高中数学(苏教版必修一)配套课时作业3.2.2(二) Word版含答案
2019—2020年苏教版高中数学必修一全册课时同步练习及答案解析.doc

(新课标)2018-2019学年度苏教版高中数学必修一§1.1 集合的含义及其表示(1)课后训练【感受理解】1.给出下列命题(其中N 为自然数集) :①N 中最小的元素是1 ②若a ∈N 则-a ∉N ③ 若a ∈N,b ∈N ,则a+b 的最小值是2(4)x x 212=+的解可表示为}1,1{, 其中正确的命题个数为 . 2.用列举法表示下列集合.①小于12的质数构成的集合;②平方等于本身的数组成的集合;③由||||(,)a b a b R a b+∈所确定的实数的集合; ④抛物线221y x x =-+ (x 为小于5的自然数)上的点组成的集合.3. 若方程x 2-5x+6=0和方程x 2-x-2=0的解为元素的集合为M ,则M 中元素的个数为4.由2,2,4a a -组成一个集合A ,A 中含有3个元素,则a 的取值可以是【思考应用】5.由实数332,,,x x x x --所组成的集合里最多有 个元素.6. 由“,x xy 0,||,x y ”组成的集合是同一个集合,则实数,x y 的值是否确定的?若确定,请求出来,若不确定,说明理由.7.定义集合运算:},),({B y A x y x xy z z B A ∈∈+==Θ,设集合}3,2{},1,0{==B A ,求集合B A Θ.8.关于x 的方程20(0)ax bx c a ++=≠,当,,a b c 分别满足什么条件时,解集为空集、含一个元素、含两个元素?9. 已知集合{,}A x x m m Z N Z ==+∈∈.(1)证明:任何整数都是A 的元素;(2)设12,,x x A ∈求证:12,x x A ⋅∈【拓展提高】9.设S 是满足下列两个条件的实数所构成的集合: ①1S ∉,②若a S ∈,则11S a∈-, 请解答下列问题:(1)若2S ∈,则S 中必有另外两个数,求出这两个数;(2)求证:若a S ∈,则11S a-∈ (3)在集合S 中元素能否只有一个?请说明理由;(4)求证:集合S 中至少有三个不同的元素.§1.1集合的含义及其表示(2)课后训练1. 设a ,b ,c 均为非零实数,则x=||||||||a b c abc a b c abc+++的所有值为元素组成集合是________ 2. 集合}9,7,5,3,1{用描述法表示为 .3. 下列语句中,正确的是 .(填序号)(1)0与{0}表示同一个集合;(2)由1,2,3组成的集合可表示为{1,2,3}或{3,1,2};(3)方程0)2()1(22=--x x 的所有解的集合可表示为{1,1,2,2} (4)集合}54{<<x x 可以用列举法表示.4.所有被3整除的数用集合表示为 .5.下列集合中表示同一集合的是` (填序号)(1)M={3,2},N={2,3} (2)M={(3,2)},N={(2,3)}(3)M={(,)1},{(,)1}x y x y N y x x y +==+= (4) M={1,2},N={(1,2)}6.下列可以作为方程组⎩⎨⎧-=-=+13y x y x 的解集的是 (填序号) (1){1,2},x y ==(2){1,2}(3){(1,2)} (4){(,)12}(5){(,)12}x y x y x y x y ====且或(6)}0)2()1(),{(22=-+-y x y x7.用另一种方法表示下列集合.(1){绝对值不大于2的整数} (2){能被3整除,且小于10的正数}(3)}5,{Z x x x x x ∈<=且 (4)*},*,6),{(N y N x y x y x ∈∈=+(5){5,3,1,1,3--}8.已知{}{}0|,0|22=+-==++=q px x x B q px x x A .当{}2=A 时,求集合B9.用描述法表示图中阴影部分(含边界)的点的坐标集合.10.对于*,N b a ∈,现规定:⎩⎨⎧⨯+=)()(*的奇偶性不同与的奇偶性相同与b a b a b a b a b a ,集合{(,)*36,,*}M a b a b a b N ==∈ (1) 用列举法表示b a ,奇偶性不同时的集合M.(2) 当b a ,奇偶性相同时的集合M 中共有多少个元素?【拓展提高】11 设元素为正整数的集合A 满足“若x A ∈,则10x A -∈”.(1)试写出只有一个元素的集合A ;(2)试写出只有两个元素的集合A ;(3)这样的集合A 至多有多少个元素?(4)满足条件的集合A 共有多少个?§1.2 子集·全集·补集(1)课后训练【感受理解】1. 设M 满足{1,2,3}⊆M ≠⊂{1,2,3,4,5,6},则集合M 的个数为 2.下列各式中,正确的个数是 ①0={0};②0∈{0};③{1}∈{1,2,3};④{1,2}⊆{1,2,3};⑤{a ,b}⊆{a ,b}.3.设{|12}A x x =<< ,{|}B x x a =<,若A 是B 的真子集,则a 的取值范围是 .4.若集合A ={1,3,x},B ={x 2,1},且B ⊆A ,则满足条件的实数x 的个数为 .5.设集合M ={(x,y)|x+y<0,xy>0}和N ={(x,y)|x<0,y<0},那么M 与N 的关系为______________.6.集合A ={x|x=a 2-4a+5,a ∈R},B ={y|y=4b 2+4b+3,b ∈R} 则集合A 与集合B 的关系是________.【思考应用】7.设x ,y ∈R ,B={(x,y)|y-3=x-2},A={(x,y)|32y x --=1},则集合A 与B 的关系是_______ ____. 8.已知集合{}{}|21,,|41,,A x x n n Z B x x n n Z ==+∈==±∈则,A B 的关系是 .9.设集合{}{}21,3,,1,,1,A a B a a a ==-+,A B =若则________=a . 10.已知非空集合P 满足:(){}11,2,3,4;P ⊆()2,5a P a P ∈-∈若则,符合上述要求的集合P 有 个.11.已知A={2,4,x 2-5x+9},B={3,x 2+ax+a},C={x 2+(a+1)x-3,1}. 求(1)当A={2,3,4}时,求x 的值;(2)使2∈B ,B A ,求x a ,的值;(3)使B= C 的x a ,的值.【拓展提高】12.已知集合{}{},121|,52|-≤≤+=≤≤-=m x m x B x x A 满足,A B ⊆求实数m 的取值范围.⊂ ≠(变式)已知集合{}{}|25,|121,A x x B x m x m =-<<=+<<-满足,A B ⊆求实数m 的取值范围.§1.2 子集·全集·补集(2)课后训练【感受理解】1.设集合{}{},,3|,,4|22R b b y y B R a a x x A ∈+-==∈+-==则A ,B 间的关系为 . 2若U={x|x 是三角形},P={x|x 是直角三角形}则U C P = . 3已知全集+=R U ,集合{}|015,,A x x x R =<-≤∈则_______.U C A = 4.