2008年四川高考文科数学延考卷word版含答案详解
2008年高考试题——数学文(四川卷)

2008年普通高等学校招生全国统一考试(四川卷)数 学(文科)及参考答案本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3至第4页。
全卷满分150分,考试时间120分钟。
考生注意事项:1. 答题前,务必在试题卷、答题卡规定的地方填写自己的座位号、姓名,并认真核对答题卡上所粘贴的条形码中“座位号、姓名、科类”与本人座位号、姓名、科类是否一致。
2. 答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动、用橡皮擦干净后,再选涂其他答案标号。
3. 答第Ⅱ卷时,必须用0.5毫米黑色墨水签字笔在答题卡上.....书写。
在试题卷上作答无效.........。
4. 考试结束,监考员将试题卷和答题卡一并收回。
参考公式:如果事件A 、B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件A 、B 相互独立,那么 其中R 表示球的半径()()()P A B P A P B ⋅=⋅ 球的体积公式如果事件A 在一次实验中发生的概率是p ,那么 343V R π=n 次独立重复实验中事件A 恰好发生k 次的概率 其中R 表示球的半径()()()1,0,1,2,,n kk kn nP k C p p k n -=-=第Ⅰ卷一.选择题:1.设集合{}{}{}1,2,3,4,5,1,2,3,2,3,4U A B ===,则()UA B =( B )(A){}2,3 (B){}1,4,5 (C){}4,5 (D){}1,5 【解】:∵{}{}1,2,3,2,3,4A B == ∴{}2,3A B =又∵{}1,2,3,4,5U = ∴(){}1,4,5UA B = 故选B ;2.函数()1ln 212y x x ⎛⎫=+>- ⎪⎝⎭的反函数是( C ) (A)()112xy e x R =-∈ (B)()21x y e x R =-∈ (C)()()112xy e x R =-∈ (D)()21xy e x R =-∈【解】:∵由()ln 21y x =+反解得()112y x e =- ∴()112x y e =- 从而淘汰(B)、(D) 又∵原函数定义域为12x >- ∴反函数值域为12y >- 故选C ;【考点】:此题重点考察求反函数的方法,考察原函数与反函数的定义域与值域的互换性;【突破】:反解得解析式,或利用原函数与反函数的定义域与值域的互换对选项进行淘汰; 3.设平面向量()()3,5,2,1a b ==-,则2a b -=( A )(A)()7,3 (B)()7,7 (C)()1,7 (D)()1,3 【解】:∵()()3,5,2,1a b ==- ∴()()()()23,522,1345273a b -=--=+-=,, 故选C ; 【考点】:此题重点考察向量加减、数乘的坐标运算; 【突破】:准确应用向量的坐标运算公式是解题的关键; 4.()2tan cot cos x x x +=( D )(A)tan x (B)sin x (C)cos x (D)cot x【解】:∵()22222sin cos sin cos tan cot cos cos cos cos sin sin cos x x x x x x x x x x x x x +⎛⎫+=+=⋅ ⎪⎝⎭cos cot sin xx x== 故选D ; 【点评】:此题重点考察各三角函数的关系;【突破】:熟悉三角公式,化切为弦;以及注意22sin cos sin cos 1,tan ,cot cos sin x xx x x x x x+===; 5.不等式的解集为( A )(A)()1,2- (B)()1,1- (C)()2,1- (D)()2,2-【解】:∵22x x -< ∴222x x -<-< 即222020x x x x ⎧-+>⎨--<⎩,12x Rx ∈⎧⎨-<<⎩, ∴()1,2x ∈- 故选A ;【点评】:此题重点考察绝对值不等式的解法;【突破】:准确进行不等式的转化去掉绝对值符号为解题的关键,可用公式法,平方法,特值验证淘汰法;6.直线3y x =绕原点逆时针旋转090,再向右平移1个单位,所得到的直线为( A )(A)1133y x =-+ (B)113y x =-+ (C)33y x =- (D)113y x =+【解】:∵直线3y x =绕原点逆时针旋转090的直线为13y x =-,从而淘汰(C),(D )又∵将13y x =-向右平移1个单位得()113y x =--,即1133y x =-+ 故选A ;【点评】:此题重点考察互相垂直的直线关系,以及直线平移问题;【突破】:熟悉互相垂直的直线斜率互为负倒数,过原点的直线无常数项;重视平移方法:“左加右减”; 7.ABC ∆的三内角,,A B C 的对边边长分别为,,a b c,若,2a A B ==,则cos B =( B )【解】:∵ABC ∆中2a A B ⎧=⎪⎨⎪=⎩∴sin sin sin 22sin cos A B A B B B ⎧=⎪⎨⎪==⎩∴cos B = 故选B ; 【点评】:此题重点考察解三角形,以及二倍角公式;【突破】:应用正弦定理进行边角互化,利用三角公式进行角的统一,达到化简的目的;在解三角形中,利用正余弦定理进行边角转化是解题的基本方法,在三角函数的化简求值中常要重视角的统一,函数的统一,降次思想的应用。
