引水式水电站设计分析
固滴水电站引水系统设计

固滴水电站引水系统设计引言:水电站是一种将水能转化为电能的设施,而引水系统是水电站的重要组成部分之一。
固滴水电站作为一个典型的水电站,其引水系统的设计对于电站的正常运行和发电效率至关重要。
本文将从引水系统的设计原理、结构以及必要的技术要求等方面进行详细介绍。
一、设计原理固滴水电站引水系统的设计原理是利用水的自然流动和重力作用,将水从水源地引入到水电站发电机组,以便发电。
具体来说,设计原理包括以下几个关键环节:1. 水源地选择:水源地的选择是引水系统设计的第一步。
通常情况下,水源地应具备水量充足、水质良好、地形适宜等特点,以确保引水系统的正常运行。
2. 水库建设:为了储存足够的水量,以应对用电高峰时期的需求,固滴水电站引水系统需要建设一个水库。
水库的规模和容量应根据实际需要进行设计,以确保供水的持续性和稳定性。
3. 引水渠道设计:引水渠道是将水从水库引入到水电站的关键通道。
在设计引水渠道时,需要考虑渠道的长度、宽度、深度等参数,以及地形条件和水流速度等因素,以确保水能顺利地流入水电站。
4. 引水管道设计:引水管道是将水从引水渠道输送到水电站的管道系统。
在设计引水管道时,需要考虑管道的材质、直径、长度、坡度等参数,以及水流压力和输送能力等因素,以确保水能顺利地输送到发电机组。
二、设计结构固滴水电站引水系统的设计结构包括水库、引水渠道和引水管道三个主要组成部分:1. 水库:水库是储存水量的重要设施,通常由大坝和堰塞体组成。
大坝用于囤积水源,而堰塞体用于控制水位和水流量,以应对不同时期的用水需求。
2. 引水渠道:引水渠道是将水从水库引入到水电站的通道。
通常情况下,引水渠道采用开挖或者人工建设的方式,通过合理的设计和施工,确保水能顺利地流入水电站。
3. 引水管道:引水管道是将水从引水渠道输送到水电站的管道系统。
通常情况下,引水管道采用钢管或者混凝土管道,通过合理的设计和铺设,确保水能顺利地输送到发电机组。
引水式水电站课件

水库
水库用于储存引来的水,调节 水流,保证水轮发电机组稳定 运行。
水轮发电机组
水轮发电机组是引水式水电站 的发电设备,利用水流驱动发
电机产生电能。
引水式水电站特点
01
02
03
04
投资少
引水式水电站结构简单,建设 周期短,投资相对较少。
引水式水电站的环境影响
水资源利用
引水式水电站通过调节水流,改变河 流的自然状态,对水资源利用产生影 响。
生态影响
土地利用和水质变化
水电站建设可能占用土地资源,影响 土地利用和水质变化。
水电站的建设可能对河流生态系统造 成破坏,影响生物多样性。
引水式水电站的可持续性分析
能源可持续性
引水式水电站利用水力发电,是 一种可再生能源,具有能源可持
环境友好
尽可能减少对周边环境的破坏,合理利用水 资源,保护生态环境。
引水式水电站设计要点
水工建筑物设计
包括引水渠、压力前池、调压井等, 需确保水流平稳、减少水头损失。
机电设备选择
根据水电站规模和性能要求,合理选 择水轮机、发电机等设备。
电气系统设计
设计合理的电气主接线、配电装置及 电缆敷设等,确保电站安全稳定运行 。
能转化为机械能。
发电机
水轮机通过传动轴驱动 发电机旋转,将机械能
转换为电能。
输电线路
电能通过输电线路传输 至电网,供用户使用。
引水式水电站效率分析
能量转换效率
引水式水电站的能量转换效率取 决于水轮机和发电机的设计、制 造和运行状态,以及水流条件等
因素。
控制与调节
引水式水电站的控制与调节对效率 有重要影响,合理的调节和控制可 以提高效率。
水电站课程设计任务书及指导书--引水系统

水电站课程设计任务书及指导书引水式水电站引水系统设计(供水工专业用)水利工程系2019.05.01设计任务书一目的和作用课程设计是工科院校学生在校期间一个较为全面性、总结性、实践性的教学环节。
它是学生运用所学知识和技能,解决某一工程问题的一项尝试。