已知全集}{非零整数=U ,集合}},42{U x x x A ∈>+=,则=A C U .5.设},61{},,5{N x x x B N x x x A ∈<<=∈≤=,则=B C A .【思考应用】6.设全集U={1,2,3,4,5},M={1,4},则U C M 的所有子集的个数是 .7.已知全集},21{*N n x x U n ∈==,集合}*,21{2N n x x A n∈==,则=A C U .8.已知A A y ax y x A Z a ∉-∈≤-=∈)4,1(,)1,2(}3),{(,且,则满足条件a 的值为 .9.设U=R ,}1{},31{+≤≤=≥≤=m x m x B x x x P 或,记所有满足P C B U ⊆的m 组成的集合为M ,求M C U .10.(1)设全集{}{},1|,1|,+>=≤==a x x B x x A R U 且U C A B ⊆,求a 的范围.(2)已知全集{}{}{}22,3,23,2,,5,U U a a A b C A =+-==求实数b a 和的值.【拓展提高】10.已知全集}5{的自然数不大于=U ,集合}1,0{=A ,}1{<∈=x A x x B 且,}1{U x A x x C ∈∉-=且.(1)求U B ,U C .(2)若}{A x x D ∈=,说明D B A ,,的关系.§1.3 交集·并集(1)课后训练【感受理解】1.设全集{1,2,3,4,5},{1,3,5},{2,4,5}U A B ===,则()()U U C A C B = . 2.设集合{|5,},{|1,}A x x x N B x x x N =≤∈=>∈,那么AB = . 3.若集合22{|21,},{|21,}P y y x x x N Q y y x x x N ==+-∈==-+-∈,则下列各式中正确的是 .(1);(2){0};(3){1};(4)P Q P Q P Q P Q N =∅==-=4.已知集合A={x|-5<x<5},B={x|-7<x<a},C={x|b<x<2},且A ∩B=C ,则 a ,b 的值分别为 .【思考应用】5.设全集U={1,2,3,4},A 与B 是U 的子集,若A ∩B ={1,3 },则称(A,B)为一个“理想配集”.(若A =B ,规定(A,B)=(B, A);若A ≠B ,规定(A,B)与(B, A)是两个不同的“理想配集”).那么符合此条件的“理想配集”的个数是 .6.记{}{},361T ,的三角形,至少有一内角为至少有一边为等腰三角形。
江苏省2016-2017学年高中数学(苏教版必修一)配套课时作业:3.1习题课

3.1 习题课课时目标 1.提高学生对指数与指数幂的运算能力.2.进一步加深对指数函数及其性质的理解.3.提高对指数函数及其性质的应用能力.1.下列函数中,指数函数的个数是________.①y =2·3x ;②y =3x +1;③y =3x ;④y =x 3.2.设f (x )为定义在R 上的奇函数,当x ≥0时,f (x )=2x +2x +b (b 为常数),则f (-1)=________.3.对于每一个实数x ,f (x )是y =2x 与y =-x +1这两个函数中的较小者,则f (x )的最大值是________.4.将22化成指数式为________.5.已知a =40.2,b =80.1,c =(12)-0.5,则a ,b ,c 的大小顺序为________.6.已知12x +12x -=3,求x +1x的值.一、填空题1.(122-⎡⎤⎢⎥⎣⎦的值为________.2.化简3(a -b )3+(a -2b )2的结果是________.3.若0<x <1,则2x ,(12)x,0.2x 之间的大小关系是________.4.若函数f (x )=⎩⎪⎨⎪⎧f (x +2), x <2,2-x , x ≥2,则f (-3)的值为________.5.函数f (x )=ax -b的图象如图所示,其中a ,b 均为常数,则下列结论正确的是________.(填序号)①a >1,b >0; ②a >1,b <0; ③0<a <1,b >0; ④0<a <1,b <0.6.函数f (x )=4x +12x 的图象关于________对称.7.计算130.064--(-14)0+160.75+120.01=____________________________.8.已知10m =4,10n =9,则3210m n -=________. 9.函数y =1-3x (x ∈[-1,2])的值域是________. 二、解答题10.比较下列各组中两个数的大小: (1)0.63.5和0.63.7;(2)(2)-1.2和(2)-1.4; (3)1332⎛⎫ ⎪⎝⎭和2332⎛⎫⎪⎝⎭; (4)π-2和(13)-1.3.11.函数f (x )=a x (a >0,且a ≠1)在区间[1,2]上的最大值比最小值大a2,求a 的值.能力提升12.已知f (x )=a a 2-1(a x -a -x )(a >0且a ≠1),讨论f (x )的单调性.13.根据函数y=|2x-1|的图象,判断当实数m为何值时,方程|2x-1|=m无解?有一解?有两解?习题课双基演练1.1解析只有③中y=3x是指数函数.2.-3解析因为f(x)为定义在R上的奇函数,所以f(0)=0,即1+b=0,b=-1.所以f(-1)=-f(1)=-(2+2-1)=-3.3.1解析当x≤0时,f(x)=2x;当x>0时,f(x)=-x+1.显然,其最大值是1.4.3 4 2解析22=122×11222⎛⎫⎪⎝⎭=122×142=342.5.b <a <c解析 a =20.4,b =20.3,c =20.5. 又指数函数y =2x 在R 上是增函数, ∴b <a <c . 6.解 由12x +12x -=3得(12x +12x -)2=9,即x +21122x-+x -1=9,则x +x -1=7,即x +1x=7.作业设计 1.22 解析 原式=122-=12=22. 2.b 或2a -3b解析 原式=(a -b )+|a -2b |=⎩⎪⎨⎪⎧b , a ≤2b ,2a -3b , a >2b .3.0.2x <(12)x <2x解析 当0<x <1时,2x >1,(12)x <1,对于(12)x,0.2x 不妨令x =12,则有0.5>0.2,再根据指数函数f (x )=0.5x ,g (x )=0.2x 的图象判断可知0.2x <(12)x .4.18解析 f (-3)=f (-3+2)=f (-1)=f (-1+2)=f (1)=f (1+2)=f (3)=2-3=18.5.④解析 f (x )=a x -b 的图象是由y =a x 的图象左右平移|b |个单位得到的,由图象可知f (x )在R 上是递减函数,所以0<a <1,由y =a x 过点(0,1)得知y =a x 的图象向左平移|b |个单位得f (x )的图象,所以b <0. 6.y 轴解析 ∵f (-x )=4-x +12-x =1+4x2x =f (x ),∴f (x )是偶函数,图象关于y 轴对称.7.485 解析 原式=()1330.4--1+()3442+()1220.1=0.4-1-1+23+0.1=52-1+8+110=485.8.83解析 因为10m=4,10n =9,所以3210m n -=103m -n =103m ÷10n =43÷9=83.9.