集成运算放大器的基本应用

合集下载

实验四集成运算放大器的基本应用

实验四集成运算放大器的基本应用

实验波形分析
实验误差分析
在实验过程中,我们计算了测量结果的 误差,并分析了误差来源,如电源噪声 、电阻值误差和测量仪器误差等。
通过示波器观察输入和输出信号的波 形,我们分析了放大器的频率响应、 相位失真和线性范围等特性。
实验结论
集成运算放大器具有高放大倍数、 低失真和低噪声等优点,适用于
多种信号处理和放大应用。
放大和
集成运算放大器通过内部晶体管的组 合和反馈电路,实现对输入信号的放 大。
输出级通常采用推挽输出电路,以提 供较大的输出电流和电压,满足各种 应用需求。
直流和交流性能指标
直流性能指标包括开环增益、输入电阻、输出电阻等,这些指标决定了运算放大 器的静态性能。
交流性能指标包括带宽增益乘积、相位裕度、单位增益频率等,这些指标决定了 运算放大器的动态性能。
REPORTING
反相器和同相器的性能指标 主要包括电压放大倍数、输 入电阻和输出电阻。
电压放大倍数表示输出电压 与输入电压的比值,输入电 阻和输出电阻则影响信号的 传输效果,这些参数对于反 相器和同相器的性能评估具 有重要意义。
2023
PART 04
集成运算放大器的非线性 应用
REPORTING
电压比较器
总结词
2023
实验四:集成运算放 大器的基本应用
https://
REPORTING
2023
目录
• 引言 • 集成运算放大器的工作原理 • 集成运算放大器的线性应用 • 集成运算放大器的非线性应用 • 实验步骤和注意事项 • 实验结果和结论 • 参考文献
2023
PART 01
集成运算放大器由输入级、中间级和输出级三部分组成,其中输入级是差分放大电 路,中间级是电压放大电路,输出级是功率放大电路

集成运算放大器的基本应用实验数据

集成运算放大器的基本应用实验数据

文章标题:深度解析集成运算放大器的基本应用实验数据在电子电路领域中,集成运算放大器(简称运放)是一种非常重要的器件。

它具有高增益、高输入阻抗、低输出阻抗等特点,被广泛应用于信号放大、滤波、比较、积分等电路中。

本文将结合实验数据,深入探讨集成运算放大器的基本应用,并分析其在电子电路中的重要性。

1. 实验数据搜集与整理在进行深度分析之前,我们首先需要收集和整理一些集成运算放大器的基本应用实验数据。

通过搭建不同的电路实验,我们可以得到运放在不同工作条件下的输入输出特性、增益、频率响应等数据。

这些实验数据将为我们进一步的分析提供有力的支持。

2. 电压跟随器实验数据分析我们进行了电压跟随器实验,并记录了不同输入电压条件下的输出电压。

通过分析这些实验数据,我们可以得到电压跟随器的输入输出特性曲线,了解其在不同输入条件下的响应情况。

从实验数据中我们可以发现,电压跟随器在一定范围内能够有效地跟随输入电压变化,从而实现信号放大和跟随的功能。

3. 反相放大器实验数据分析接下来,我们进行了反相放大器的实验,并记录了其在不同输入信号下的输出情况。

通过对实验数据的分析,我们可以得到反相放大器在不同增益下的输出特性曲线,以及其在不同频率下的响应情况。

实验数据表明,反相放大器具有良好的线性放大特性,并且在一定频率范围内能够实现稳定的放大功能。

4. 比较器实验数据分析除了常见的放大功能外,运放还可以被应用于比较器电路中。

我们进行了比较器实验,并记录了不同输入信号下的输出情况。

通过对比实验数据,我们可以得到比较器的阈值电压、输出翻转情况以及在不同工作条件下的响应特性。

实验数据显示,比较器能够快速、准确地对输入信号进行比较,并输出相应的逻辑信号。

5. 总结与个人观点通过对集成运算放大器的基本应用实验数据进行深入分析,我们可以更好地理解其在电子电路中的重要作用。

实验数据的分析为我们提供了直观、具体的数据支持,帮助我们更全面、深入地了解运放的工作特性。

集成运算放大器的应用有哪些

集成运算放大器的应用有哪些

集成运算放大器的应用有哪些集成运算放大器(Operational Amplifier,简称OP-AMP) 是现代电子技术中常用的一种集成电路,广泛应用于信号放大、积分、微分、比较、滤波、波形变换、逻辑运算等电路中。

