

史上最全的运放典型应用电路及分析

史上最全的运放典型应用电路及分析运放(Operational Amplifier,简称OP-AMP)是一种非常重要的电子元件,被广泛应用于各种电路中。

它具有高增益、输入阻抗高、输出阻抗低和大动态范围等特点,适用于信号放大、滤波、求和、差分运算等各种应用。

下面将介绍几个常见的运放典型应用电路。

1. 基本运算放大器(Inverting amplifier)电路:该电路是运放最基本的应用之一,用于放大信号。

它的输入信号通过一个电阻连接到运放的一个输入引脚(负输入端),另一个输入引脚通过一个反馈电阻与输出端相连。

这样,在负输入端和输出端之间形成一个负反馈回路。

根据负反馈原理,输入信号被放大后反馈到负输入端,并与输入信号相位反向,达到放大输入信号的效果。

2. 非反转放大器(Non-inverting amplifier)电路:与基本运算放大器相比,非反转放大器电路在输入信号的反馈上有所不同。

在该电路中,输入信号直接连接到运放的一个输入引脚(正输入端),另一个输入引脚通过一个电阻与负电源端相连。

输出信号通过一个反馈电阻连接到正输入端。

这样,输出信号经过反馈后加入到正输入端,与输入信号相位相同,实现了对输入信号的放大。

3.滤波电路:运放可用于构建各种滤波电路,如低通滤波器、高通滤波器和带通滤波器等。

滤波器根据频率的不同选择性地削弱或放大信号的不同频段。

例如,低通滤波器能够削弱高频信号,使得输出信号更加接近原始信号的低频部分。

4.增益控制电路:运放可以用于实现可变增益放大器。

通过调节输入信号与反馈电阻之间的比例关系,可以实现对输出信号的不同放大倍数的控制。

这种电路广泛应用于音频设备、通信系统等领域。

5.比较器电路:利用运放的比较特性,可以将其应用为比较器。

比较器通过将待测信号与参考电压进行比较,并给出一个高低电平作为输出信号。

这种电路广泛应用于电压比较、开关控制、实现零点检测等场景。

总而言之,运放的应用非常广泛,可以根据不同的需求设计出各种典型电路。

运算放大器7大经典电路实图分析!

运算放大器7大经典电路实图分析!

运算放大器7大经典电路实图分析!运放的基本分析方法:虚断,虚短。

对于不熟悉的运放应用电路,就使用该基本分析方法。

运放是用途广泛的器件,接入适当的反馈网络,可用作精密的交流和直流放大器、有源滤波器、振荡器及电压比较器。

8号线攻城狮1运放在有源滤波中的应用上图是典型的有源滤波电路(赛伦-凯电路,是巴特沃兹电路的一种)。

有源滤波的好处是可以让大于截止频率的信号更快速的衰减,而且滤波特性对电容、电阻的要求不高。

该电路的设计要点是:在满足合适的截止频率的条件下,尽可能将R233和R230的阻值选一致,C50和C201的容量大小选取一致(两级RC电路的电阻、电容值相等时,叫赛伦凯电路),这样就可以在满足滤波性能的情况下,将器件的种类归一化。

其中电阻R280是防止输入悬空会导致运放输出异常。

滤波最常用二阶有源低通滤波电路为巴特沃兹低通滤波,单调下降,曲线平坦最平滑;●巴特沃兹低通滤波中用的最多的是赛伦凯乐电路,即仿真的该电路。

一个滤波器,要知道其截至频率是多少,或者能写出传递函数和频率响应也可以。

如果该滤波器还有放大功能,要知道该滤波器的增益是多少。

当两级RC电路的电阻、电容值相等时,叫赛伦凯电路,在二阶有源电路中引入一个负反馈,目的是使输出电压在高频率段迅速下降。

二阶有源低通滤波电路的通带放大倍数为 1+Rf /R1 ,与一阶低通滤波电路相同;截止频率为:注明,m的单位为欧姆, N 的单位为 u。

所以计算得出截止频率为:●切比雪夫,迅速衰减,但通带中有纹波;●贝塞尔(椭圆),相移与频率成正比,群延时基本是恒定。

8号线攻城狮2运放在电压比较器中的应用上图是典型信号转换电路,将输入的交流信号,通过比较器LM393,将其转化为同频率的方波信号(存在反相让软件处理一下就可以),该电路在交流信号测频中广泛使用。