[-8,23]解析 因为y =3x 是R 上的单调增函数,所以当x ∈[-1,2]时,3x ∈[3-1,32],即-3x ∈[-9,-13],所以y =1-3x ∈[-8,23].10.解 (1)考察函数y =0.6x .因为0<0.6<1,所以函数y =0.6x 在实数集R 上是单调减函数.又因为3.5<3.7,所以0.63.5>0.63.7.(2)考察函数y =(2)x .因为2>1,所以函数y =(2)x 在实数集R 上是单调增函数.又因为-1.2>-1.4,所以(2)-1.2>(2)-1.4.(3)考察函数y =(32)x .因为32>1,所以函数y =(32)x 在实数集R 上是单调增函数.又因为13<23,所以1332⎛⎫⎪⎝⎭<2332⎛⎫⎪⎝⎭. (4)∵π-2=(1π)2<1,(13)-1.3=31.3>1,∴π-2<(13)-1.3.11.解 (1)若a >1,则f (x )在[1,2]上递增,∴a 2-a =a2,即a =32或a =0(舍去).(2)若0<a <1,则f (x )在[1,2]上递减,∴a -a 2=a 2,即a =12或a =0(舍去).综上所述,所求a 的值为12或32.12.解 ∵f (x )=a a 2-1(a x -1a x ),∴函数定义域为R ,设x 1,x 2∈(-∞,+∞)且x 1<x 2,f (x 1)-f (x 2)=a a 2-1(1x a -11x a -2xa +21x a )=a a 2-1(1x a -2x a +21x a -11x a) =a a 2-1(1x a -2x a +1212xxx x a a a a -) =a a 2-1(1x a -2x a )(1+121x x a a ) ∵1+121x x a a >0, ∴当a >1时,1x a <2xa ,a a 2-1>0∴f (x 1)-f (x 2)<0,f (x 1)<f (x 2),f (x )为增函数,当0<a<1时,1x a>2x a,a<0a2-1∴f(x1)-f(x2)<0,f(x1)<f(x2),∴f(x)为增函数,综上,f(x)在R上为增函数.13.解函数y=|2x-1|的图象可由指数函数y=2x的图象先向下平移一个单位长度,然后再作x轴下方的部分关于x轴的对称图形,如图所示.函数y=m的图象是与x轴平行的直线,观察两图象的关系可知:当m<0时,两函数图象没有公共点,此时方程|2x-1|=m无解;当m=0或m≥1时,两函数图象只有一个公共点,此时方程|2x-1|=m有一解;当0<m<1时,两函数图象有两个公共点,此时方程|2x-1|=m有两解.。
高中学案数学(苏教版必修一)配套课时作业:3.1.2(一) -含答案

3.1.2 指数函数(一)课时目标 1.理解指数函数的概念,会判断一个函数是否为指数函数.2.掌握指数函数的图象和性质.1.指数函数的概念一般地,______________________叫做指数函数,其中x 是自变量,函数的定义域是____. 2.指数函数y =a x(a >0,且a ≠1)的图象和性质一、填空题1.下列以x 为自变量的函数中,是指数函数的是______.(填序号) ①y =(-4)x ;②y =πx ;③y =-4x ;④y =ax +2(a >0且a ≠1).2.函数f (x )=(a 2-3a +3)a x是指数函数,则a 的值为________.3.函数y =a |x |(a >1)的图象是________.(填序号)4.已知f (x )为R 上的奇函数,当x <0时,f (x )=3x,那么f (2)=________.5.如图是指数函数 ①y =a x; ②y =b x; ③y =c x;④y =d x的图象,则a 、b 、c 、d 与1的大小关系是________. 6.函数y =(12)x-2的图象必过第________象限.7.函数f (x )=a x的图象经过点(2,4),则f (-3)的值为____.8.若函数y =a x-(b -1)(a >0,a ≠1)的图象不经过第二象限,则a ,b 需满足的条件为________. 9.函数y =8-23-x(x ≥0)的值域是________.二、解答题10.比较下列各组数中两个值的大小:(1)0.2-1.5和0.2-1.7;(2)1314⎛⎫⎪⎝⎭和2314⎛⎫⎪⎝⎭;(3)2-1.5和30.2.11.2000年10月18日,美国某城市的日报以醒目标题刊登了一条消息:“市政委员会今天宣布:本市垃圾的体积达到50 000 m3”,副标题是:“垃圾的体积每三年增加一倍”.如果把3年作为垃圾体积加倍的周期,请你完成下面关于垃圾的体积V(m3)与垃圾体积的加倍的周期(3年)数n的关系的表格,并回答下列问题.(1)设想城市垃圾的体积每3年继续加倍,问24年后该市垃圾的体积是多少? (2)根据报纸所述的信息,你估计3年前垃圾的体积是多少? (3)如果n =-2,这时的n ,V 表示什么信息?(4)写出n 与V 的函数关系式,并画出函数图象(横轴取n 轴). (5)曲线可能与横轴相交吗?为什么?能力提升12.定义运算a ⊕b =⎩⎪⎨⎪⎧a (a ≤b )b (a >b ),则函数f (x )=1⊕2x的图象是________.(填序号)13.定义在区间(0,+∞)上的函数f (x )满足对任意的实数x ,y 都有f (x y)=yf (x ). (1)求f (1)的值;(2)若f (12)>0,解不等式f (ax )>0.(其中字母a 为常数).1.函数y =f (x )与函数y =f (-x )的图象关于y 轴对称;函数y =f (x )与函数y =-f (x )的图象关于x 轴对称;函数y =f (x )与函数y =-f (-x )的图象关于原点对称. 2.函数图象的平移变换是一种基本的图象变换.一般地,函数y =f (x -a )的图象可由函数y =f (x )的图象向右(a >0)或向左(a <0)平移|a |个单位得到.2.2.2 指数函数(一)知识梳理1.函数y =a x(a >0,且a ≠1) R 2.(0,1) 0 1 y >10<y <1 0<y <1 y >1 增函数 减函数 作业设计 1.②解析 ①中-4<0,不满足指数函数底数的要求,③中因有负号,也不是指数函数,④中的函数可化为y =a 2·a x ,a x的系数不是1,故也不是指数函数. 2.2解析 由题意得⎩⎪⎨⎪⎧a 2-3a +3=1,a >0且a ≠1,解得a =2. 3.②解析 该函数是偶函数.可先画出x ≥0时,y =a x的图象,然后沿y 轴翻折过去,便得到x <0时的函数图象.4.-19解析 当x >0时,-x <0,∴f (-x )=3-x, 即-f (x )=(13)x,∴f (x )=-(13)x.因此有f (2)=-(13)2=-19.5.b <a <1<d <c解析 作直线x =1与四个指数函数图象交点的坐标分别为(1,a )、(1,b )、(1,c )、(1,d ),由图象可知纵坐标的大小关系.6.