本文将介绍一些集成运算放大器的应用。

一、信号放大集成运算放大器广泛应用于信号放大电路中,其直接或变压器耦合输入方式具有低输入电阻、高输入阻抗、低噪声、高增益和宽带等特性。

在应用中,可通过精心设计放大器电路,控制反馈,实现高增益稳定运行。

二、积分电路积分电路是信号处理电路中的基本电路,它能将信号输入与时间积分,输出的是输入信号积分后的值。

集成运算放大器常用于积分电路的设计,其放大电压信号,然后通过电容对信号进行积分。

例如,在三角形波发生器电路中,可通过电容积分得到正弦波信号,而集成运算放大器的内部电路通常包含差分放大器,可将输入信号转化为电压差,用于驱动电容,完成积分计算。

三、微分电路微分电路是在信号处理中广泛应用的一种电路,它能够将信号对时间的微分操作,其输出电压是输入信号微分后的值。

集成运算放大器也常用于微分电路的设计中,可通过对输入信号进行微分计算得到输出信号。

例如,在测量热电偶温度时,可将温度信号输入到集成运算放大器中,通过差分放大器将信号转化为电压差,然后用电阻对信号进行微分计算,输出即为最终温度值。

四、比较电路比较电路是一种将两个信号进行比较然后输出比较结果的电路,它广泛应用于数字电路、自动控制、计算机硬件等领域。

集成运算放大器常用于比较电路中,它的输出能够根据电压的大小关系取两个输入信号中的一个。

例如,电压比较器是一种常见的电路,它采用集成运算放大器作为比较电路的核心元件,用于比较两个不同电压的大小关系,以便输出相应的状态。

五、滤波器滤波器是一种通过对输入信号进行滤波操作,抑制或增强特定频率信号的电路。

集成运算放大器广泛应用于滤波电路的设计中,其内部电路包括低通滤波器、高通滤波器、带通滤波器、带阻滤波器等类型。

集成运算放大器的基本应用实验报告

集成运算放大器的基本应用实验报告

集成运算放大器的基本应用实验报告集成运算放大器的基本应用实验报告引言:集成运算放大器(Operational Amplifier,简称Op-Amp)是一种广泛应用于电子电路中的重要器件。

它具有高增益、低失调、宽带宽等特点,可以实现信号放大、滤波、积分、微分等功能。

在本次实验中,我们将通过几个基本应用实验,探索集成运算放大器的工作原理和应用场景。

实验一:非反相放大器非反相放大器是Op-Amp最常见的应用之一。

它通过将输入信号与放大倍数相乘,输出一个放大后的信号。

我们在实验中使用了一个标准的非反相放大器电路,将一个正弦波信号作为输入,观察输出信号的变化。

实验结果显示,输出信号的幅度和输入信号的幅度相比,增大了放大倍数倍。

而相位方面,输出信号与输入信号的相位保持一致。

这说明非反相放大器能够有效放大输入信号,并且不改变其相位。

实验二:反相放大器反相放大器是Op-Amp另一种常见的应用。

它与非反相放大器相比,输入信号与放大倍数相乘后取反,输出一个反向的放大信号。

我们在实验中使用了一个反相放大器电路,将一个正弦波信号作为输入,观察输出信号的变化。

实验结果显示,输出信号的幅度与输入信号的幅度相比,同样增大了放大倍数倍。

但是相位方面,输出信号与输入信号相差180度。

这说明反相放大器能够有效放大输入信号,并且改变其相位。

实验三:积分器积分器是Op-Amp的另一个重要应用。

它可以将输入信号进行积分运算,输出一个积分后的信号。

我们在实验中使用了一个积分器电路,将一个方波信号作为输入,观察输出信号的变化。

实验结果显示,输出信号呈现一个斜率逐渐增大的曲线,表明输入信号得到了积分。

这说明积分器能够有效对输入信号进行积分运算,输出一个积分后的信号。

实验四:微分器微分器是Op-Amp的又一个重要应用。

它可以将输入信号进行微分运算,输出一个微分后的信号。

我们在实验中使用了一个微分器电路,将一个正弦波信号作为输入,观察输出信号的变化。

实验二集成运算放大器的基本应用

实验二集成运算放大器的基本应用

实验二 集成运算放大器的基本应用—— 模拟运算电路一、实验目的1、 研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。

2、 了解运算放大器在实际应用时应考虑的一些问题。

二、实验仪器1、 双踪示波器2、 万用表3、 交流毫伏表4、 信号发生器 三、电路理论回顾集成运算放大器在线性应用方面,可组成比例、加法、减法、积分、微分、对数、指数等模拟运算电路。