2008文科数学高考真题全国卷Ⅱ试卷答案.doc

2008年普通高等学校招生全国统一考试文科数学(必修+选修I)参考答案和评分参考评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要 考查内容比照评分参考制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和 难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题不给中间分.一、选择题1.C 2.B 3.D 4.C 5.C 6.D 7.A 8.B 9.A 10.B 11.B 12.C 提示:1、αα,0sin < 在第三或四象限,0tan >α,α在第一或三象限α∴为第三象限角2、}1,0,1{},21|{-=∈<≤-=⋂Z x x x N M3、555==d4、)(x f 为奇函数5、c a b x x e <<∴<<-∴<<-0ln 1116、当⎩⎨⎧=-=22y x 时,83min -=-=y x Z7、ax y 2'=,当1=x 时,122,2'=∴==a a a y 8、如图,,60,32oSAO SA =∠=则6,3,360sin =∴==⋅=AB AO SA SO o CDS636312=⨯=∴V 9、444)1()1()1(x x x -=+- ,x ∴的系数为414-=-C 10、)4sin(2cos sin )(π-=-=x x x x f )(x f ∴最大值为211、设1||=AB ,则3=AC ,13||||2-=-=CB AC a ,1||2==AB C ,21322+==∴ace 12、1O 与2O 的公共弦为AB ,球心为O,AB 中点 为C ,则四边形C OO O 21为矩形,所以OC AC AC OA OC O O ⊥===,1||,2|||,|||213||||||22=-=∴AC OA OC二、填空题13.2 14.420 15.216.两组相对侧面分别平行;一组相对侧面平行且全等;对角线交于一点;底面是平行四边形. 13、20)2(7)32(4)32,2(=∴=+-+∴++=+λλλλλλ ;14、42036310316=--C C C ; 15、设),(),(2211y x B y x A ,),(444122122121222x x y y x y x y -=-∴⎪⎩⎪⎨⎧==14121212=+=--y y x x y y AB ∴所在直线方程为22-=-x y 即x y =,又4,04212==⇒⎩⎨⎧==x x xy xy , 22||||211||24||2||12==∴==-=∆OF AB S OF x x AB ABF ;注:上面给出了四个充要条件.如果考生写出其他正确答案,同样给分. 三、解答题 17.解:(Ⅰ)由5cos 13A =-,得12sin 13A =,由3cos 5B =,得4sin 5B =. ···················· 2分所以16sin sin()sin cos cos sin 65C A B A B A B =+=+=. ········· 5分(Ⅱ)由正弦定理得45sin 13512sin 313BC B AC A ⨯⨯===. ·········· 8分所以ABC △的面积1sin 2S BC AC C =⨯⨯⨯1131652365=⨯⨯⨯83=.····· 10分 18.解:设数列{}n a 的公差为d ,则3410a a d d =-=-, 642102a a d d =+=+,1046106a a d d =+=+. ······················ 3分由3610a a a ,,成等比数列得23106a a a =,即2(10)(106)(102)d d d -+=+, 整理得210100d d -=,解得0d =或1d =. ······················· 7分 当0d =时,20420200S a ==. ··················· 9分 当1d =时,14310317a a d =-=-⨯=, 于是2012019202S a d ⨯=+207190330=⨯+=. ············12分 19.解:记12A A ,分别表示甲击中9环,10环,12B B ,分别表示乙击中8环,9环,A 表示在一轮比赛中甲击中的环数多于乙击中的环数,B 表示在三轮比赛中至少有两轮甲击中的环数多于乙击中的环数,12C C ,分别表示三轮中恰有两轮,三轮甲击中环数多于乙击中的环数.