二、三、四解析 函数y =(12)x 的图象上所有的点向下平移2个单位,就得到函数y =(12)x-2的图象,所以观察y =(12)x-2的图象可知.7.18解析 由题意a 2=4,∴a =2.f (-3)=2-3=18.8.a >1,b ≥2解析 函数y =a x-(b -1)的图象可以看作由函数y =a x的图象沿y 轴平移|b -1|个单位得到.若0<a <1,不管y =a x的图象沿y 轴怎样平移,得到的图象始终经过第二象限;当a >1时,由于y =a x 的图象必过定点(0,1),当y =a x 的图象沿y 轴向下平移1个单位后,得到的图象不经过第二象限.由b -1≥1,得b ≥2.因此,a ,b 必满足条件a >1,b ≥2. 9.[0,8) 解析 y =8-23-x=8-23·2-x=8-8·(12)x=8[1-(12)x].∵x ≥0,∴0<(12)x ≤1,∴-1≤-(12)x<0,从而有0≤1-(12)x<1,因此0≤y <8.10.解 (1)考察函数y =0.2x. 因为0<0.2<1,所以函数y =0.2x在实数集R 上是单调减函数. 又因为-1.5>-1.7,所以0.2-1.5<0.2-1.7.(2)考察函数y =(14)x .因为0<14<1,所以函数y =(14)x在实数集R 上是单调减函数.又因为13<23,所以1314⎛⎫ ⎪⎝⎭>2314⎛⎫ ⎪⎝⎭ 1.(3)2-1.5<20,即2-1.5<1;30<30.2,即1<30.2,所以2-1.5<30.2.11.解 (1)由于垃圾的体积每3年增加1倍,24年后即8个周期后,该市垃圾的体积是50 000×28=12 800 000(m 3).(2)根据报纸所述的信息,估计3年前垃圾的体积是50 000×2-1=25 000(m 3).(3)如果n =-2,这时的n 表示6年前,V 表示6年前垃圾的体积. (4)n 与V 的函数关系式是V =50 000×2n,图象如图所示.(5)因为对任意的整数n,2n>0,所以V =50 000×2n>0,因此曲线不可能与横轴相交. 12.①解析 由题意f (x )=1⊕2x =⎩⎪⎨⎪⎧1, x ≥0;2x, x <0.13.解 (1)令x =1,y =2,可知f (1)=2f (1),故f (1)=0. (2)设0<x 1<x 2,∴存在s ,t 使得x 1=(12)s ,x 2=(12)t,且s >t ,又f (12)>0,∴f (x 1)-f (x 2)=f [(12)s ]-f [(12)t]=sf (12)-tf (12)=(s -t )f (12)>0,∴f (x 1)>f (x 2).故f (x )在(0,+∞)上是减函数. 又∵f (ax )>0,x >0,f (1)=0, ∴0<ax <1, 当a =0时,x ∈∅,当a >0时,0<x <1a,当a <0时,1a<x <0,不合题意.故x ∈∅.综上:a ≤0时,x ∈∅;a >0时,不等式解集为{x |0<x <1a}.。
高中数学(苏教版必修一)配套课时作业:3.4.1习题课 -含答案

3.4.1习题课课时目标 1.进一步了解函数的零点与方程根的联系.2.进一步熟悉用“二分法”求方程的近似解.3.初步建立用函数与方程思想解决问题的思维方式.1.函数f (x )在区间(0,2)内有零点,则下列正确命题的个数为________. ①f (0)>0,f (2)<0; ②f (0)·f (2)<0;③在区间(0,2)内,存在x 1,x 2使f (x 1)·f (x 2)<0.2.函数f (x )=x 2+2x +b 的图象与两条坐标轴共有两个交点,那么函数y =f (x )的零点个数是________. 3.设函数f (x )=log 3x +2x-a 在区间(1,2)内有零点,则实数a 的取值范围是________. 4.方程2x -x -2=0在实数范围内的解的个数是________.5.函数y =(12)x 与函数y =lg x 的图象的交点的横坐标是________.(精确到0.1)6.方程4x 2-6x -1=0位于区间(-1,2)内的解有________个.一、填空题1.用二分法研究函数f (x )=x 3+3x -1的零点时,每一次经计算f (0)<0,f (0.5)>0,可得其中一个零点x 0∈________,第二次应计算________.2.函数f (x )=x 5-x -1的一个零点所在的区间可能是________.(填你认为正确的一个区间即可)3.函数f (x )=1-x 21+x的零点是________.4.已知二次函数y =f (x )=x 2+x +a (a >0),若f (m )<0,则在(m ,m +1)上函数零点的个数是______________.5.已知函数f (x )=(x -a )(x -b )+2(a <b ),并且α,β(α<β)是函数y =f (x )的两个零点,则实数a ,b ,α,β的大小关系是________.6.若函数y =f (x )在区间(-2,2)上的图象是连续不断的曲线,且方程f (x )=0在(-2,2)上仅有一个实数根,则f (-1)·f (1)的值________.(填“大于0”,“小于0”,“等于0”或“无法判断”)7.已知偶函数y=f(x)有四个零点,则方程f(x)=0的所有实数根之和为________.8.若关于x的二次方程x2-2x+p+1=0的两根α,β满足0<α<1<β<2,则实数p的取值范围为______________.9.已知函数f(x)=ax2+2x+1(a∈R),若方程f(x)=0至少有一正根,则a的取值范围为________.二、解答题10.若函数f(x)=x3+x2-2x-2的一个零点附近的函数值的参考数据如下表:求方程x3+x211.分别求实数m的范围,使关于x的方程x2+2x+m+1=0,(1)有两个负根;(2)有两个实根,且一根比2大,另一根比2小;(3)有两个实根,且都比1大.能力提升12.已知函数f(x)=x|x-4|.(1)画出函数f(x)=x|x-4|的图象;(2)求函数f(x)在区间[1,5]上的最大值和最小值;(3)当实数a为何值时,方程f(x)=a有三个解?13.当a取何值时,方程ax2-2x+1=0的一个根在(0,1)上,另一个根在(1,2)上.1.函数与方程存在着内在的联系,如函数y=f(x)的图象与x轴的交点的横坐标就是方程f(x)=0的解;两个函数y=f(x)与y=g(x)的图象交点的横坐标就是方程f(x)=g(x)的解等.根据这些联系,一方面,可通过构造函数来研究方程的解的情况;另一方面,也可通过构造方程来研究函数的相关问题.利用函数与方程的相互转化去解决问题,这是一种重要的数学思想方法.2.对于二次方程f(x)=ax2+bx+c=0根的问题,从函数角度解决有时比较简洁.一般地,习题课双基演练 1.0解析 函数y =f (x )在区间(a ,b )内存在零点,我们并不一定能找到x 1,x 2∈(a ,b ),满足f (x 1)·f (x 2)<0,故①、②、③都是错误的. 2.1或2解析 当f (x )的图象和x 轴相切与y 轴相交时,函数f (x )的零点个数为1,当f (x )的图象与y 轴交于原点与x 轴的另一交点在x 轴负半轴上时,函数f (x )有2个零点. 3.