无线充电最完整教程手把手教你制作无线充电器【附电路图】

合集下载

手机无线充电器方案设计

手机无线充电器方案设计

手机无线充电器方案设计随着科技的不断发展,手机等通讯设备的种类不断增多,人类已经不再满足传统式的充电方式.这种方式的弊端就是循环使用充电设备会导致插头的损坏或者不牢固,产生漏电的危险.虽然现在已经出现了手机无线充电系统,但是还不够完善.本文通过对手机无线充电系统的剖析,让读者进一步的了解无线充电系统。

引言早在上个世纪末期,手机无线充电设备就已经诞生了.当时,它以小巧便携等特点受到了很多年轻人的关注.但是当时的手机充电系统还是存在着很多弊端,例如传输距离短,难以让不同厂商出产的手机充电设备兼容等因素导致手机无线充电系统并没有广泛应用.1,手机无线充电的发展史自从两个世纪前的三十年代,迈克尔·法拉第在试验的过程中发现了随着周围磁场的变化就会产生电流.时隔六十年后,尼古拉·特斯拉以爱迪生助手的身份在光谱辐射研究时成功申请了一个专利.当时的科技非常落后,所以最终以效率低且存在危险而放弃.又经过了一个世纪的滞后,香港城市大学电子工程学系许树源教授对手机无线充电系统又做出了贡献,但是此充电系统必须让手机和充电器相接触.2007年初,美国麻省理工学院的马林·索尔贾希克(MarinSoljacic)带领一些学生对无线充电又登上了一个更大的台阶,他们在两米以外成功通过无线电流点亮了一盏家用灯泡.最近,英国一家公司根据电磁感应发明了一种新型无线充电器,它看上去就像一块塑料鼠标垫,将手机等放在垫上就能充电,并且可以同时给多个手机设备充电。

2,手机无线充电的特点手机无线充电最大的优点就是不需要手机连线进行充电,它是利用磁共振在手机无线充电器和手机之间通过空气进行充电,手机与充电器相感应,那么线圈就会与电容器在手机充电器和手机之间形成磁共振.同时,无线充电可以节省空间,只要进入到无线充电器的覆盖区域就会进行自动充电.在未来的发展中,还可以发展为通过电脑对手机芯片的控制来进行充电,预计每秒中充电的电量是现在的一百五十倍.所以,这一系统可以在未来得到广泛应用.从根本上说,虽然这一系统对处在充电场的人生命没有危害的,其中的原因是电量是可以控制在同一频率的共振中的线圈进行传输.但对于这种新型的无线充电技术,很多人还会产生担忧,就像几年前对Wi-Fi和手机天线杆不放心一样.现阶段的手机无线充电技术只是刚刚的开始,并没有成熟的技术与先例.我们面临的缺点主要有距离短、功率小、效率差等因素.并且假如一些无安全保证的手机电池进入充电区可能会导致火灾意外,所以从最初出现无线充电设备到现在还没有成熟的技术.新设计的无线充电系统想要达到目标,那么解决效率与安全的问题势在必行。