1、 反相比例运算电路电路如图11-1所示。

对于理想运放,该电路的输出电压与输入电压之间的关系为i FO U R R U 1-= (11-1)图11-1 反相比例运算电路为减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1∥R F 。

2、 反相加法电路图11-2 反相加法运算电路电路如图11-2所示,输出电压与输入电压之间的关系为)(2211i F i F O U R RU R R U +-= R 3=R 1∥R 2∥R F (11-2) 3、 同相比例运算电路图11-3(a )是同相比例运算电路,它的输出电压与输入电压之间的关系为i FO U R R U )1(1+= R 2=R 1∥R F (11-3) 当R1→∞时,U O =U i ,即得到如图11-3(b )所示的电压跟随器。

图中R 2=R F ,用以减小漂移和起保护作用。

一般R F 取10K Ω,R F 太小起不到保护作用,太大则影响跟随性。

图11-3 同相比例运算电路4、 差动放大电路(减法器)对于图11-4所示的减法运算电路,当R1=R2,R3=RF 时,有如下关系式: )(1120i i U U R RFU -=(11-4)图11-4 减法运算电路5、 积分运算电路图11-5 积分运算电路反相积分电路如图11-5所示。

在理想化条件下,输出电压U 0等于 001()(0)ti C U t U dt U RC =-+⎰ (11-5) 式中U C (0)是t=0时刻电容C 两端的电压值,即初始值。

最新实验五集成运算放大器的基本应用

最新实验五集成运算放大器的基本应用

实验五集成运算放大器的基本应用实验五集成运算放大器的基本应用(I)─模拟运算电路─一、实验目的1、了解和掌握集成运算放大器的功能、引脚2、研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。

3、了解运算放大器在实际应用时应考虑的一些问题。

二、实验原理集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。

当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。

在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。

理想运算放大器特性在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化,满足下列条件的运算放大器称为理想运放。

开环电压增益A ud=∞输入阻抗r i=∞输出阻抗r o=0带宽 f BW=∞失调与漂移均为零等。

理想运放在线性应用时的两个重要特性:(1)输出电压U O与输入电压之间满足关系式U O=A ud(U+-U-)由于A ud=∞,而U O为有限值,因此,U+-U-≈0。

即U+≈U-,称为“虚短”。

(2)由于r i=∞,故流进运放两个输入端的电流可视为零,即I IB=0,称为“虚断”。

这说明运放对其前级吸取电流极小。

上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。

基本运算电路1) 反相比例运算电路电路如图8-1所示。

对于理想运放,该电路的输出电压与输入电压之间的关系为为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R2=R1 //R F。

图8-1 反相比例运算电路图8-2 反相加法运算电路2) 反相加法电路电路如图8-2所示,输出电压与输入电压之间的关系为)URRURR(Ui22Fi11FO+-= R3=R1 //R2 //R Fi1FOURRU-=3) 同相比例运算电路图8-3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为i 1FO )U R R (1U += R 2=R 1 // R F 当R 1→∞时,U O =U i ,即得到如图8-3(b)所示的电压跟随器。

实验五集成运算放大器的基本应用

实验五集成运算放大器的基本应用

0.5V
实验内容
2. 同相输入比例运算
参照反相输入比例运算的电路。
Ui(V) UO(V)
Ui波形
Ui波形
AV 实验值 计算值
0.5V
实验内容
3. 反相输入求和运算
按实验原理中所示电路接线,接通 电源。从实验箱的直流信号源引入输入 信号Ui,测量对应的输出信号UO的值 ,算出AV,将实验值与理论值相比较 ,分析误差产生的原因。
Vo - Vi = Vi
RF
R1
Vo = (1+ RF )Vi
R1
Avf
= Vo Vi
=1+RF R1
返回
1. 反相比例放大器
示波器
直流稳压电源 地 -15V +15V
CH1+
CH1-
函数信号发生器
9.1K
共地
1
10K
2
3
-4
8
7+ RF=100K
6 5
CH2-
CH2+ 示波器
2. 同相比例放大器
实验五:集成运算放大器 的基本应用
电子技术基础 实验
一、实验目的
实验目的 实验原理 实验仪器 实验内容
1.掌握使用集成运算放大器 构成反相输入比例运算电路、 同相输入比例运算电路、反 相加法运算电路、减法运算 电路的方法;
2.进一步熟悉该基本运算电 路的输出与输入之间的关系。
实验目的 实验原理 实验仪器 实验内容
2. 同相比例放大器
3. 反相输入求和运算
4. 减法运算
1
8
2
7+
3
6
-4
5
集成运算放大器的放大原理
反相比例运算放大器