通过本次课程设计使学生巩固、联系、充实、加深、扩大所学基本理论和专业知识,并使之系统化;培养学生综合运用所学知识解决实际问题的能力和创新精神;培养学生初步掌握工程设计工作的流程和方法,在设计、计算、绘图、编写设计文件等方面得到一定的锻炼和提高。
二基本资料梯级开发的红旗引水式水电站,电站的主要任务是发电,并结合水库特性、地区要求可发挥水产养殖等综合效益。
电站建成后投入东北主网,担任系统调峰、调相及少量的事故备用容量,同时兼向周边地区供电。
该电站水库库容较小,不担任下游防洪任务,工程按二等Ⅱ级标准设计。
经比较分析,该电站坝型采用混凝土重力坝,厂房型式为引水式,安装4台水轮发电机组。
引水系统的布置应考虑地形、地址、水力及施工条件,考虑到常规施工技术条件,引水隧洞洞泾不宜超过12m。
因此,引水系统采用两条引水隧洞,在隧洞末端各设置一个调压室,从每个调压室又各伸出两条压力管道,分别给4台机组供水。
供水方式为单元供水,管道轴线与厂房轴线相垂直,水流平顺,水头损失小。
经水能分析,该电站有关动能指标为:水库调节性能年调节装机容量 16万kw (4台×4万kw)水轮机型号HL240 额定转速107.1r/min校核洪水位(0.1%)194.7m 设计洪水位(1%)191.7m正常蓄水位191.5m 死水位190m最大工作水头38.1 m 加权平均水头36.2 m设计水头36.2 m 最小工作水头34.6 m平均尾水位152.0 m 设计尾水位150.0 m发电机效率 96%-98%单机最大引用流量 Q max=124.91m3/s引水系统长度约800m三试根据上述资料,对该电站进行引水系统的设计,具体包括进水口、引水隧洞、调压室及压力管道等建筑物的布置设计与水电站的调节保证计算等内容。
概述引水式水电站设计和运行经验

概述引水式水电站设计和运行经验在我国众多严寒地区中,西藏和新疆等地尤为突出,就西藏地区而言,昼夜温差大,海拔较高,干湿季节分明。
基于当地的自然环境等因素,多选择引水式水电站。
引水式水电站工程简易,工程造价低,水库淹没损失小,在良好的地形条件下,短距离能够集中较大的落差。
也正是由于引水式水电站的自身优势,被广泛应用在严寒地区水利工程建设中,在实际应用中取得了较为可观的成效,值得推广应用。
一、引水式水电站设计概述(一)引水枢纽的选择水利工程建设首先应结合当地水电站工程实际需要、当地自然条件、影响工程质量因素以及其他管理因素进行综合考虑。
对于引水式水电站设计,更多的是对引水问题的考虑,渠道选址时尽量选在河床较稳定的河段上,如果条件允许,可以将渠道位置选在泉水溢出带下游,有助于引用上游分流泉水,一方面能够有效增加发电水量,另一方面有助于提升水温,便于冬季水电站的正常运行。
在寒冷季节,如果河道上冰量较多,可以选择合理的措施进行排冰,保证渠道排冰顺畅。
在对渠道型式选择上,大多选择正面泄洪、排沙,侧面引水发电的拦河闸、坝混合式渠首,应注意水流方向,确保排冰、排沙与河道轴线一致,尽可能减少对周围自然环境的破坏,实现水量消耗少、效果理想的目的。
总而言之,保证足够的引水量,才能够最大程度降低水头损失,便于施工。
在枢纽布置方面,由于西藏地区大部分为山区性河流,河流主要通过降水补给,其次为地下水和冰川融水。
就西藏地区山区性河流特点,首部枢纽可以采用全闸布置,也可以采用闸、坝混合式布置方式。
全闸布置的优点是泄流能力大,建筑物较低,但闸门启用频繁,运行管理难度大,运行不灵活。
闸、坝混合式布置运行灵活,投资较少,便于运行管理,安全性能可靠。
就西藏地区水电站建设现状而言多为引水式电站,在严寒季节运行较为困难,运行负荷无法满足正常需求。
因此在设计时,应结合实际地形,考虑选用具有日调节库容的枢纽布置,这样在严寒冬季运行时,电站能够正常发电。
引水式水电站设计研究

引水式水电站设计研究摘要:随着当前社会经济的进步,我国电力行业发展极为迅速,水电站作为反应电力企业生产运行效益的关键,对其进行实时的专业设计分析便显得极为必要。
