水电解制氢流程及操作要点

合集下载

水电解制氢装置操作规程

水电解制氢装置操作规程

水电解制氢装置操作规程1.开车前准备1.1 制氢机的清洗:水电解制氢机在投运前,应用原料水清洗。

1.1.1 置所有阀门为关闭状态。

1.1.2 将原料水箱注满原料水。

1.1.3 按1.1.4(2)b项操作步骤将原料水打入制氢系统。

1.1.4 启动碱液循环泵P101、P102,并调节阀门BV-116、BV-118至流量最大,冲洗制氢机2小时,停泵,打开阀门BV-103、BV-104排污,排污完毕,关严阀BV-103、BV-104。

1.1.5 重复上述操作4~6次,直至排液清洁为止。

1.2 气密检验(充氮气)1.2.1 按1.1操作将原料水打入制氢机,至分离器液位中部。

1.2.2 关闭制氢机所有外联阀门,打开机内所有阀,通过阀门SV-103向制氢机内充氮,使压力缓慢升至1.6MPa,关阀SV-103,用肥皂水检查各气路连接部位和阀门是否漏气,并观察液路有无漏液,确认不漏后,保压十二小时,泄漏率以平均每小时小于0.5%为合格。

1.2.3再次启动碱液循环泵E14,清洗2小时后,停泵、排污、泄压。

1.3 电解液的配制30℃时,15%KOH溶液比重分别为1.180。

30℃时,30%KOH溶液比重分别为1.281。

1.3.1 置加水、配碱框架所有阀门为关闭状态1.3.2 注原料水于碱液箱内,注原料水量按工艺要求,如碱液箱容积小,可分成2~3次注入。

1.3.3 打开阀门BV-206、BV-207(碱箱水箱连接管线阀门)启动配碱泵,实行配碱循环。

1.3.4 按工艺要求的碱液量进行配碱,缓慢加入KOH(不低于化学纯)待完全溶解后,加入碱液重量的2‰V2O5添加剂(按工艺要求添加),则电解液配好。

1.4 检查各极框之间,正负极输电铜排间有无短路或有金属导体,或有无电解液泄露现象,发现后必须排除。

1.5 仔细检查整流变压器各个接点、可控硅整流柜各回路及正极输电铜排对地绝缘性,严防短路。

1.6 用15%KOH溶液试车四十八小时(开停车操作同正常操作规程、配碱过程不加V2O5),然后将其排污。

电解水制氢的原理及相应的制备工艺流程

电解水制氢的原理及相应的制备工艺流程

电解水制氢的原理及相应的制备工艺流程下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!电解水制氢的原理及相应的制备工艺流程1. 原理概述。

水电解制氢安全操作规程(02)

水电解制氢安全操作规程(02)