手机无线充电改造方案

手机无线充电改造方案

手机无线充电改造方案引言手机已经成为人们生活中不可或缺的一部分,然而,手机电池续航能力的限制常常给用户带来诸多不便。

为了解决这一问题,无线充电技术应运而生。

本文将介绍一种手机无线充电的改造方案,使用户能够随时进行无线充电,以满足用户对手机电量的需求。

背景在传统的手机充电方式中,用户需要使用充电器通过有线方式连接手机进行充电。

然而,这种方式存在着诸多的不便,比如需要与充电器保持连接、充电线的易损性以及充电线的限制等。

为了解决这些问题,无线充电技术应运而生。

无线充电技术通过电磁感应等原理,使手机能够在无需与充电器连接的情况下进行充电。

用户只需将手机放置在充电底座或充电区域上,即可实现充电。

无线充电技术的出现极大地方便了用户的充电需求。

改造流程为了实现手机无线充电,我们需要进行一系列的改造步骤。

下面将详细介绍如何进行手机无线充电的改造。

步骤一:选择合适的充电底座首先,我们需要选择一款合适的充电底座。

充电底座通常由一个无线充电发射器和一个电源适配器组成。

充电底座的功率和充电速度是选择的关键因素。

一般来说,功率越大,充电速度越快。

此外,还需要确保充电底座与手机的兼容性,以确保充电效果的稳定性。

步骤二:打开手机壳接下来,需要打开手机壳,以便将无线充电接受器安装在手机内部。

这需要小心操作,以避免损坏手机内部的零部件。

在打开手机壳之前,最好先阅读手机的拆解说明书,了解手机内部的组成和结构,以便更好地进行改造。

步骤三:安装无线充电接受器在打开手机壳之后,需要将无线充电接受器安装在手机内部。

无线充电接受器通常由一个接收线圈和一个电路板组成。

接收线圈需要粘贴在手机电池和手机壳之间的适当位置,而电路板则需要连接到手机的充电接口。

步骤四:组装手机壳安装完无线充电接受器后,需要将手机壳重新组装。

在组装手机壳的过程中,需要注意不要损坏手机内部的线路和零部件。

此外,还需要确保手机壳与无线充电接受器的位置和粘合度,以确保无线充电的效果。

手机无线充电自制教程

手机无线充电自制教程

手机无线充电自制教程
手机无线充电是一种很方便的充电方式,本文将为大家分享一个自制手机无线充电器的教程。

让我们开始吧!
材料准备:
1. 一个光圈为3mm的线圈
2. 一个2个USB插头的充电器
3. 一个适配器板
4. 一块适合制作线圈的导线
5. 一个适配器盒子
步骤:
1. 将导线按照线圈的形状编织成一个圆圈。

确保线圈的直径与手机的大小相匹配。

这个线圈将用于无线充电。

2. 将线圈固定在一个合适的适配器板上。

适配器板可以是任何稳固的材料。

将线圈的两端接触到适配器板上。

3. 将两个USB插头分别插入充电器和适配器板上的接口。

4. 将适配器盒子打开,把适配器板和线圈放在里面。

确保线圈与适配器盒子的底部保持一定距离。

5. 将适配器盒子的盖子盖上,确保线圈和适配器板能够稳固地固定在一起。

6. 将充电器插头插入插座,启动无线充电器。

现在,你已经成功地制作了一个手机无线充电器!只需将手机放在适配器盒子上方,手机将开始无线充电。

注意事项:
1. 在制作线圈时,确保线圈的质量和形状。

线圈应该是一个完整的圆圈,没有松动的部分。

2. 在使用无线充电器时,确保适配器盒子和线圈之间没有任何金属或其他物体的干扰,以免影响充电效果。

3. 使用充电器时,务必遵循相关的使用说明和安全操作。

确保合适的电流和电压用于充电器。

希望这个自制手机无线充电器的教程对你有所帮助!享受便捷的无线充电吧!。

基于单片机的无线充电器设计

基于单片机的无线充电器设计

基于单片机的无线充电器设计学生姓名:学生学号:院(系):电气信息工程学院年级专业:电子信息工程指导教师:助理指导教师:二〇一五年五月摘要摘要随着用电设备对供电质量、可靠性、方便性、安全性、特殊场合、特殊地理环境等要求的不断提高,接触式的电能传输方式对于满足实际需要越来越显得捉襟见肘了。

与此同时,无线电能传输系统,摆脱了线路的限制,实现电器和电源的完全分离,具有无线传输电能、设备体积小、传输效率高、便于携带和集成等优点。

本课题设计介绍了一种运用新型的能量传输利用电磁波感应原理和有关的交流感应技术,采用STC12C5A60S2低功耗单片机作为无线传能充电器的监测控制核心,实现电流控制和电压控制功能,电能充满后给出充满提示且自动停止充电。