接下来本文将对引水式水电站设究进行一定研究探讨,并结合实际对其做相应整理和总结。
关键词:引水式;水电站;设计研究引水式水电站是引水发电站中较为简单的类型,对其进行设计时应明确其所具有的工程特点,注重其规模性、涉及专业知识范围、影响因素等,以此使整个设计方案合理性和可行性完全得以体现。
一、引水式水电站坝址、渠道及枢纽选择设计分析①进行引水式水电站设计时,先要结合实际对其坝址选择做全方位设计分析,收集整理区域内自然环境条件和气候信息等,对当地地质做全方位勘察,且在此期间针对工程投资就综合管控做方提前案设定。
做好引水源计算分析,注重引水式水电站对水源的高要求,选择河床稳定水量较大河段为坝址来开展进行后续设计工作。
这个过程中相应专业工作人员要明确渠道设置要在河水溢出带下游,以此最大限度提升河水从河床两侧溢出量,继而提高对应水电站整体发电量。
结合地区所处方位,针对冬季河流上游可能存在冰量较多河道,做除冰方案设计等措施确保水电站后续运行发电效益不会受到影响。
②对引水式水电站渠道进行选择设计时,注重其形式与周边自然环境及水电站结构的搭配性,在实际实践期间按照相关操作流程做好实地考察调研工作,密切关注水流方向等信息,进行河道轴线与排冰泄洪在同一直线的基本设定,以此最大限度保护河道不会受损同时提升水电站发电效益。
③进行水电站枢纽位置选择及设计时,要充分结合工程开发具体方式与相应河流流向做合理布控,当前水电站枢纽位置布控形式主要是按照坝、闸混合布置或全闸布置来体现,实际实践期间主要按照当地情况及工程特点信息,选取针对性布控形式[1]。
二、引水式水电站设计分析1、整体引水渠道设计分析①在明确引水式水电站坝址、渠道及枢纽选择设计基础上,对其整体引水渠道线路的设计要结合实际做好对引水渠道轴线的选择把控,渠道作为整个水电站能够运转的关键,对其进行合理设计,确保其利用太阳温度有效提高水温,避免冬季结冰状况发生。
引水式水电站设计分析

引水式水电站设计分析摘要:随着国民经济水平的不断提高,我国的电力事业也得到了很大的发展。
水电站在电力行业中占有很大的比重,其设计、施工质量对于电力企业的生产具有重要的影响。
引水式水电站是较简单的一种引水发电站类型,工程涉及战线长、范围广、考虑因素多。
文章主要讨论引水式水电站设计对坝址、厂址、引水线路的选择及压力前池设计和电站装机容量的确定等,供引水式水电站设计者参考。
关键词:引水式水电站;坝址;厂址;引水渠道;压力前池一、引水式水电站坝址的选择及布置1.1 水电站坝址的选择在引水式水电站的设计过程中,设计人员要注重坝址的选择。
在实际的操作过程中,相关工作人员要加强对相关河道的自然条件进行调查和分析,关注相关的地质问题,而且还要对工程投资以及综合管理进行分析。
在引水设计方面,要选择河床比较稳定并且水量大的河段。
此外,对于要求比较严格的水电站,相关工作人员要将相关的渠道设置在河水溢出带的下游,这样就能够增大河水从河床两侧的溢出量,可以在很大程度上提高水电站的发电量,使得水电站在冬季能够正常运行。
值得注意的是,对于在春季和冬季上游冰量较多的河道,相关工作人员还要采取一定的除冰设计措施。
要设置科学合理的水闸,使得冰块能够顺利通过。
在渠道型式的选择上,要注重选择合理的模式。
一般来讲,当前使用较多的渠道,其正面一般用作排沙、泄洪以及排冰,而侧面则主要是拦河闸和拦河坝。
在实际的河道考察和设计过程中,要密切注意水流方向以及水流条件,使得河道的轴线与排冰、泄洪能够在一条直线上,这样能够切实地保护相关河道不会受到较多破坏,实现耗水量少、流水效果好的目的。
1.2 枢纽布置在引水式水电站的设计过程中,水电站枢纽的布置非常重要。
在实际操作过程中,应根据工程开发的方式以及河流的水流特点,合理布置枢纽。
当前比较常见的枢纽形式主要包括坝、闸混合式以及全闸布置两种形式。
坝、闸混合式枢纽的优点是运行较为方便灵活,投资相对较少,而且具有较强的安全性能,在投入使用之后,其管理控制相对较为方便。