(Ⅰ)112122A A B A B A B =++, ·················· 2分112122()()P A P A B A B A B =++ 112122()()()P A B P A B P A B =++112122()()()()()()P A P B P A P B P A P B =++0.30.40.10.40.10.40.2=⨯+⨯+⨯=. ················ 6分 (Ⅱ)12B C C =+, ······················· 8分22213()[()][1()]30.2(10.2)0.096P C C P A P A =-=⨯⨯-=,332()[()]0.20.008P C P A ===,1212()()()()0.0960.0080.104P B P C C P C P C =+=+=+=. ······· 12分20.解法一:依题设,2AB =,1CE =.(Ⅰ)连结AC 交BD 于点F ,则BD AC ⊥.由三垂线定理知,1BD A C ⊥. ··················· 3分 在平面1A CA 内,连结EF 交1A C 于点G ,由于1AA ACFC CE== 故1Rt Rt A AC FCE △∽△,1AA C CFE ∠=∠,CFE ∠与1FCA ∠互余. 于是1A C EF ⊥.1A C 与平面BED 内两条相交直线BD EF ,都垂直,所以1A C ⊥平面BED . ······················ 6分 (Ⅱ)作GH DE ⊥,垂足为H ,连结1A H .由三垂线定理知1A H DE ⊥, 故1A HG ∠是二面角1A DE B --的平面角. ·············· 8分EF =CE CF CG EF ⨯==3EG ==. 13EG EF =,13EF FD GH DE ⨯=⨯=又1AC ==113A G A C CG =-=.11tan AG A HG HG∠== 所以二面角1A DE B --的大小为arctan ············ 12分 解法二:以D 为坐标原点,射线DA 为x 轴的正半轴, 建立如图所示直角坐标系D xyz -.AB CD E A 1B 1C 1D 1 FH G依题设,1(220)(020)(021)(204)B C E A ,,,,,,,,,,,.(021)(220)DE DB ==,,,,,,11(224)(204)AC DA =--=,,,,,. ······· 3分 (Ⅰ)因为10AC DB =,10AC DE =, 故1A C BD ⊥,1A C DE ⊥. 又DB DE D =,所以1A C ⊥平面DBE . ······················ 6分 (Ⅱ)设向量()x y z =,,n 是平面1DA E 的法向量,则DE ⊥n ,1DA ⊥n .故20y z +=,240x z +=.令1y =,则2z =-,4x =,(412)=-,,n . ············· 9分1AC <>,n 等于二面角1A DE B --的平面角, 11114cos 42A C A C A C<>==,n n n . 所以二面角1A DE B --的大小为arccos 42. ············ 12分 21.解:(Ⅰ)2()363(2)f x ax x x ax '=-=-.因为2x =是函数()y f x =的极值点,所以(2)0f '=,即6(22)0a -=,因此1a =. 经验证,当1a =时,2x =是函数()y f x =的极值点. ········· 4分 (Ⅱ)由题设,3222()336(3)3(2)g x ax x ax x ax x x x =-+-=+-+. 当()g x 在区间[02],上的最大值为(0)g 时,(0)(2)g g ≥,即02024a -≥.故得65a ≤. ·························· 9分反之,当65a ≤时,对任意[02]x ∈,,26()(3)3(2)5g x x x x x +-+≤23(210)5xx x =+- 3(25)(2)5xx x =+- 0≤,而(0)0g =,故()g x 在区间[02],上的最大值为(0)g .综上,a 的取值范围为65⎛⎤-∞ ⎥⎝⎦,. ·················· 12分22.(Ⅰ)解:依题设得椭圆的方程为2214x y +=,直线AB EF ,的方程分别为22x y +=,(0)y kx k =>. ········ 2分 如图,设001122()()()D x kx E x kx F x kx ,,,,,,其中12x x <, 且12x x ,满足方程22(14)4k x +=,故21x x =-=由6ED DF =知01206()x x x x -=-,得021215(6)77x x x x =+==;由D 在AB 上知0022x kx +=,得0212x k=+. 