(log 32,1)解析 f (x )=log 3(1+2x )-a 在(1,2)上是减函数,由题设有f (1)>0,f (2)<0,解得a ∈(log 32,1). 4.2解析 作出函数y =2x 及y =x +2的图象,它们有两个不同的交点,因此原方程有两个不同的根. 5.1.9解析 令f (x )=(12)x -lg x ,则f (1)=12>0,f (3)=18-lg 3<0,∴f (x )=0在(1,3)内有一解,利用二分法借助计算器可得近似解为1.9. 6.2解析 设f (x )=4x 2-6x -1,由f (-1)>0,f (2)>0,且f (0)<0,知方程4x 2-6x -1=0在 (-1,0)和(0,2)内各有一解,因此在区间(-1,2)内有两个解. 作业设计 1.(0,0.5),f (0.25)解析 ∵f (0)<0,f (0.5)>0,∴f (0)·f (0.5)<0, 故f (x )在(0,0.5)必有零点,利用二分法, 则第二次计算应为f (0+0.52)=f (0.25).2.[1,2](答案不唯一)解析 因为f (0)<0,f (1)<0,f (2)>0, 所以存在一个零点x ∈[1,2]. 3.1解析 由f (x )=0,即1-x 21+x =0,得x =1,即函数f (x )的零点为1.4.1解析 二次函数y =f (x )=x 2+x +a 可化为y =f (x )=(x +12)2+a -14,则二次函数对称轴为x=-12,其图象如图.∵f (m )<0,由图象知f (m +1)>0,∴f (m )·f (m +1)<0,∴f (x )在(m ,m +1)上有1个零点. 5.a <α<β<b解析 函数g (x )=(x -a )(x -b )的两个零点是a ,b .由于y =f (x )的图象可看作是由y =g (x )的图象向上平移2个单位而得到的,所以a <α<β<b . 6.无法判断解析 由题意不能断定零点在区间(-1,1)内部还是外部.故填“无法判断”. 7.0解析 不妨设它的两个正零点分别为x 1,x 2.由f (-x )=f (x )可知它的两个负零点分别是-x 1,-x 2,于是x 1+x 2-x 1-x 2=0. 8.(-1,0)解析 设f (x )=x 2-2x +p +1,根据题意得f (0)=p +1>0, 且f (1)=p <0,f (2)=p +1>0,解得-1<p <0. 9.a <0解析 对ax 2+2x +1=0,当a =0时,x =-12,不符题意;当a ≠0,Δ=4-4a =0时,得x =-1(舍去). 当a ≠0时,由Δ=4-4a >0,得a <1,又当x =0时,f (0)=1,即f (x )的图象过(0,1)点, f (x )图象的对称轴方程为x =-22a =-1a,当-1a>0,即a <0时,方程f (x )=0有一正根(结合f (x )的图象);当-1a <0,即a >0时,由f (x )的图象知f (x )=0有两负根,不符题意.故a <0.10.解 ∵f (1.375)·f (1.437 5)<0,且1.375与1.4375精确到0.1的近似值都是1.4, 故方程x 3+x 2-2x -2=0的一个近似根为1.4. 11.解 (1)方法一 (方程思想) 设方程的两个根为x 1,x 2,则有两个负根的条件是⎩⎪⎨⎪⎧Δ=4-4(m +1)≥0,x 1+x 2=-2<0,x 1x 2=m +1>0,解得-1<m ≤0.方法二 (函数思想)设函数f (x )=x 2+2x +m +1,则原问题转化为函数f (x )与x 轴的两个交点均在y 轴左侧,结合函数的图象,有 ⎩⎪⎨⎪⎧Δ=4-4(m +1)≥0,-b2a =-1<0,f (0)=m +1>0,解得-1<m ≤0.(2)方法一 (方程思想)设方程的两个根为x 1,x 2,则令y 1=x 1-2>0,y 2=x 2-2<0,问题转化为求方程(y +2)2+2(y +2)+m +1=0,即方程y 2+6y +m +9=0有两个异号实根的条件,故有y 1y 2=m +9<0,解得m <-9. 方法二 (函数思想)设函数f (x )=x 2+2x +m +1,则原问题转化为函数f (x )与x 轴的两个交点分别在2的两侧,结合函数的图象,有f (2)=m +9<0,解得m <-9. (3)由题意知,⎩⎪⎨⎪⎧Δ=4-4(m +1)≥0,x 1-1+x 2-1>0,(x 1-1)(x 2-1)>0(方程思想),或⎩⎪⎨⎪⎧Δ=4-4(m +1)≥0,-b2a =-1>1,f (1)=m +4>0(函数思想),因为两方程组无解,故解集为空集.12.解 (1)f (x )=x |x -4|=⎩⎪⎨⎪⎧x 2-4x , x ≥4,-x 2+4x ,x <4.图象如图所示.(2)当x ∈[1,5]时,f (x )≥0且当x =4时f (x )=0,故f (x )min =0; 又f (2)=4,f (5)=5,故f (x )max =5. (3)由图象可知,当0<a <4时, 方程f (x )=a 有三个解.13.解 ①当a =0时,方程即为-2x +1=0,只有一根,不符合题意. ②当a >0时,设f (x )=ax 2-2x +1, ∵方程的根分别在区间(0,1),(1,2)上, ∴⎩⎪⎨⎪⎧ f (0)>0f (1)<0f (2)>0,即⎩⎪⎨⎪⎧1>0a -2+1<04a -4+1>0,解得34<a <1.③当a <0时,设方程的两根为x 1,x 2, 则x 1x 2=1a <0,x 1,x 2一正一负不符合题意.综上,a 的取值范围为34<a <1.。
江苏省2016-2017学年高中数学(苏教版必修一)配套课时作业:3.2.1第1课时

§3.2 对数函数 3.2.1 对数(一)课时目标 1.理解对数的概念,能进行指数式与对数式的互化.2.了解常用对数与自然对数的意义.3.掌握对数的基本性质,会用对数恒等式进行运算.1.对数的概念如果a (a >0,a ≠1)的b 次幂等于N ,即________,那么就称b 是以a 为底N 的对数,记作__________.其中a 叫做__________,N 叫做______. 2.常用对数与自然对数通常将以10为底的对数叫做________,以e 为底的对数叫做________,log 10N 可简记为________,loge N 简记为________. 3.对数与指数的关系若a >0,且a ≠1,则a x =N ⇔log a N =____.对数恒等式:log a Na =____;log a a x =____(a >0,且a ≠1). 4.对数的性质(1)1的对数为____; (2)底的对数为____; (3)零和负数________.一、填空题1.有下列说法:①零和负数没有对数;②任何一个指数式都可以化成对数式; ③以10为底的对数叫做常用对数; ④以e 为底的对数叫做自然对数. 其中正确命题的个数为________.2.有以下四个结论:①lg(lg 10)=0;②ln(ln e)=0;③若10=lg x ,则x =100;④若 e =ln x ,则x =e 2.其中正确的是________.(填序号)3.在b =log (a -2)(5-a )中,实数a 的取值范围是_____________________________.4.