水电解制氢安全操作规程页码 1 / 21.目的建立水电解制氢安全操作规程,确保生产的安全操作及正常运行。

2.范围本规程适用于本公司水电解制氢的操作。

3.职责3.1 运作部操作人员负责水电解制氢的正常操作。

4.规程4.1开机操作4.1.1打开循环泵排气阀将泵内气体排净。

4.1.2首次开机或停机时间过长应由充氮口向装置内充氮0.5MPa由手动放空阀放空重复三—四次置换保留系统0.2MPa以上,并使氢氧分离器液位高度基本相同。

4.1.3打开冷却水阀门(冷却水压力为 >0.2MPa)。

4.1.4接通控制柜总电源及柜上各仪表电源。

4.1.5接通控制柜及气液处理器的仪表气源(气源压力 >0.2MPa)。

4.1.6开启循环泵将循环量调至规定值。

4.1.7打开氢氧放空阀。

4.1.8按整流柜使用方法对电解槽送电(每隔10—30分钟增加额定电流10%直至漏负荷)。

4.1.9电解槽送电随温度上升逐渐提高到控制温度规定值85ºC±5。

4.1.10当温度上升至50ºC后氧中氢,氢中氮分析仪投入正常工作状态,当氢纯度达到99.8%以上,关闭放空阀打开送贮罐的阀门。

氧到99.2%以上关闭放空阀打开送贮罐的阀门。

4.2停机操作4.2.1打开手动氢,氧放空阀关闭氢、氧运气阀。

4.2.2调好氢,氧分离器液位。

4.2.3切断氧由氢、氢中氧分析仪。

4.2.4按整流柜停机操作停止对电解槽送电。

4.2.5将电解槽温度控制在50ºC以下,电解槽压力控制在0.5MPa。

4.2.6 关冷却水关氮源,停循环泵关控制柜电源。

4.2.7关闭手放空阀。

水电解制氢安全操作规程页码 2 / 24.3 工艺部分需注意事项4.3.1循环泵不允许空运转,循环泵正常运行TRG监测指针应在绿区。

大于需加注意达到红区停机检查。

4.3.2电解KOH浓度应保持压25—28%,加入千分之二无氧化二钒。

4.3.3长期停机或需要退碱,装置一定要充氮置换。

制氢装置流程及关键设备介绍

制氢装置流程及关键设备介绍

制氢装置流程及关键设备介绍1.引言制氢是一种重要的能源生产方式,可以通过多种方法进行生产,如煤炭气化、水电解、天然气重整等。

本文将重点介绍水电解方法制氢的流程及关键设备。

2.水电解制氢流程水电解是指通过电解水来产生氢气的方法。

其基本原理是将水分解成氢气和氧气,反应方程式如下:2H2O->2H2+O2水电解制氢的具体流程如下:2.1水净化原水经过预处理工序,去除其中的杂质和离子,以保证水的纯净。