集成运算放大器的基本应用模拟运算电路实验报告

集成运算放大器的基本应用模拟运算电路实验报告

集成运算放大器的基本应用模拟运算电路实验报告实验目的:1. 学习集成运算放大器的基本应用;2. 掌握模拟运算电路的基本组成和设计方法;3. 理解反馈电路的作用和实现方法。

实验器材:1. 集成运算放大器OP07;2. 双电源电源供应器;3. 多用途万用表;4. 音频信号发生器;5. 电容、电阻、二极管、晶体管等元器件。

实验原理:集成运算放大器是一种高增益、高输入阻抗、低输出阻抗、具有巨大开环增益的差分放大器。

在应用中,我们通常通过反馈电路来控制放大器的增益、输入输出阻抗等特性,从而使其实现各种模拟运算电路。

常用的反馈电路有正向电压反馈、负向电压反馈和电流反馈等。

各种反馈电路的实现方法有所不同,但基本思想都是引入一个反馈回路来控制电路的传递函数,从而实现对电路特性的控制。

实验内容:1. 非反相比例放大电路按照电路图接线,设置正常的电源电压和输入信号参数,测量输出电压和放大倍数,记录实验数据。

2. 非反相积分电路按照电路图接线,设置正常的电源电压和输入信号参数,测量输出电压和放大倍数,记录实验数据。

3. 非反相微分电路按照电路图接线,设置正常的电源电压和输入信号参数,测量输出电压和放大倍数,记录实验数据。

4. 反相比例放大电路按照电路图接线,设置正常的电源电压和输入信号参数,测量输出电压和放大倍数,记录实验数据。

5. 反相积分电路按照电路图接线,设置正常的电源电压和输入信号参数,测量输出电压和放大倍数,记录实验数据。

6. 反相微分电路按照电路图接线,设置正常的电源电压和输入信号参数,测量输出电压和放大倍数,记录实验数据。

7. 增益和带宽测试选择合适的集成运算放大器,按照电路图接线,设置正常的电源电压和输入信号参数,测量输出电压和放大倍数,记录实验数据。

实验数据及分析:根据实验中所得到的数据,可以绘制出放大倍数和频率的曲线图,从中可以看出电路的增益特性和带宽特性。

实验结论:通过本次实验,我们学习了集成运算放大器的基本应用,掌握了模拟运算电路的基本组成和设计方法,理解了反馈电路的作用和实现方法,同时也提高了我们的实验操作能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验十一 集成运算放大器的基本应用—— 模拟运算电路一、实验目的1、研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。

2、了解运算放大器在实际应用时应考虑的一些问题。

二、实验仪器1、双踪示波器2、万用表3、交流毫伏表4、信号发生器三、实验原理在线性应用方面,可组成比例、加法、减法、积分、微分、对数、指数等模拟运算电路。

1、 反相比例运算电路电路如图11-1所示。

对于理想运放,该电路的输出电压与输入电压之间的关系为 i FO U R R U 1-= (11-1)U iO图11-1 反相比例运算电路为减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R2=R1∥R F ,此处为了简化电路,我们选取R2=10K 。

2、反相加法电路U OU图11-2 反相加法运算电路电路如图11-2所示,输出电压与输入电压之间的关系为)(2211i F i F O U R RU R R U +-= R 3=R 1∥R 2∥R F (11-2) 3、同相比例运算电路图11-3(a )是同相比例运算电路,它的输出电压与输入电压之间的关系为 i FO U R R U )1(1+= R 2=R 1∥R F (11-3) 当R1→∞时,U O =U i ,即得到如图11-3(b )所示的电压跟随器。

图中R2=R F ,用以减小漂移和起保护作用。

一般RF 取10K Ω,R F 太小起不到保护作用,太大则影响跟随性。

(a)同相比例运算 (b)电压跟随器图11-3 同相比例运算电路4、差动放大电路(减法器)对于图11-4所示的减法运算电路,当R1=R2,R3=R F 时,有如下关系式: )(1120i i U U R RFU -=(11-4)图11-4 减法运算电路5、积分运算电路-+2347156U OU iR1100K R21MR FC10.1uF+C2100uF100KU1图11-5 积分运算电路反相积分电路如图11-5所示。