方程3log 2x=14的解集是________.5.若log a 5b =c ,则下列关系式中正确的是________. ①b =a 5c ;②b 5=a c ;③b =5a c ;④b =c 5a .6.0.51log 412-+⎛⎫ ⎪⎝⎭的值为________.7.已知log 7[log 3(log 2x )]=0,那么12x -=________. 8.若log 2(log x 9)=1,则x =________.9.已知lg a =2.431 0,lg b =1.431 0,则ba=________.二、解答题10.(1)将下列指数式写成对数式:①10-3=11 000;②0.53=0.125;③(2-1)-1=2+1. (2)将下列对数式写成指数式:①log 26=2.585 0;②log 30.8=-0.203 1; ③lg 3=0.477 1. 11.已知log a x =4,log a y =5,求A=12x ⎡⎢⎢⎢⎣的值.能力提升12.若log a 3=m ,log a 5=n ,则a 2m +n 的值是________. 13.(1)先将下列式子改写成指数式,再求各式中x 的值:①log 2x =-25;②log x 3=-13.(2)已知6a=8,试用a 表示下列各式: ①log 68;②log 62;③log 26.1.对数概念与指数概念有关,指数式和对数式是互逆的,即a b=N ⇔log a N =b (a >0,且a ≠1),据此可得两个常用恒等式:(1)log a ab =b ;(2)log a Na=N .2.在关系式a x =N 中,已知a 和x 求N 的运算称为求幂运算;而如果已知a 和N 求x 的运算就是对数运算,两个式子实质相同而形式不同,互为逆运算. 3.指数式与对数式的互化§2.3 对数函数 2.3.1 对 数 第1课时 对数的概念知识梳理1.a b =N log a N =b 对数的底数 真数 2.常用对数 自然对数 lg N ln N 3.x N x 4.(1)零 (2)1 (3)没有对数 作业设计 1.3解析 ①、③、④正确,②不正确,只有a >0,且a ≠1时,a x =N 才能化为对数式. 2.①②解析 ∵lg 10=1,∴lg(lg 10)=0,故①正确; ∵ln e =1,∴ln(ln e)=0,故②正确;由lg x =10,得1010=x ,故x ≠100,故③错误; 由e =ln x ,得e e =x ,故x ≠e 2,所以④错误. 3.2<a <3或3<a <5解析 由对数的定义知⎩⎪⎨⎪⎧ 5-a >0,a -2>0,a -2≠1⇒⎩⎨⎧a <5,a >2,a ≠3⇒2<a <3或3<a <5.4.{x |x =19}解析 ∵3log 2x=2-2,∴log 3x =-2,∴x =3-2=19.5.①解析 由log a 5b =c ,得a c =5b , ∴b =(ac )5=a 5c . 6.8解析 0.51log 412-+⎛⎫ ⎪⎝⎭=(12)-1·12log 412⎛⎫ ⎪⎝⎭=2×4=8.7.24解析 由题意得:log 3(log 2x )=1,即log 2x =3,转化为指数式则有x=23=8,∴128-=1218=18=122=24.8.3解析由题意得:log x9=2,∴x2=9,∴x=±3,又∵x>0,∴x=3.9.1 10解析依据a x=N⇔log a N=x(a>0且a≠1),有a=102.431 0,b=101.431 0,∴b a =101.431 0102.431 0=101.431 0-2.431 0=10-1=110.10.解(1)①lg11 000=-3;②log0.50.125=3;③log2-1(2+1)=-1.(2)①22.585 0=6;②3-0.203 1=0.8;③100.477 1=3.11.解A=12x·11622xy-⎛⎫⎪⎪⎪⎝⎭=51213xy.又∵x=a4,y=a5,∴A=5353aa=1.12.45解析由log a3=m,得a m=3,由log a5=n,得a n=5.∴a2m+n=(a m)2·a n=32×5=45.13.解(1)①因为log2x=-25,所以x=252-=582.②因为log x3=-13,所以x-13=3,所以x=3-3=127.(2)①log68=a.②由6a=8得6a=23,即36a=2,所以log62=a3.③由36a=2得32a=6,所以log26=3a.。
苏教版高中数学必修1课时作业3综合练习题

苏教版高中数学课时精选知识汇总序言:数学是一门伟大的学科,汇集了人类的只会与结晶!高考数学主要知识点: 第一,函数与导数第二,平面向量与三角函数第三,数列及其应用第四,不等式第五,概率和统计第六,空间位置关系的定性与定量分析垂直,求角和距离第七,解析几何。
是高考的难点,运算量大,一般含参数一、填空题图1-3-11.已知全集U=R,集合M=Z(整数集)和N={,-1,π,2}的关系如2图1-3-1所示,则阴影部分所表示的集合的元素共有________个.【解析】 因为阴影部分所表示的集合的元素是M与N的公共元素,有-1和2两个元素,即阴影部分所表示的集合的元素共有2个.【答案】 22.(2012·江苏高考)已知集合A={1,2,4},B={2,4,6},则A∪B=________.【解析】 因为A={1,2,4},B={2,4,6},所以A∪B={1,2,4,6}.【答案】 {1,2,4,6}3.设全集U={-1,0,1,2,3,4},A={-1,0,1},B={0,1,2,3},则∁U(A∪B)=________.【解析】 ∵A={-1,0,1},B={0,1,2,3},∴A∪B={-1,0,1,2,3}.∴∁U(A∪B)={4}.【答案】 {4}4.设A={(x,y)|y=4x+5},B={(x,y)|y=-2x-1},求A∩B=________.【解析】 A∩B即为Error!的解集,解Error!可得Error!故A∩B={(-1,1)}.【答案】 {(-1,1)}5.用集合分别表示下列各图中的阴影部分:图1-3-2(1)________;(2)________.【解析】 (1)由图(1)可知,该阴影部分为集合A、C的公共部分或集合B、C的公共部分,故可用(A∩C)∪(B∩C)表示.(2)由图(2)可知,该阴影部分为集合B与集合A,C公共部分的并集,故可用B∪(A∩C)表示.【答案】 (A∩C)∪(B∩C) B∪(A∩C)6.(2013·宿迁高一检测)已知集合A={1,3,},B={1,m},A∪B=mA,则m=________.【解析】 由A∪B=A得B⊆A,∴m=3或m=,m即m=3或m=0或m=1,又当m=1时不满足集合元素的互异性,故m =0或3.【答案】 0或37.定义集合运算A*B={x|x∈A且x∉B},若A={1,2,3,4},B={3,4,5,6},则A*B与B*A的元素之和为________.【解析】 A*B={1,2},B*A={5,6},故所求元素之和为1+2+5+6=14.【答案】 148.(2013·惠州高一检测)设集合M={x|-3≤x<7},N={x|2x+k≤0},若M ∩N ≠∅,则k 的取值范围是________.