小型水电站引水优化设计论文(全文)

小型水电站引水优化设计论文1、工程概况某小型水电站工程位于阿坝州黑水县小黑水河下游,其作为小黑水河梯级开发工程的次一级水电站,整个小型水电站工程的开发模式以引水式水电站为主要形式,工程施工阶段需要依次完成首部枢纽、引水隧洞、调压井、压力管道、厂房以及升压站等构筑物的施工,所以该小型水电站工程在本质上属于典型的中水头径流引水式电站。
该小型水电站在设计过程中的引水流量为16.90m3/s,其中首部底格栅栏坝的引水流量设计标准为2.11m3/s,将其与上游水电站尾水设计流量14.76m3/s,共同作为该小型水电站的设计引水流量,所以该小型水电站工程的装机容量为21MW,小型水电站每年需要运行近4745h,同时该小型水电站工程开发中不具备其他综合利用的要求。
2、对小型水电站引水系统进行优化设计的必要性小型水电站工程在实际开进展具有良好的经济价值与应用前景,是水利水电工程领域中一种较为先进的流域开发方式,可以作为未来水利水电工程建设的成功案例进行参考。
由于该小型水电站工程需要引用上级电站的发电尾水,上级发电站的发电尾水为14.76m3/s则基本可以达到其设计引用流量的87%左右,如果在该小型水电站设计阶段可以将这一部分尾水直接引入引水隧洞,由于这一部分尾水的清洁度较高则不需要设置底格栅栏坝引水廊道和沉砂池,这对降低该小型水电站首部的工程量与成本投入有着重要作用。
本文认为梯级水电站中上一级水电站与次一级水电站不仅存在电力联系,水力联系也是梯级水电站设计过程中不能忽略的一个主要因素,虽然电XX负荷的平衡、机组躲避振动区、机组出力限制等方面会对其产生约束,同时也要满足防洪、灌溉、航运、生活及工业用水等多个社会方面的需求。
因此,该小型水电站引水系统优化设计过程中,设计人员应充分考虑电离平衡、水量平衡、区间径流以及尾水衔接等多项问题,该梯级流域中上下2级水电站在设计中均设置了带有调压室的长隧洞,所以在引水系统优化设计中要充分考虑其缺少一个稳定的无压过渡段,再加上优化设计中由于要涉及到上下2级水电站不同的运行方式,所以要实现水力过渡这一过程是一个相对复杂的内容。
引水式水电站设计与冬季安全运行分析

2对 引水式 电站 的设 计要 求 2 1 引水枢 纽的布 置及 形式 的选择 . 在 地形条 件允 许时, 考虑在 电站 上游 建水库 , 应 以便冬季 蓄冰 , 蓄冰库 设 计, 不能仅 以回水 曲线形 成的上游容 积为界 , 应考 虑到冰凌堆 积和冰 盖翘起后 , 来凌 仍可 向上游 堆 积一段 距 离, 一般 蓄冰 静库 容达 到年 输冰 量 的 1 3即可 。 / 对于 没有 条件 修 建 蓄冰 库 的 引水枢 纽 , 考 虑泄 洪 、排 砂 、拦 冰和 排 冰措 需
坡 宽度 不 小 j排冰 闸闸 孔 宽度 。 从几个 水电站 来看, 前池 闸室应 设在 室 内, 拦污栅 的布置 一般设在 检修 闸 门与 工作闸 门之 间为好, 且布 置在前池 闸房 中, 闸房用 电热或汽暖采 暖, 季室 冬 温应 始终 保持 在 0以上 。为 了使 水道 与前 池 闸房之 间形 成封 闭, 力前 浊上 压 游承重梁 的 高度应 与前 池正常水 位相 齐, 目的在 于水 电站冬 季运行 时, 使冰盖
科 学论 坛
I ■
Caiedcl i h e hoR iSnaTngeW nCcneoyv O
引水式水 电站设计 与冬季 安全运行分析
陈 艳 石 育铭
80 0 ) 30 0 ( 疆 自治区水 利水 电勘测 设计研 究 院 新疆 q鲁木 齐 新 -
[ 摘 要] 章对 引水式 水 电站 设计进 行 了阐述, 文 针对冬 季 如何安 全地 运行进 行 了分 析与探 讨 。 [ 关键 词] 电站 设计 运行 水 中图分类号 :V 4 T7 文献标 识码 m 文章编 号 :0 99 4 2 1) 50 8 1 10 1X(00 0 04 0