所以212k =+, 化简得2242560k k -+=,解得23k =或38k =. ······················· 6分 (Ⅱ)解法一:根据点到直线的距离公式和①式知,点E F ,到AB 的距离分别为1h ==2h==.··············9分又AB==,所以四边形AEBF的面积为121()2S AB h h=+1525(14k=+==≤当21k=,即当12k=时,上式取等号.所以S的最大值为····12分解法二:由题设,1BO=,2AO=.设11y kx=,22y kx=,由①得2x>,21y y=->,故四边形AEBF的面积为BEF AEFS S S=+△△222x y=+····························9分===当222x y=时,上式取等号.所以S的最大值为.········12分2008年普通高等学校招生全国统一考试(2全国Ⅱ卷)数学(文)试题答案解析:一、选择题 ( 本大题 共 12 题, 共计 60 分) 1、(5分) C 由sin α<0得α在三,四象限. tan α>0得α在一,三象限. 故α在第三象限.2、(5分) B 依题M={-2,-1,0,1},N={-1,0,1,2,3},从而M∩N={-1,0,1},故选B.3、(5分) D 由点到直线的距离公式知原点到已知直线的距离是.4、(5分) C∵f(x)=f(-x),∴f(x)=-x 是奇函数.∴f(x)的图象关于坐标原点对称. 5、(5分) C a=lnx,b=2lnx=lnx 2,c=ln 3x. ∵x∈(e -1,1),∴x>x 2. 故a >b,排除A 、B.∵e -1<x <1,∴-1<lnx <ln1=0. ∴lnx<ln 3x.∴a<c.故b <a <c,选C. 6、(5分) D 作出可行域.令z=0,则l 0:x-3y=0,平移l 0在点M(-2,2)处z 取到最小,最小值为-8.7、(5分) A y=ax2,y′=2ax,∴y′|x=1=2,∵切线与直线2x-y-6=0平行,∴2a=2,∴a=1.8、(5分) B作图,依题可知SO=2sin60°=2·=3,CO=2·cos60°=2·=.∴底面边长为.从而VS—ABCD =SABCD·SO=×()2×3=6.9、(5分) A(1-)4(1+)4=[(1-)(1+)]4=x4-4x3+6x2-4x+1, ∴x的系数为-4.10、(5分) B f(x)=sinx-cosx=sin(x-),故f(x)max=.11、(5分) B∵A、B为两焦点且双曲线过C点,∴|CA|-|CB|=2a,2c=a′.不妨设AB=BC=a′,则AC=a′.∴e==.12、(5分) C依题意有示意图截面示意图为其中AH 为公共弦长的一半,OA 为球半径,∴OH=.故选C.二、填空题 ( 本大题 共 4 题, 共计 20 分) 13、(5分) 2 λa +b =λ(1,2)+(2,3)=(λ+2,2λ+3), ∵λa +b 与c 共线,∴(λ+2)·(-7)-(2λ+3)·(-4)=0. 解出λ=2. 14、(5分) 420 N==420.15、(5分) 2 设A(x 1,y 1),B(x 2,y 2),∴y 12=4x 1, y 22=4x 2.两式相减得(y 1+y 2)(y 1-y 2)=4(x 1-x 2). 又y 1+y 2=2×2=4,∴,即k AB =1.∴lAB:y-2=x-2,即y=x.∴x2-4x=0.∴x1+x2=4,x1x2=0.∴|AB|===.点F到AB的距离d=.∴S△A BF=××=2.16、(5分) 两组相对侧面分别平行;一组相对侧面平行且全等;对角线交于一点;底面是平行四边形.注:上面给出了四个充要条件.如果考生写出其他正确答案,同样给分.三、解答题 ( 本大题共 6 题, 共计 70 分)17、(10分) 解:(Ⅰ)由,得,由,得.所以.(Ⅱ)由正弦定理得.所以的面积.18、(12分) 解:设数列的公差为,则,,.由成等比数列得,即,整理得,解得或.当时,.当时,,于是.19、(12分) 解:记分别表示甲击中9环,10环,分别表示乙击中8环,9环,表示在一轮比赛中甲击中的环数多于乙击中的环数,表示在三轮比赛中至少有两轮甲击中的环数多于乙击中的环数,分别表示三轮中恰有两轮,三轮甲击中环数多于乙击中的环数.(Ⅰ),.(Ⅱ),,,.20、(12分) 解法一:依题设,,.(Ⅰ)连结交于点,则.由三垂线定理知,.在平面内,连结交于点,由于,故,,与互余.于是.与平面内两条相交直线都垂直,所以平面.(Ⅱ)作,垂足为,连结.由三垂线定理知,故是二面角的平面角.,,.,.又,..所以二面角的大小为.解法二:以为坐标原点,射线为轴的正半轴,建立如图所示直角坐标系.依题设,.,.(Ⅰ)因为故,.又,所以平面.(Ⅱ)设向量是平面的法向量,则,.故,.令,则,,.等于二面角的平面角,.所以二面角的大小为.21、(12分) 解:(Ⅰ).因为是函数的极值点,所以,即,因此.经验证,当时,是函数的极值点.(Ⅱ)由题设,.当在区间上的最大值为时,,即.故得.反之,当时,对任意,,而,故在区间上的最大值为.综上,的取值范围为.22、(12分) 解:(Ⅰ)依题设得椭圆的方程为,直线的方程分别为,.如图,设,其中,且满足方程,故.①由知,得;由在上知,得.所以,化简得,解得或.(Ⅱ)解法一:根据点到直线的距离公式和①式知,点到的距离分别为,.又,所以四边形的面积为=,当,即当时,上式取等号.所以的最大值为.解法二:由题设,,.设,,由①得,,故四边形的面积为,当时,上式取等号.所以的最大值为.。