基于STC12C5A60S2单片机控制发射端和接收端产生的相应交流信号来进行充电的智能无线充电器。

利用设计通过对系统的硬件部分和软件部分的设计实现无线能量传输,在距离发射线圈的指定范围内对小型用电器如手机、MP3等直接充电。

硬件部分包括高效直流稳压模块、驱动模块、显示模块、控制模块等的设计;软件部分主要根据系统的设计思想设计出了主程序和子程序流程图,并通过C语言实现相应的编程要求。

通过理论分析和仿真证明,建立谐振耦合无线电能传输系统模型以及谐振耦合无线电能传输系统模型,通过计算得出了系统中电路参数与输出功率的关系。

设计并制作谐振耦合无线电能装置,使用LCD1602设计显示,实时充电电压显示。

关键词无线电能传输,谐振耦合,无线充电器, LCD1602,STC12C5A60S2单片机ABSTRACTABSTRACTThis paper introduced the use of a power transmission technology, wireless power supply technology model, using the principle of electromagnetic induction and the induction technology,intelligent wireless charger for charging the AC signal based on the STC12C5A60S2 single-chip microcomputer to control the transmitting end and the environment and other requirements continue to increase, the power transmission mode of contact to meet the actual needs become more and more difficult. At the same time, wireless power transmission system, get rid of the limit line, completely separate electrical and power, with the wireless transmission of electrical energy, the equipment has the advantages of small volume, high transmission efficiency, easy to carry and integration. In the rapid development of science and technology in 21 Century, the prospects for the development of intelligent wireless charger .The design through the design of the hardware part and the software part of the system to achieve the wireless energy transmission, within the specified range of the transmitting coil in small appliances such as mobile phone, MP3 and other direct charge. The hardware part includes efficient DC power module, drive module, display module, control module and so on; the software part is mainly based on the design thought of the system design of the main program and the subprogram flow chart, and through the C language to achieve the corresponding programming requirements. relationship between the circuit parameters and the output power of the system. The design and fabrication of resonant coupling wireless device, using the LCD1602 design draw progress bar shows charging, charging voltage, charging time display.Key words radio transmission, resonant coupling, wireless charger ,LCD1602 STC12C5A60S2目录摘要 (I)ABSTRACT ............................................................................................................... I I1 绪论 (1)1.1课题背景 (1)1.2 国内外研究现状、水平 (1)1.3本课题的发展趋势 (2)2 系统总体设计方案 (4)2.1系统总体设计方案简述 (4)2.1.1系统的基本功能 (4)2.1.2主要技术参数 (4)2.2系统设计方案选择 (5)2.3方案分析 (7)2.4系统的理论分析 (8)3 系统的硬件设计 (10)3.1单片机的选择与其控制 (10)3.1.1 单片机概述 (10)3.1.2 单片机STC12C5A60S2的介绍 (10)3.1.3 单片机最小系统的介绍 (11)3.1.4单片机控制模块设计 (13)3.2无线发射电路模块设计 (14)3.2.1 NE555芯片简介 (14)3.2.2 MOS管的选择与性能分析 (15)3.2.3振荡电路的设计 (16)3.2.4功率放大电路的设计 (17)3.3 电源稳压控制模块设计 (18)3.3.1稳压器LM2940简介 (18)3.3.2 KA7500B芯片简介 (19)3.3.3稳压控制电路设计 (19)3.4按键指示电路模块设计 (20)3.5显示电路设计及实现 (21)3.6 DC/DC转换电路设计 (23)3.6.1 DC/DC变换器简介 (23)3.6.2 运算放大器LM358简介 (24)3.6.3电压/电流采样模块设计 (24)3.7系统总体电路设计 (26)4 系统的软件设计 (28)4.1 整体设计思想 (28)4.2系统的主要程序框图 (29)4.3 主要程序模块 (29)4.3.1电路启动初始化 (29)4.3.2 按键采集程序 (30)4.3.3 LCD1602显示子程序 (31)4.3.4 数据采集及模数转换程序 (31)4.3.5 充电子程序的设计 (32)5 系统仿真设计与调试 (34)5.1.仿真软件Multisim的简介 (34)5.2电路的仿真 (34)5.2.1方波信号的产生 (34)5.2.2实际电路的测试 (36)5.3测试结果及分析 (36)5.3.1测试结构 (36)5.3.2实际电路的测试数据 (36)6 系统PCB设计 (38)6.1 PCB设计软件简介 (38)6.2 PCB板设计方法 (38)7 组装与调试 (40)7.1系统组装 (40)7.2硬件调试 (40)7.3软件调试 (40)7.4硬件软件联合调试 (40)7.5 调试结果 (40)结论 (41)参考文献 (42)附录A:无线充电控制系统源程序代码 (43)附录B:整体电路图和PCB板图 (53)附录C:设计实物图 (55)致谢 ........................................................................................ 错误!未定义书签。