有冰凌 ,淋有裂穗
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
引水式水电站设计分析
摘要:随着国民经济水平的不断提高,我国的电力事业也得到了很大的发展。
水电站在电力行业中占有很大的比重,其设计、施工质量对于电力企业的生产具有重要的影响。
引水式水电站是较简单的一种引水发电站类型,工程涉及战线长、范围广、考虑因素多。
文章主要讨论引水式水电站设计对坝址、厂址、引水线路的选择及压力前池设计和电站装机容量的确定等,供引水式水电站设计者参考。
关键词:引水式水电站;坝址;厂址;引水渠道;压力前池
一、引水式水电站坝址的选择及布置
1.1 水电站坝址的选择
在引水式水电站的设计过程中,设计人员要注重坝址的选择。
在实际的操作过程中,相关工作人员要加强对相关河道的自然条件进行调查和分析,关注相关的地质问题,而且还要对工程投资以及综合管理进行分析。
在引水设计方面,要选择河床比较稳定并且水量大的河段。
此外,对于要求比较严格的水电站,相关工作人员要将相关的渠道设置在河水溢出带的下游,这样就能够增大河水从河床两侧的溢出量,可以在很大程度上提高水电站的发电量,使得水电站在冬季能够正常运行。
值得注意的是,对于在春季和冬季上游冰量较多的河道,相关工作人员还要采取一定的除冰设计措施。
要设置科学合理的水闸,使得冰块能够顺利通过。
在渠道型式的选择上,要注重选择合理的模式。
一般来讲,当前使用较多的渠道,其正面一般用作排沙、泄洪以及排冰,而侧面则主要是拦河闸和拦河坝。
在实际的河道考察和设计过程中,要密切注意水流方向以及水流条件,使得河道的轴线与排冰、泄洪能够在一条直线上,这样能够切实地保护相关河道不会受到较多破坏,实现耗水量少、流水效果好的目的。
1.2 枢纽布置
在引水式水电站的设计过程中,水电站枢纽的布置非常重要。
在实际操作过程中,应根据工程开发的方式以及河流的水流特点,合理布置枢纽。
当前比较常见的枢纽形式主要包括坝、闸混合式以及全闸布置两种形式。
坝、闸混合式枢纽的优点是运行较为方便灵活,投资相对较少,而且具有较强的安全性能,在投入使用之后,其管理控制相对较为方便。
而全闸式枢纽具有较好的排除推移能力,其泄流能力也较大,但是,其缺点也是非常明显的,主要表现在:运行不够灵活、管理难度相对较大,闸门的启用也比较频繁。
2 引水式水电站的引水线路设计
2.1 引水渠道的轴线选择
在引水式水电站中,渠道是电站的一个重要建筑物担负着引水和形成水电站水头的双重任务。
一般对于引水渠道来讲,为了利用太阳的辐射来提高水温,从而减少再生冰的产生,大都需要将渠线选择在河道的阳坡。
渠道的设置要不占耕地或者是尽量少占耕地。
为了形成较大的集中落差,渠道应尽量选在较高的地方,渠线大致沿等高线绕山而行,使得渠尾前池以下正好形成一个较好下跌的地形。
在渠道的施工过程中,为了减少高填深挖的工作量,应该在实际的设计施工过程中,灵活使用暗渠、明渠以及倒虹吸等布置形式。
在渠线的选择过程中,要注重转弯的选择。
一般来讲,为了减少渠道的过流以及水流对于渠道造成的破坏,在寒冷地区其弯道半径要大于10 倍的水面宽度;对于不需要进行衬砌的渠道来讲,其转弯半径只要大于水面宽度的 5 倍就能够达到设计标准;而对于需要衬砌的灌溉渠道,其弯矩只要大于水面宽度的 2.5 倍即可。
2.2 渠道断面的选择
渠道的设计主要根据流量大小和地形、地质等条件,选定渠道的纵坡、边坡、流速、渠深和渠底宽度,以及断面其它部分的尺寸。
如果地面的坡度相对较大并且起伏比较频繁,则一般选择窄深式的断面,有些该种形式的断面可以添加一定的盖板,这样不仅能够减少砂石降落到渠道中而且能够在很大程度上防止坡面的滚石发生状况。
这种渠道的优点比较多,比如:能够在冬季寒冷的条件下减少水热量的散失,从而使得冰盖能够处于稳定的状态。
2.3 渠道纵坡的设计。
渠道纵坡的设计对于水流速度具有决定性的作用。