预处理通常包括过滤、反渗透和电去离子等步骤。

2.2电解池水电解的核心部分是电解池,它是水分解反应发生的地方。

电解池通常由阳极和阴极两部分组成,两者之间通过离子交换膜进行隔离。

阳极产生氧气,阴极产生氢气。

2.3电源系统电源系统提供电流给电解池,通常采用直流电源。

电源的电流和电压可以根据不同的需要进行调整。

2.4氢气处理通过氢气处理系统,将产生的氢气进行净化和压缩。

净化过程通常包括除湿、除杂质和除油等步骤。

经过处理的氢气可以被储存或者用于其他工业应用。

2.5氧气处理产生的氧气也需要经过处理,在氧气处理系统中进行净化和压缩。

净化步骤通常包括除湿和除杂质等。

下面将介绍水电解制氢过程中的几个关键设备:3.1电解池电解池是水电解制氢的核心设备,决定了产氢效率和质量。

电解池主要由电极和离子交换膜组成,电极通常采用铂或其他贵金属材料制成。

3.2电源系统电源系统为电解池提供所需的电流和电压。

电源的稳定性和控制精度对制氢过程至关重要。

3.3氢气处理系统氢气处理系统主要包括除湿、除杂质和除油等步骤。

除湿通常使用吸附剂或冷凝器进行,除杂质可以通过吸附或催化剂进行。

除油通常采用吸附或膜分离等方法。

3.4氧气处理系统氧气处理系统与氢气处理系统类似,也包括除湿和除杂质等步骤。

由于氧气对杂质的要求较高,除杂质的过程可能要更为严格。

4.结论水电解制氢是一种重要的制氢方法,具有高效、环保、可再生的特点。

制氢的流程包括水净化、电解池、电源系统、氢气处理和氧气处理等步骤,每个步骤都有相应的关键设备。

水电解制氢操作要点

水电解制氢操作要点

水电解制氢操作要点1、水电解槽工作温度。

通过氧侧温度变送器把温度信号传送给PLC系统,数据经处理后,控制气动薄膜调节阀来监控碱液温度而实现工作温度保持在80~90℃。

工作温度过高会加速水电解槽内腐蚀,缩短石棉橡胶垫的使用寿命,影响运行周期;温度过低会使电解液电阻增加,极间电压升高,能耗增大。

2、水电解槽工作压力。

通过压力变送器把压力信号传递给PLC 系统,数据经处理后,控制氧侧气动薄膜调节阀来控制槽体压力。

根据设备需求设定工作压力大小。

3、水电解槽氢氧液位差。

由差压变送器把液位差信号传递给PLC 系统,经数据处理后,控制氢侧气动薄膜调节阀来控制液位差小于1000Pa。

若液位大于1000Pa则一侧压力高、液位低,水电解槽碱液循环回路中断,槽体发生喷碱现象,甚至石棉隔膜布露出液面,造成氢氧气混合的危险。

4、水电解槽分离器液位。

水电解过程中不断地消耗纯水,因而要及时补给。

一般控制分离器液位在1/3~2/3,由补水泵自动启闭控制。

5、除氧器温度。

除去水电解制氢中的微量氧气,常温控制。

一般情况下除氧器实际温度显示为产品氢气与微量氧气反应生成水放出热量的温度。

若含氧量超标,可将除氧器中的催化剂进行活化再生后继续投入使用。

6、当出现下列情况之一时,应停机检查:氢气或氧气的纯度下降至允许值下限时;当回收利用氧气时,氧气中氢浓度超过规定值时;水电解槽的电解小室电压,经多次测定均不正常时;水电解槽出口氢侧/氧侧气体压力不平衡,其压力差超过允许值时;氢气压缩机进气侧的氢气压力低于允许值时;电力供应故障;监测的空气中氢浓度超过1.0%时。