在理想化条件下,输出电压U 0等于 001()(0)ti C U t U dt U RC=-+⎰ (11-5) 式中U C (0)是t=0时刻电容C 两端的电压值,即初始值。

如果U i (t)是幅值为E 的阶跃电压,并设U C (0)=0,则 001()t EU t Edt t RC RC=-=-⎰ (11-6) 此时显然RC 的数值越大,达到给定的U O 值所需的时间就越长,改变R 或C 的值积分波形也不同。

一般方波变换为三角波,正弦波移相。

6、微分运算电路微分电路的输出电压正比于输入电压对时间的微分,一般表达式为:0U =dtdu RCI- (11-7)利用微分电路可实现对波形的变换,矩形波变换为尖脉冲。

图11-6 微分运算电路7、对数运算电路对数电路的输出电压与输入电压的对数成正比,其一般表达式为:u 0=Klnu i K 为负系数。

(11-8) 利用集成运放和二极管组成如图11-7基本对数电路。

图11-7对数运算电路由于对数运算精度受温度、二极管的内部载流子及内阻影响,仅在一定的电流范围才满足指数特性,不容易调节。

故本实验仅供有兴趣的同学调试。

按如图11-7所示正确连接实验电路,D 为普通二极管,取频率为1KHz ,峰峰值为500mV 的三角波作为输入信号U i ,打开直流开关,输入和输出端接双踪示波器,调节三角波的幅度,观察输入和输出波形如下所示:在三角波上升沿阶段输出有较凸的下降沿,在三角波下降沿阶段有较凹的上升沿。

如若波形的相位不对调节适当的输入频率。

8、指数运算电路指数电路的输出电压与输入电压的指数成正比,其一般表达式为:I u Ke u 0 (11-9)利用集成运放和二极管组成如图11-8基本指数电路。

K 为负系数。

图11-8指数运算电路由于指数运算精度同样受温度、二极管的内部载流子及内阻影响,本实验仅供有兴趣的同学调试。

按如图11-8所示正确连接实验电路,D 为普通二极管,取频率为1KHz ,峰峰值为1V 的三角波作为输入信号U i ,打开直流开关,输入和输出端接双踪示波器,调节三角波的幅度,观察输入和输出波形如下所示,在三角波上升阶段输出有一个下降沿的指数运算,在下降沿阶段输出有一个上升沿运算阶段。

如若波形的相位不对调节适当的输入频率。

四、实验内容*实验时切忌将输出端短路,否则将会损坏集成块。

输入信号时先按实验所给的值调好信号源再加入运放输入端,另外做实验前先对运放调零,若失调电压对输出影响不大,可以不用调零,以后不再说明调零情况,调零方法见实验十步骤3。

a. 反相比例运算电路1、关闭系统电源。

按图11-1正确连线。

连接信号源的输出和U i 。

2、打开直流开关。

调节信号源输出f=100Hz ,Ui=0.5V (峰峰值)的正弦交流信号,用毫伏表测量U i 、U O 值,并用示波器观察U O 和U i 的相位关系,记入表11-1。

表11-1 Ui=0.5V (峰峰值),f=100HzU i (V)U 0(V)U i 波形U 0波形 Avb. 同相比例运算电路1、按图11-3(a)连接实验电路。

实验步骤同上,将结果记入表11-2。

2、将图11-3(a)改为11-3(b)电路重复内容1)。

表11-2 Ui=0.5V, f=100Hzc. 反相加法运算电路1、关闭系统电源。

按图11-2正确连接实验电路。

连接简易直流信号源和U i1、U i2,图11-9所示电路为简易直流信号源。

U i1U i2图11-9 简易可调直流信号源2、打开系统电源,用万用表测量输入电压U i1、U i2(且要求均大于零小于0.5V)及输出电压U O ,记入下表。

d. 减法运算电路1、关闭系统电源。

按图11-4正确连接实验电路。

采用直流输入信号。

2、打开系统电源。

实验步骤同内容3,记入表11-4。

表11-4e、积分运算电路1、关闭系统电源。

按积分电路如图11-5所示正确连接。

连接信号源输出和U i。

2、打开系统电源。

调节信号源输出率约为100Hz,峰峰值为2V的方波作为输入信号U i,打开直流开关,输出端接示波器,可观察到三角波波形输出并记录之。

f、微分运算电路1、关闭系统电源。

按微分电路如图11-6所示正确连接。

连接信号源输出和U i。

2、打开系统电源。

调节信号源输出率约为100Hz,峰峰值为2V的方波作为输入信号U i,打开直流开关,输出端接示波器,可观察到尖顶波波形输出并记录之。

实验十二集成运算放大器的基本应用——波形发生器一、实验目的1、学习用集成运放构成正弦波、方波和三角波发生器。

2、学习波形发生器的调整和主要性能指标的测试方法。

二、实验仪器1、双踪示波器2、频率计3、交流毫伏表三、实验原理1、RC桥式正弦波振荡器(文氏电桥振荡器)图12-1 RC桥式正弦波振荡器图12-1 RC串、并联电路构成正反馈支路同时兼作选频网络,R1、R W及二极管等元件构成负反馈和稳幅环节。