【解析】 因为N ={x |2x +k ≤0}={x |x ≤-}, k 2且M ∩N ≠∅,所以-≥-3⇒k ≤6. k 2【答案】 k ≤6二、解答题9.设全集为U =R ,A ={x |x ≥5},B ={x |0≤x <5},求∁U (A ∪B )和(∁U A )∩(∁U B ).【解】 ∵A ={x |x ≥5},B ={x |0≤x <5},∴A ∪B ={x |x ≥0},又U =R ,故∁U (A ∪B )={x |x <0},∁U A ={x |x <5},∁U B ={x |x <0或x ≥5}.∴(∁U A )∩(∁U B )={x |x <0}.10.(2013·佛山高一检测)若A ={x |x 2-5x +6=0},B ={x |ax -6=0},且A ∪B =A ,求由实数a 组成的集合M .【解】 由x 2-5x +6=0得x =2或x =3,∴A ={2,3}.当a =0时,B =∅,当a ≠0时,B ={}, 6a∵A ∪B =A ,∴B ⊆A ,∴B =∅或=2或=3, 6a 6a∴a =0或a =2或a =3,∴M ={0,2,3}.11.已知集合A ={x |x 2-mx +m 2-19=0},B ={y |y 2-5y +6=0},C ={z |z 2+2z -8=0},是否存在实数m ,使得A ∩B ≠∅,A ∩C =∅同时成立?若存在,求出实数m 的值;若不存在,则说明理由.【解】 假设存在这样的实数m ,所以B ={y |y 2-5y +6=0}={2,3},C ={z |z 2+2z -8=0}={-4,2},又A ∩C =∅,所以2∉A ,-4∉A ,又A ∩B ≠∅,所以3∈A,把x=3代入x2-mx+m2-19=0中,解得m=5或m=-2.当m=5时,A={2,3},与A∩C=∅矛盾,当m=-2时,A={-5,3},符合题意.所以m=-2.故存在m=-2,使得A∩B≠∅,A∩C=∅同时成立.学好高中数学不能死记硬背,要多加思考。
高中数学(苏教版必修一)配套课时作业:3.3 含答案

§3.3 幂函数课时目标 1.通过具体问题,了解幂函数的概念.2.从描点作图入手,画出y=x,y=x2,y=x3,y=12x,y=x-1的图象,总结出幂函数的共性,巩固并会加以应用.1.一般地,把形如________的函数叫做幂函数,其中x是自变量,α是常数.2.在同一平面直角坐标系中,画出幂函数y=x,y=x2,y=x3,y=12x,y=x-1的图象.3.结合2中图象,填空.(1)所有的幂函数图象都过点__________,在(0,+∞)上都有定义.(2)若α>0时,幂函数图象过点________________,且在第一象限内______;当0<α<1时,图象上凸,当α>1时,图象______.(3)若α<0,则幂函数图象过点________,并且在第一象限内单调______,在第一象限内,当x从+∞趋向于原点时,函数在y轴右方无限地逼近于y轴,当x趋于+∞时,图象在x轴上方无限逼近x轴.(4)当α为奇数时,幂函数图象关于______对称;当α为偶数时,幂函数图象关于______对称.(5)幂函数在第____象限无图象.一、填空题1.下列函数是幂函数的是________.(填序号)①y=x;②y=x3;③y=2x;④y=x-1.2.幂函数f(x)的图象过点(4,12),那么f(8)的值为________. 3.下列是y =23x 的图象的是________.(填序号)4.图中曲线是幂函数y =x n 在第一象限的图象,已知n 取±2,±12四个值,则相应于曲线C 1,C 2,C 3,C 4的n 依次为________.5.设a =2535⎛⎫ ⎪⎝⎭,b =3525⎛⎫ ⎪⎝⎭,c =2525⎛⎫ ⎪⎝⎭,则a ,b ,c 的大小关系是________. 6.函数f(x)=x α,x ∈(-1,0)∪(0,1),若不等式f(x)>|x|成立,则在α∈{-2,-1,0,1,2}的条件下,α可以取值的个数是________.7.给出以下结论:①当α=0时,函数y =x α的图象是一条直线;②幂函数的图象都经过(0,0),(1,1)两点;③若幂函数y =x α的图象关于原点对称,则y =x α在定义域内y 随x 的增大而增大;④幂函数的图象不可能在第四象限,但可能在第二象限.则正确结论的序号为________.8.函数y =12x +x -1的定义域是________.9.已知函数y =x -2m -3的图象过原点,则实数m 的取值范围是____________________.二、解答题10.比较121.1、121.4、131.1的大小,并说明理由.11.如图,幂函数y =x 3m -7(m ∈N)的图象关于y 轴对称,且与x 轴、y 轴均无交点,求此函数的解析式.能力提升12.已知函数f(x)=(m 2+2m)·21mm x +-,m 为何值时,函数f(x)是:(1)正比例函数;(2)反比例函数;(3)二次函数;(4)幂函数.13.点(2,2)在幂函数f(x)的图象上,点(-2,14)在幂函数g(x)的图象上,问当x 为何值时,有:(1)f(x)>g(x);(2)f(x)=g(x);(3)f(x)<g(x).。
高中数学(苏教版必修一)配套课时作业:3.2.1第2课时 -含答案

3.2.1 对数(二)课时目标 1.掌握对数的运算性质及其推导.2.能运用对数运算性质进行化简、求值和证明.3.了解换底公式并能用换底公式将一般对数化成自然对数和常用对数.1.对数的运算性质如果a >0,且a ≠1,M >0,N >0,那么: (1)log a (MN )=________; (2)log a MN =___________;(3)log a M n =__________(n ∈R ). 2.对数换底公式log a b =log c blog c a (a >0,且a ≠1,b >0,c >0,且c ≠1);特别地:log a b ·log b a =____(a >0,且a ≠1,b >0,且b ≠1).一、填空题1.下列式子中成立的是(假定各式均有意义)________.(填序号) ①log a x ·log a y =log a (x +y ); ②(log a x )n =n log a x ; ③log a x n=log a nx ; ④log a xlog a y=log a x -log a y . 2.计算:log 916·log 881的值为__________. 3.若log 513·log 36·log 6x =2,则x =________.4.已知3a =5b =A ,若1a +1b=2,则A =________.5.已知log 89=a ,log 25=b ,则lg 3=________(用a 、b 表示).6.若lg a ,lg b 是方程2x 2-4x +1=0的两个根,则(lg ab )2的值为________.7.2log 510+log 50.25+(325-125)÷425=______________. 8.(lg 5)2+lg 2·lg 50=________.9.2008年5月12日,四川汶川发生里氏8.0级特大地震,给人民的生命财产造成了巨大的损失.里氏地震的等级最早是在1935年由美国加州理工学院的地震学家里特判定的.