7、气密性试验,对压力型水电解制氢系统以洁净空气或氮气进行气密性试验。

气密性试验压力为设计压力,试验开始后逐渐升压,达到规定压力后,保持30min,检查所有连接处,焊缝、法兰、垫片等处,以无漏气为合格。

对常压型水电解制氢系统的气密性试验压力为0.05MPa或注满水静置试验。

8、水电解槽的总直流电流(电压)用直流电压表检测。

电解水制氢实验

电解水制氢实验

电解水制氢实验在人们不断探索可再生能源领域的同时,水电解制氢技术备受关注。

水电解制氢是一种利用电能将水分解成氧气和氢气的过程,其中氢气可以作为一种清洁能源的替代品。

本文将介绍电解水制氢的原理、实验过程和应用前景。

首先,让我们了解电解水制氢的原理。

该实验基于电解的原理,通过将水中的氢氧化物离子进行氧化还原反应,使其分解成氢气和氧气。

具体而言,当通入电流时,电子转移至阴极,同时水的氧化反应发生,产生氢气。

在阳极则发生氧化反应,生成氧气。

整个反应方程式为:2H2O(l) → 2H2(g)+O2(g)。

接下来,我们来进行电解水制氢的实验。

首先,我们需要准备一台电解槽、两根电极(通常为碳棒或铂丝)、蒸馏水和直流电源。

安装好电解槽后,将两根电极插入槽中,分别与正负电极相连。

然后,将电解槽中注入适量的蒸馏水,确保电极浸没在水中。

最后,将直流电源连接电解槽的两根电极,调节电流大小。

当电流通入后,我们可以观察到一些现象。

首先,在阴极处,我们会看到氢气以气泡形式释放,氧化反应发生在阳极处,会看到氧气以气泡形式释放。

这些气泡会逐渐上升到液面,并从液面逸出。

整个实验过程中,会伴随着一些电解槽内部电解液的变化,例如水的颜色可能会有所改变。

实验结束后,我们可以用氢气的可燃性和氧气的明亮燃烧性来确认产气。

电解水制氢具有广泛的应用前景。

首先,氢气可以作为一种清洁能源的替代品。

传统能源往往依赖石油、煤炭等化石燃料,而这些能源的使用会产生大量二氧化碳等温室气体,加剧气候变化。

因此,利用电解水制氢可以在一定程度上减少对传统能源的依赖,并降低碳排放。

此外,氢气还可以用作燃料电池的燃料,通过与氧气反应生成电能,以推动电动汽车等设备的运行。

这样的应用能够减少对有限的化石能源资源的需求,并减少空气污染。

此外,氢气还可以应用于航空航天、金属冶炼等领域,不仅为科学研究提供了新的动力,也拓宽了科技创新的广度。

综上所述,电解水制氢是一种重要的科学实验,通过电解水分解产生氢气和氧气。

水电解制氢操作手册

水电解制氢操作手册

一、开车前的检查:1、检查现场工艺流程阀门是否正确。

2、开启水封进水阀,使少量水从水封流出。

3、检查除盐水补水箱、冷却水箱的液位正常,电解液质量符合标准。

4、压缩空气压力正常(0.6-0.8Mpa),保证系统气动阀门正确灵活启闭及正压保护气的供给。

5、电解槽上面不得有杂物,电解槽基础附近及底部绝缘胶木应处于干燥状态。

6、碱液循环泵、补水泵处于良好的备用状态。

7、配电柜电源电压正常,仪表电源正常。

8、在同一信号值下,分别检查气动调节阀开度,手动方式进行变化信号值(0-100%方向变化),相应的气动调节阀开度(氢氧侧调节阀的开度从小到大增大,水阀调节阀的开度从大到小减小)。

可适当进行零点调节。

相应的动作。

9、打开冷却水阀门及给整流柜冷却用的闭式循环冷却水系统。

10、最后证实所有有关的设定值是否正确。

以备开车二、开停车1、在控制柜上将“工作/调试“旋钮打到“工作”。

2、检查上位机的各项参数设置正确无误,运行参数显示正常。

3、若氢氧分离器液位偏高或偏低,将液位联锁解除,补水泵选择手动位置。

4、进行氮气置换。

充氮前将充氮手动阀(SV103)。

在泄压过程中要控制氢氧分离器液位差不得过大,可以通过氢、氧侧手动截止阀SV108A、SV109A进行调节。

5、在上位机上启动碱液循环泵,启动之前,从过滤器上放排气,直到碱液均匀流出,启动碱液循环泵P101A、P102A,调节阀BV101AH、BV102AH的开度,使碱液循环量(14~16m3/h)逐渐达到工艺要求。

观察泵的运行是否正常。

6、将槽温设置在85℃,槽压设置在0.8Mpa,开阀BV114A和保压阀BV111A、BV112A,以便产出的气体排空。

7、将整流柜电流调节电位器反时针方向旋到“0”位,再将选择开关放在稳压档;主回路指示灯亮;合主令开关,控制电源指示灯亮;按下运行按钮(启动的同时氢放空球阀AV103A会自动打开),运行指示灯亮;缓慢地按顺时针方向旋转电流调节电位器,调输出总电压(222V),保持工艺要求的总电压,此时电解开始,分离器中液位上升,槽温逐渐升高。

混合电解水制氢系统及混合电解水制氢系统的控制方法与流程

混合电解水制氢系统及混合电解水制氢系统的控制方法与流程

混合电解水制氢系统及混合电解水制氢系统的控制方法与流程混合电解水制氢系统及混合电解水制氢系统的控制方法与流程一、混合电解水制氢系统概述1.1 混合电解水制氢的基本原理1.2 混合电解水制氢系统的组成和工作原理1.3 混合电解水制氢技术的发展现状二、混合电解水制氢系统的控制方法2.1 温度控制2.2 压力控制2.3 PH值控制2.4 流量控制2.5 电流密度控制三、混合电解水制氢系统的流程3.1 氢气生产流程3.2 氧气生产流程3.3 氢氧气分离流程3.4 氢气储存流程四、对混合电解水制氢技术的个人理解4.1 对混合电解水制氢技术的认识4.2 对混合电解水制氢技术未来发展的展望总结现在,让我们深入探讨混合电解水制氢系统及其控制方法与流程。