该电路实际上是过零比较器和深度放大电路的结合。

将输出进行(1+R292/R273)倍的放大,放大倍数越高,方波的上升边缘越陡峭。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
首个进入二线城市的共享单车企业
失调电压Vo
• 指为了使输出电压为零而在输入端加的补偿电压。它反映了运放本身输入级的 匹配程度。 • 它本身并不大一般在5mV以下,精密运放一般可以达到 100uV以下,目前最高精 科技改变城市交通出行生态 度的运放可以达到1uV以下。 • 由于运放出厂后Vo基本不会变化,所以Vo只会对增益较大的直流应用产生影响。
因为它们总在变化。
因此对于特别精密,且工作环境温度变换较大的电路IB和Vo也是考虑的重点。
转换速度(压摆率)SR
• SR是运放输出信号上升的最快速度。 • SR 对运放应用的影响主要在两方面: • •
科技改变城市交通出行生态
对幅度较大的正弦输入,SR较小时可能造成信号失真。
首个进入二线城市的共享单车企业
产生一个数字信号时,比如用运放做比较器时,输出的数字信号上升沿不够 陡峭。
输入和输出电压范围
• 运放是一种“线性器件”,这意味着在任何情况下: • • 不允许输入电压高于或低于电源电压;
科技改变城市交通出行生态
输出也不可能高于或低于电源电压;
首个进入二线城市的共享单车企业 • 在满足上述条件的情况下也并不意味着:
• •
输入电压可以达到或接近电源电压; 输出电压可以达到或者接近电源电压;
• 实际上在经典的技术中输入和输出的最大电压都必须距离电源1.5V左右。
科技改变城市交通出行生态
首个进入二线城市的共享单车企业
科技改变城市交通出行生态
首个进入二线城市的共享单车企业
E30天线盒典型电路分析
科技改变城市交通出行生态
成电路。
首个进入二线城市的共享单车企业
集成运算放大器的特点
高增益、高可靠性、低成本、小尺寸
运算放大器的典型应用
解决的问题
信号放大
利用了运放的什么特性 典型应用
开环增益大; 足够的乘积增益带宽 心电信号的拾取; 传感器微弱信号放大电 科技改变城市交通出行生态 路
阻抗变换
高输入阻抗,低输出阻抗; 右腿驱动电路; 在计算上体现为“虚短”和“虚断” ADC驱动; 首个进入二线城市的共享单车企业 各种传感器调理电路
首个进入二线城市的共享单车企业
科技改变城市交通出行生态
首个进入二线城市的共享单车企业
科技改变城市交通出行生态
首个进入二线城市的共享单车企业
科技改变城市交通出行生态
首个进入二线城市的共享单车企业
科技改变城市交通出行生态
首个进入二线城市的共享单车企业
THANKS
2018,让我们一起
推动绿色出行 推动共享低碳经济健康发展 推动中国交通信用体系建设落地
哈罗单车
和谐交通 · 智慧出行
运放电路和典型应用分享
上海钧正网络科技有限公司
什么是集成运算放大器
运算放大器(简称“运放”)是具有很高放大倍数的电路单元。是
科技改变城市交通出行生态 一种带有特殊耦合电路及反馈的放大器。输出信号可以是输入信号加、减
或微分、积分等数学运算的结果。是发展最早、应用最广泛的一种模拟集
1nA。
9、输入失调电流:表示流经两个输入端电流的差别。双极型晶体管一般为20~200nA,场效应管一般小于 1nA。
10、共模抑制比:表示运放对差模信号的放大倍数和对共模信号放大倍数之比。一般为70~90dB 。

偏置电流IB
理想运放的输入阻抗是无穷大,也就是没有输入电流。但实际上不可能做到, 因此定义从同相端流入,反相端流出的电流较偏置电流。 科技改变城市交通出行生态 偏置电流对运放的性能较大,主要体现在: 直接影响运放的输入阻抗——体现为在影响输出的静态工作点; 随温度漂移较大,致使系统不稳定,性能随温度变化。
首个进入二线城市的共享单车企业
电压传输特性曲线
科技改变城市交通出行生态
首个进入二线城市的共享单车企业
运算放大器的性能指标
1、开环差模电压放大倍数:简称开环增益,表示运算放大器本身的放大能力。一般为50 000~200 000倍。
2、输入失调电压:表示静态时输出端电压偏离预定值的程度。一般为2~10mV(折合到输入端)。 3、单位增益带宽:表示差模电压放大倍数下降到1时的频率。一般在1MHz左右。 4、转换速率(又称压摆率):表示运算放大器对突变信号的适应能力。一般在 0.5V/μ s左右。 科技改变城市交通出行生态 5、输出电压和电流:表示运放的输出能力。一般输出电压峰值至峰值要比电源电压低1~3V,短路电流在 25mA左右。 首个进入二线城市的共享单车企业 6、静态功耗:表示无信号条件下运放的耗电程度。当电源电压为±15V时,静态功耗双极型晶体管一般为 50~100mW,场效应管一般为1mW。 7、输入失调电压温度系数:表示温度变化对失调电压的影响。一般为3~5μ V/℃(折合到输入端)。 8、输入偏置电流:表示输入端向外界索取电流的程度。双极型晶体管一般为80~500nA,场效应管一般为
运算放大器的等效电路模型
科技改变城市交通出行生态
首个进入二线城市的共享单车企业
关键点:输入电阻、输入电压、输出电阻、开环增益
无负载:Vo=Avi=A(Vp-Vn)
理想的运算放大器模型
1.理想运算放大器是一种电压控制电压源; 2.当输入引脚没有电流输入时,运放的输入电阻Ri=∞,实际应用中意 味着运放输入电流为0A; 科技改变城市交通出行生态 3.当输出电阻为0时(Ro=0),输出电压与输出端负载无关。 4.理想的运放开环增益为∞。
首个进入二线城市的共享单车企业
偏置Bias 平均 失调Offset 差
IB和Vo的温漂
正如上面分析的IB和Vo主要影响运放输出的工作点,但这种影响是固定的。也 就是说,当运放被选定后IB和Vo引起的工作点的偏差也就固定了,这样的误差是 科技改变城市交通出行生态 可以通过人工调整去除,还好对付。
首个进入二线城市的共享单车企业 但IB和Vo的温漂是指IB和Vo随温度变化的大小就是一个几乎不可去除的因素了,
高输入阻抗; 低失调电压 高输入阻抗,低输出阻抗; 运放的带宽 恒流源、恒压源等各种 带“恒”的电路 抗混叠滤波器
反馈电路中的比 较环节 模拟滤波器
运算放大器的模型和内部结构
科技改变城市交通出行生态
首个进入二线城市的共享单车企业
运算放大器的模型和内部结构
科技改变城市交通出行生态
首个进入二线城市的共享单车企业
相关文档
最新文档