一般来讲,如果纵坡的设计较为平缓,则其很容易堆积淤泥,使得杂草等能够迅速地生长,从而影响渠道的输送水能力。
而如果纵坡的设计很陡,则渠道在使用过程中,很容易受到较大冲击,很容易破坏。
因此,相关设计人员要合理设计渠道的纵坡。
在结冰盖的运行过程中,设计人员要根据水能的具体状况、地形条件以及工程造价的实际情况,对纵坡进行合理的设计。
在输排冰运行的过程中,相关工作人员要将全段设计得比较陡些,使得输冰的流速达到相关的标准,而后段施工则需要在排冰闸前30m 的缓流段进行,以此满足相关排冰速度的要求。
三、引水式水电站压力前池的设计
3.1 前池布置
在压力前池位置的选择过程中,为了提高水电站的实际运行效果,前池不要选择放置在填方或者是地基不稳的部位,而应该尽量选择在天然地基比较好的基础上。
这种设置能够在很大程度上避开顺坡的裂隙发育地段以及滑坡的出现。
在前池的设计过程中,要对水文地质条件进行认真勘查,尽量减少甚至消除
前池建设之后对于高边坡以及相关建筑物造成的负面影响。
这样就能够避免滑坡以及沉陷情况的发生,确保下游的厂房以及前池的安全。
为保障渠道水流平稳地进入前池,应考虑尽量使前池进水室的中心线与引水渠道中心线平行或接近平行,使水流顺畅,减少水头损失;还能使其引导和控制水流向压力管道平稳过渡和均匀配水。
前池与引水渠道末端的连接段,在平面上应两边对称,其扩展角一般限制在10°至15之间;底边纵坡适宜选用1∶3~1∶5 的斜坡,与前室底板连接。
前室宽度约为进水室宽度的1.5倍左右,前室长度可取前室宽度的 2.5~3.1 倍。
引水渠道末端应尽量避免弯道,如难以避免时,则宜在弯道终点与前池入口间设直线调整段,或加设分流导向设施。
为便于沉积泥沙和污物,前室末端底板高程应比进水室底板低0.5至1.0m。
前池中的水流流速要求一般≤0.8 m/s,以便泥沙沉积下来,通过排沙孔排走,阻止冰块、冰凌进入压力水管。
为提高前池的排冰效果,可在进水室前设一道挡冰板,挡冰板底部应伸入到前池冬季最低运行水位以下50 cm,能够有效防止冰凌进入进水室。
3.2 前池水位
在中小型水电站前室正常水位的确定过程中,可以将引水渠道设计流量时的渠末水位作为其正常水位。
而水电站在运行过程中,如果其突然甩开全部负荷,那么此时的最高涌波就作为前池的最高水位。
而前池的最低水位指的是,在枯水期最小引水位发电流量时相对应的水位。
在实际水位确定的过程中,相关工作人员要经过多次试验,并且按照严谨的操作步骤进行操作,以期获得最佳的水位数据,从而为引水式水电站的设计施工提供科学严谨的数据支撑。
四、水电站装机容量选择
4.1 无调节水电站最大工作容量的确定
在水电站装机容量确定的过程中,需要对无调节水电站最大工作容量进行确定,N水、工=N保、无=9.81ηQ设H设,其中:N水、工= 保证出力(按历史设计保证率);N保、无=9.81ηQ设H设;Q设—设计枯水日平均流量(m3/s);H设—相应的日平均净水头。
4.2 日调节水电站最大工作容量的确定
当水电站担任日负荷图峰荷部分时,在作图日电能累积曲线上 a 点向左取ab,由b 向下作垂线交日电能累积曲线于c点。
由c 作水平线与日负荷图相交,求出日电站的工作位置,如图 1 所示。
其中,ab=E保、日,bc=N水、工。
结语
随着经济社会的不断发展,水电站的建设量越来越多,随着电站不断开发,
有利地形条件电站早被开发完,对于流量小、地形条件复杂地区,可采用引水式电站开发方式,具有投资小,施工简单,管理方便等优越性。
参考文献:
[1] 沈宽勇.引水式水电站设计研究[J]《河南水利与南水北调》2014 年第4 期
[2]中华人民共和国电力行业标准(DL/T 5079-1977).水电站引水渠道及前池设计规范.1988,5
[3]刘焕芳,张开泉.水电站引水渠上涡管排沙式沉沙池实验研究.泥沙信息,1997(4)40~45
作者简介:欧盛洁(1984-),女,云南保山人,助理工程师,主要从事水电站设计工作。