一、混合电解水制氢系统概述1.1 混合电解水制氢的基本原理混合电解水制氢是指利用电解反应将水分解成氢气和氧气的技术。

它的基本原理是在电解槽中通入水,同时加上电流,通过电解作用从而产生氢气和氧气。

1.2 混合电解水制氢系统的组成和工作原理混合电解水制氢系统通常由电解槽、电源、水箱、气体收集系统等组成。

在工作时,电流通过电解槽,水分子发生电解反应,产生氢气和氧气,并通过气体收集系统进行分离和收集。

1.3 混合电解水制氢技术的发展现状当前,混合电解水制氢技术已经成熟,广泛应用于工业生产、能源储备等领域。

也不断有新的技术和方法被提出,以提高电解效率、降低能耗,推动技术的发展。

二、混合电解水制氢系统的控制方法2.1 温度控制在混合电解水制氢系统中,温度控制是十分重要的。

合适的温度可以...总结通过本文的介绍,我们对混合电解水制氢系统及其控制方法与流程有了更深入的了解。

混合电解水制氢技术在能源领域具有广阔的应用前景,但同时也面临着一些挑战和问题,需要不断的研究和创新。

在未来,随着技术的进步和环境保护意识的提高,相信混合电解水制氢技术将会得到更广泛的应用,并为人类社会的可持续发展做出更大的贡献。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9、产品进出厂时,应进行充氮保护,充氮压力≥0.05MPa。此类设备的开口处应进行封堵。
10、制氢设备性能试验应在设备连续稳定运行4h后进行,测试气体产量、纯度和单位制氢直流电耗须同步进行,每30min测试一次,连续测4次,取其平均值。
氢、氧气体纯度测试的取样部位应在制氢设备的氢、氧气体取样口。用电流表测试流过电解槽总直流工作电流,测试部位在电解槽两端或直流变换器的直流接线点。电解槽的直流工作电压的测试部位在电解槽正负极接点。
水电解制氢流程及操作要点
一、工作温度。通过氧侧温度变送器把温度信号传送给PLC系统,数据经处理后,控制气动薄膜调节阀来监控碱液温度而实现工作温度保持在80~90℃。工作温度过高会加速水电解槽内腐蚀,缩短石棉橡胶垫的使用寿命,影响运行周期;温度过低会使电解液电阻增加,极间电压升高,能耗增大。
11、制氢设备应存放在通风、干燥的库房内或有遮盖的场所,离地至少100mm;存放期超过规定时间,按产品说明书的有关规定进行检查、维护。
7、气密性试验,对压力型水电解制氢系统以洁净空气或氮气进行气密性试验。气密性试验压力为设计压力,试验开始后逐渐升压,达到规定压力后,保持30min,检查所有连接处,焊缝、法兰、垫片等处,以无漏气为合格。对常压型水电解制氢系统的气密性试验压力为0.05MPa或注满水静置试验。
8、水电解槽的总直流电流(电压)用直流电压表检测。电流(电压)表的精度等级不低于0.5级。
2、水电解槽工作压力。通过压力变送器把压力信号传递给PLC系统,数据经处理后,控制氧侧气动薄膜调节阀来控制槽体压力。根据设备需求设定工作压力大小。
3、水电解槽氢氧液位差。由差压变送器把液位差信号传递给PLC系统,经数据处理后,控制氢侧气动薄膜调节阀来控制液位差小于1000Pa。若液位大于1000Pa则一侧压力高、液位低,水电解槽碱液循环回路中断,槽体发生喷碱现象,甚至石棉隔膜布露出液面,造成氢氧气混合的危险。
6、当出现下列情况之一时,应停机检查:
氢气或氧气的纯度下降至允许值下限时;
当回收利用氧气时,氧气中氢浓度超过规定值时;
水电解槽的电解小室电压,经多次测定均不正常时;
水电解槽出口氢侧/氧侧气体压力不平衡,其压力差超过允许值时;
氢气压缩机进气侧的氢气压力低于允许值时;
电力供应故障;
监测的空气中氢浓度超过1.0%时。
4、水电解槽分离器液位。水电解过程中不断地消耗纯水,因而要及时补给。一般控制分离器液位在1/3~2/3,由补水泵自动启闭控制。
5、除氧器温度。除去水电解制氢中的微量氧气,常温控制。一般情况下除氧器实际温度显示为产品氢气与微量氧气反应生成水放出热量的温度。若含氧量超标,可将除氧器中的催化剂进行活化再生后继续投入使用。
相关文档
最新文档