调节电位器RW,可以改变负反馈深度,以满足振荡的振幅条件和改善波形。

利用两个反向并联二极管D1、D2正向电阻的非线性特性来实现稳幅。

D1、D2采用硅管(温度稳定性好),且要求特性匹配,才能保证输出波形正、负半周对称。

R3的接入是为了削弱二极管非线性影响,以改善波形失真。

电路的振荡频率 RCf π210= (12-1) 起振的幅值条件21>R R F(12-2) 式中R F =R W +(R3||r D ),r D ——二极管正向导通电阻。

调整R W ,使电路起振,且波形失真最小。

如不能起振,则说明负反馈太强,应适当加大R F 。

如波形失真严重,则应适当减小R F 。

改变选频网络的参数C 或R ,即可调节振荡频率。

一般采用改变电容C 作频率量程切换,而调节R 作量程内的频率细调。

1、 方波发生器由集成运放构成的方波发生器和三角波发生器,一般均包括比较器和RC 积分器两大部分。

图12-2所示为由迟回比较器及简单RC 积分电路组成的方波——三角波发生器。

它的特点是线路简单,但三角波的线性度较差。

主要用于产生方波,或对三角波要求不高的场合。

该电路的振荡频率: )21ln(21'1'20R R C R f f f +=(12-3)RW 从中点触头分为RW1和RW2,11'1RW R R += 22'2RW R R +=。

方波的输出幅值 U om =±U z (12-4) 式中Uz 为两级稳压管稳压值。

三角波的幅值 Z cmU R R R U '2'1'2+= (12-5) 调节电位器R W ,可以改变振荡频率,但三角波的幅值也随之变化。

如要互不影响,则可通过改变RF(或C F )来实现振荡频率的调节。

6K2V 6K2V图12-2 方波发生器2、 三角波和方波发生器如把滞回比较器和积分器首尾相接形成正反馈闭环系统,如图12-3所示,则比较器输出的方波经积分器积分可到三角波,三角波又触发比较器自动翻转形成方波,这样即可构成三角波、方波发生器。

由于采用运放组成的积分电路,因此可实现恒流充电,使三角波线性大大改善。

电路的振荡频率 fW f C R R R R f )(4120+=(12-6)方波的幅值 U O1=±Uz (12-7) 三角波的幅值 U O2=±R1·Uz /R2 (12-8) 调节RW 可以改变振荡频率,改变比值R1/R2可调节三角波的幅值。

图12-3 三角波、方波发生器四、实验内容a. RC桥式正弦波振荡器1、关闭系统电源。

按图12-1连接实验电路,输出端U o接示波器。

2、打开直流开关,调节电位器R W,使输出波形从无到有,从正弦波到出现失真。

描绘U o的波形,记下临界起振、正弦波输出及失真情况下的R W值,分析负反馈强弱对起振条件及输出波形的影响。

3、调节电位器R W,使输出电压U o幅值最大且不失真,用交流毫伏表分别测量输出电压U o、反馈电压U+(运放③脚电压)和U-(运放②脚电压),分析研究振荡的幅值条件。

4、用示波器或频率计测量振荡频率f O,然后在选频网络的两个电阻R上并联同一阻值电阻,观察记录振荡频率的变化情况,并与理论值进行比较。

5、断开二极管D1、D2,重复3)的内容,将测试结果与3)进行比较分析D1、D2的稳幅作用。

b. 方波发生器1、关闭系统电源。

按图12-2连接电路。

2、打开直流开关,用双踪示波器观察U01及U02的波形(注意对应关系),调节R W输出正弦波和方波。

测量其幅值及频率,记录之。

3、改变R W的值,观察U01、U02幅值及频率变化情况。

改变R W并用频率计测出频率范围并记录。

4、将R W恢复到中心位置,将稳压管D1两端短接,观察U O波形,分析D2的限幅作用。

相关文档
最新文档