无线充电最完整教程---手把手教你制作无线充电器【附电路图】

无线充电最完整教程---手把手教你制作无线充电器【附电路图】

⽆线充电最完整教程---⼿把⼿教你制作⽆线充电器【附电路图】
实⽤⽆线充电器设计[附电路图]
基本功能是通过线圈将H电能H以H⽆线H⽅式传输给电池。

只需把电池和接收设备放在充电平台上即可对其进⾏充电。

实验证明.虽然该系统还不能充电于⽆形之中.但已能做到将多个校电器放置于同⼀充电平台上同时充电。

免去接线的烦恼。

1 ⽆线充电器原理与结构
⽆线充电系统主要采⽤电磁感应原理,通过线圈进⾏能量耦合实现能量的传递。

如图1所⽰,系统⼯作时输⼊端将交流市电经全桥整流电路变换成直流电,或⽤24V直流电端直接为系统供电。

经过H电源管理H模块后输出的直流电通过2M有源晶振逆变转换成⾼频交流电供给初级绕组。

通过2个H电感H线圈耦合能量,次级线圈输出的电流经接受转换电路变化成直流电为电池充电。

2.2 发射电路模块
如图3,主振电路采⽤2 MHz有源晶振作为振荡器。

有源晶振输出的⽅波,经过⼆阶低通滤波器滤除⾼次谐波,得到稳定的正弦波输出。

经三极管13003及其外围电路组成的丙类放⼤电路后输出⾄线圈与电容组成的并联谐振回路辐射出去.为接收部分提供能量。

2.2 接收电路模块
测得与电容组成的并联谐振回路的空芯耦合线圈的线径为0.5 mm,直径为7 cm,电感为47 uH,载波频率为2 MHz。

根据并
联谐振公式得匹配电容C约为140 pF。

因⽽.发射部分采⽤2MHz有源晶振产⽣与谐振频率接近的能源载波频率。

2.3 充电电路。

无线充电原理电路

无线充电原理电路

无线充电原理电路嘿,朋友们!今天咱来聊聊无线充电原理电路这个神奇的玩意儿。

你想想看啊,以前咱给手机充电,总得找根线,还得对准接口插进去,多麻烦呀!但有了无线充电,哇塞,就像变魔术一样,把手机往那儿一放,嘿,就开始充电啦!这可真是太方便啦!那无线充电到底是咋工作的呢?其实啊,就好比是一场巧妙的能量传递游戏。

在这个游戏里呢,有发送端和接收端。

发送端就像是一个大力士,它能把电能转化成一种特殊的能量,然后通过看不见的“电波”或者“磁场”,把能量传出去。

接收端呢,就像是一个聪明的小助手,它能把接收到的这种特殊能量再转化回电能,然后给咱的手机呀、手表呀这些设备充电。

这不就跟咱平时玩传球游戏差不多嘛!发送端把“球”扔出去,接收端稳稳地接住。

只不过这个“球”是能量罢了。

无线充电原理电路里啊,有很多关键的元件呢。

比如说线圈,这可是很重要的角色哟!它就像游戏里的道具一样,帮助能量更好地传递。

还有一些电子元件,它们就像是一群小精灵,在背后默默地工作,让整个充电过程顺顺利利的。

你说神奇不神奇?咱不用再为那乱七八糟的充电线烦恼啦!而且无线充电还更安全呢,不用担心接口磨损或者进水啥的。

现在很多地方都有无线充电的设备啦,像咖啡店呀、机场呀,你去那儿,把手机一放,就能轻轻松松充电,多惬意呀!以后说不定家里的各种电器都能无线充电了呢,那可真是太棒啦!想象一下,以后咱家里的桌子、椅子啥的都带有无线充电功能,你随便把手机、平板往哪儿一放,都能充上电。