它与震源中心释放的能量(热能和动能)大小有关.震级M =23lg E -3.2,其中E (焦耳)为以地震波的形式释放出的能量.如果里氏6.0级地震释放的能量相当于1颗美国在二战时投放在广岛的原子弹的能量,那么汶川大地震所释放的能量相当于________颗广岛原子弹. 二、解答题10.(1)计算:lg 12-lg 58+lg 12.5-log 89·log 34;(2)已知3a =4b =36,求2a +1b 的值.11.若a 、b 是方程2(lg x )2-lg x 4+1=0的两个实根,求lg(ab )·(log a b +log b a )的值.能力提升12.下列给出了x 与10x 的七组近似对应值:13.一种放射性物质不断变化为其他物质,每经过一年的剩余质量约是原来的75%,估计约经过多少年,该物质的剩余量是原来的13?(结果保留1位有效数字)(lg 2≈0.301 0,lg3≈0.477 1)对数;(2)“拆”,将积(商)的对数拆成两对数的和(差).对于常用对数的化简要创设情境,充分利用“lg 5+lg 2=1”来解题.第2课时 对数运算知识梳理1.(1)log a M +log a N (2)log a M -log a N (3)n log a M 2.1 作业设计 1.③ 2.83解析 log 916·log 881=lg 16lg 9·lg 81lg 8=4lg 22lg 3·4lg 33lg 2=83.3.125解析 由换底公式,得-lg 3lg 5·lg 6lg 3·lg xlg 6=2,lg x =-2lg 5,x =5-2=125.4.15解析 ∵3a =5b =A >0, ∴a =log 3A ,b =log 5A .由1a +1b =log A 3+log A 5=log A 15=2, 得A 2=15,A =15. 5.3a2(b +1)解析 ∵log 89=a ,∴lg 9lg 8=a .∴log 23=32a .lg 3=log 23log 210=log 231+log 25=3a 2(b +1).6.2解析 由根与系数的关系可知lg a +lg b =2, lg a lg b =12.于是(lg ab)2=(lg a -lg b )2=(lg a +lg b )2-4lg a lg b =22-4×12=2.7.65-3解析 原式=2(log 510+log 50.5)+(325425-125425) =2log 5(10×0.5)+2131322255---=2+165-5=65-3. 8.1解析 (lg 5)2+lg 2·lg 50=(lg 5)2+lg 2(lg 5+lg 10) =(lg 5)2+lg 2·lg 5+lg 2=lg 5(lg 5+lg 2)+lg 2 =lg 5+lg 2=1. 9.1 000解析 设里氏8.0级、6.0级地震释放的能量分别为E 2、E 1, 则8-6=23(lg E 2-lg E 1),即lg E 2E 1=3.∴E 2E 1=103=1 000, 即汶川大地震所释放的能量相当于1 000颗广岛原子弹. 10.解 (1)方法一 lg 12-lg 58+lg 12.5-log 89·log 34=lg(12×85×12.5)-2lg 33lg 2·2lg 2lg 3=1-43=-13.方法二 lg 12-lg 58+lg 12.5-log 89·log 34=lg 12-lg 58+lg 252-lg 9lg 8·lg 4lg 3=-lg 2-lg 5+3lg 2+(2lg 5-lg 2)-2lg 33lg 2·2lg 2lg 3=(lg 2+lg 5)-43=1-43=-13.(2)方法一 由3a =4b =36得:a =log 336,b =log 436, 所以2a +1b =2log 363+log 364=log 36(32×4)=1.方法二 因为3a=4b=36,所以136a=3,136b=4,所以(136a )2·136b=32×4,即2136a b+=36,故2a +1b=1.11.解 原方程可化为2(lg x )2-4lg x +1=0. 设t =lg x ,则方程化为2t 2-4t +1=0, ∴t 1+t 2=2,t 1·t 2=12.又∵a 、b 是方程2(lg x )2-lg x 4+1=0的两个实根, ∴t 1=lg a ,t 2=lg b , 即lg a +lg b =2,lg a ·lg b =12.∴lg(ab )·(log a b +log b a ) =(lg a +lg b )·(lg b lg a +lg a lg b )=(lg a +lg b )·(lg b )2+(lg a )2lg a ·lg b=(lg a +lg b )·(lg a +lg b )2-2lg a ·lg blg a ·lg b=2×22-2×1212=12,即lg(ab )·(log a b +log b a )=12. 12.二解析 由指数式与对数式的互化可知, 10x =N ⇔x =lg N , 将已知表格转化为下表:∴第一组、第三组对应值正确. 又显然第六组正确,∵lg 8=3lg 2=3×0.301 03=0.903 09, ∴第五组对应值正确.∵lg 12=lg 2+lg 6=0.301 03+0.778 15=1.079 18, ∴第四组、第七组对应值正确. ∴只有第二组错误.13.解 设这种放射性物质最初的质量是1,经过x 年后,剩余量是y ,则有y =0.75x .依题意,得13=0.75x ,即x =lg13lg 0.75=-lg 3lg 3-lg 4=lg 32lg 2-lg 3=0.477 12×0.301 0-0.477 1≈4.∴估计约经过4年,该物质的剩余量是原来的13.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对数函数(二)
课时目标.进一步加深理解对数函数的性质.掌握对数函数的性质及其应用.
.设()=,则(())=.
.下列各组函数中,表示同一函数的是.(填序号)
①=和=();
②=和=;
③=和=;
④=和=.
.若函数=()的定义域是[],则=(
1
2
log
)的定义域是.
.函数()=(+)的值域为.
.函数()=(+)(>且≠)的图象经过(-)和()两点,则()=.
.函数=(-)+(>且≠)恒过定点.
一、填空题
.设=,=(),=,则,,的大小关系为.
.已知函数=()的定义域为[-],则函数=()的定义域为.
.函数()=(>且≠)且()=,则下列不等关系判断正确的为.(填序号) ①()>(-);②()>();③(-)>(-);
④(-)>(-).
.函数()=+(+)在[]上的最大值与最小值之和为,则的值为.
.已知函数()=,若()=,则(-)=.
.函数=(-≤<)的反函数是.
.函数()=(-),若≥时,()≥恒成立,则应满足的条件是..函数=当>时恒有>,则的取值范围是.
.若<,则实数的取值范围是.
二、解答题
.已知()=(-)在∈[]上单调递减,求的取值范围.
.已知函数()=
1
2
log
的图象关于原点对称,其中为常数.
()求的值;
()若当∈(,+∞)时,()+
1
2
log
(-)<恒成立.求实数的取值范围.。