那咱的生活得多方便呀,再也不用到处找充电线啦!无线充电原理电路就是这么个神奇又实用的东西,它让我们的生活变得更加便捷、更加美好。

咱可得好好感谢那些聪明的科学家们,是他们让这一切成为了现实。

所以呀,让我们一起期待无线充电技术越来越发达,给我们带来更多的惊喜吧!。

速派无线充电安装接线教程

速派无线充电安装接线教程

速派无线充电安装接线教程
随着智能化技术的发展,无线充电已经成为现今生活中不可或缺的部分。

今天,我们将讨论stui分速派无线充电器的安装接线方法。

首先,需要准备若干工具,包括驱动器板,单端插头,3.3V稳压电源,充电
模块,按键模块,指示灯模块,stui分速派无线充电器。

通过在学习此教程的过
程中牢记以上准备好的工具,安装工作就会非常顺利。

接着,我们要进行实际的安装。

首先,将3.3V稳压电源的红色(正极)连接
到驱动器板上的5V;接着,将单端插头插入驱动器板上的TX1接口,充电模块连
接到驱动器板上的RX1接口。

连接完成后,你就可以将stui分速派无线充电器与
这个设备接通了。

至此,安装过程算是基本完成,但为了完善其功能,你还要安装按键模块和指
示灯模块。

将按键模块接入驱动器板上的按键接口,指示灯模块接入驱动器板上的指示灯接口,再将开关和指示灯接入stui分速派无线充电器,即可完成完美的安
装接线。

经过上述步骤,stui分速派无线充电器的正确安装和接线工作已经完成。


装完毕后,确保模块都正确连接,检查所有连接线和组件是否完好,如有疑问可以向有经验的技术人员询问并解决问题。

综上,stui分速派无线充电器的安装和接线程序如下:准备必要的工具和组件;将安装部件连接到驱动器板上的对应接口;将stui分速派无线充电器连接到
驱动器板;最后,安装按键模块和指示灯模块,连接开关和指示灯。

有了stui分
速派无线充电器,我们手机可以尽情安心地充电,更方便更节省时间!。

无线充电电路详解

无线充电电路详解

无线充电电路详解无线充电技术是一项新兴的技术,它可以在不插入电缆的情况下向设备提供电能。

无线充电是将电能从一个电源传输到需要充电的设备中,这个过程中不需要任何电缆或线路,仅仅采用一些电子设备能够将能量跨越几厘米的距离通过空气传输。

无线充电电路包括一个发射器和一个接收器。

发射器主要由电源和高频振荡电路组成,接收器通常包括一个天线、一个整流器和一个电容器。

发射器和接收器分别使用匹配电路来确保电能的传输。

在传输过程中,发射器将电流从电源转换成高频交流电,然后通过改变一个发射天线中的电磁场来传输能量。

接收器通过天线感受到电磁场,将其转换成电流,并通过整流器和电容器将电能储存起来。

这个过程中,发射器和接收器之间必须要有一个相对稳定的空气介质,以确保电能的快速传输。

此外,发射器和接收器之间的距离也要控制在一定范围内,一般是几厘米到几十厘米。

在无线充电电路设计过程中,需要考虑电子元件的匹配性和适用性。

如发射器、接收器的天线存在匹配问题,将导致电能传输效率降低,同时也会影响设备的充电速度。

为了使电能传输更加稳定和高效,需要采用合适的电子元件和匹配电路。

最后,无线充电电路的安全性也是一个重要的问题。

由于电磁场会影响周围环境和其他设备,因此发射器的功率和频率必须控制在一定范围内,不得超过国家或地区所规定的安全标准。

此外,接收器设计时也要注意防止出现过载或短路等情况,以避免损坏设备或甚至引起火灾等安全问题。

总之,无线充电电路将会是未来电力传输的趋势。

这项技术可以为设备提供更加方便的充电方式,同时也能够大幅减少电缆和线路的使用,降低电子废弃物的产生和环境污染。

在未来的日子里,我们相信无线充电技术将会不断进步和完善,为我们的生活带来更多的便利和效率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

无线充电最完整教程手把手教你制作无线充电器【附电路
图】
实用无线充电器设计[附电路图]
, 基本功能是通过线圈将电能H以H无线HH方式传输给电池。

只需把电池和接收设备放在充电平台上
即可对其进行充电。

实验证明(虽然该系统还不能充电于无形之中(但已能做到将多个
校电器放置于同一充电平台上同时充电。

免去接线的烦恼。

1 无线充电器原理与结构
无线充电系统主要采用电磁感应原理,通过线圈进行能量耦合实现能量的传递。

如图1所示,系统工作时输入端将交流市电经全桥整流电路变换成直流电,或用 24V直流电端直接为系统供电。

经过H电源管理H模块后输出的直流电通过2M 有源晶振逆变转换成高频交流电供给初级绕组。

通过2个H电感H线圈耦合能量,次级线圈输出的电流经接受转换电路变化成直流电为电池充电。

, 2(2 发射电路模块
如图3,主振电路采用2 MHz有源晶振作为振荡器。

有源晶振输出的方波,经过二阶
低通滤波器滤除高次谐波,得到稳定的正弦波输出。

经三极管13003及其外围电路组成的
丙类放大电路后输出至线圈与电容组成的并联谐振回路辐射出去(为接收部分提供能量。

, 2(2 接收电路模块
测得与电容组成的并联谐振回路的空芯耦合线圈的线径为0(5 mm,直径为7 cm,电
感为47 uH,载波频率为2 MHz。

根据并联谐振公式得匹配电容C约为140 pF。

因而(发
射部分采用2MHz有源晶振产生与谐振频率接近的能源载波频率。

2.3 充电电路。

相关文档
最新文档