2008年四川高考文科数学word版含答案详解

2008年普通高等学校招生全国统一考试(四川)数 学(文史类)及详解详析一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、设集合U={1,2,3,4,5},A={1,2,3},B={2,3,4} ,则C U (A ∩B )=(A ){2,3} (B ) {1,4,5} (C ){4,5} (D ){1,5} 2、函数1ln(21),()2y x x =+>-的反函数是 (A )11()2x y e x R =- ∈ (B )21()x y e x R =- ∈ (C ) 1(1()2x y e x R =- ) ∈ (D )21()xy e x R =- ∈3、 设平面向量(3,5(2,1)a b = ) ,=-,则2a b -=(A )(7,3) (B )(7,7) (C )(1,7) (D )(1,3) 4、(tanx+cotx)cos 2x=(A )tanx (B )sinx (C )cosx (D )cotx 5、不等式2||2x x -<的解集为(A )(-1,2) (B )(-1,1) (C )(-2,1) (D )(-2,2) 6、将直线3y x =绕原点逆时针旋转90°,再向右平移1个单位,所得到的直线为(A )1133y x =-+ (B )113y x =-+ (C )33y x =- (D )31y x =+7、△ABC 的三个内角A 、B 、C 的对边边长分别是a b c 、、 ,若a =,A=2B ,则cosB=(A ) (B (C (D8、设M 是球O 的半径OP 的中点,分别过M 、O 作垂直于OP 的平面,截球面得到两个圆,则这两个圆的面积比值为(A )14(B )12(C )23(D )349、定义在R 上的函数()f x 满足:()(2)13,(1)2,f x f x f •+==则(99)f =(A )13 (B ) 2 (C )132(D )21310、设直线l α⊂平面,过平面α外一点A 且与l 、α都成30°角的直线有且只有(A )1条 (B )2条 (C )3条 (D )4条11、已知双曲线22:1916x y C -=的左右焦点分别为F 1、F 2 ,P 为C 的右支上一点,且||||212PF F F =,则△PF 1F 2 的面积等于(A )24 (B )36 (C )48 (D )9612、若三棱柱的一个侧面是边长为2的正方形,另外两个侧面都是有一个内角为60°的菱形,则该棱柱的体积为(A(B)(C)(D)第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分。
2008高考全国卷Ⅱ数学文科试卷含详细解答(全word版)080625

2008年普通高等学校招生全国统一考试文科数学(必修+选修I)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至10页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.不能答在试题卷上.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B = 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(012)kkn kk n P k C p p k n -=-= ,,,,一、选择题1.若sin 0α<且tan 0α>是,则α是( )A .第一象限角B . 第二象限角C . 第三象限角D . 第四象限角【答案】C【解析】sin 0α<,α在三、四象限;tan 0α>,α在一、三象限,∴选C2.设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-=Z 则,≤≤( ) A .{}01,B .{}101-,,C .{}012,,D .{}1012-,,, 【答案】B【解析】{}1,0,1,2--=M ,{}3,2,1,0,1-=N ,∴{}1,0,1-=N M 【高考考点】集合的运算,整数集的符号识别 3.原点到直线052=-+y x 的距离为( ) A .1B .3C .2D .5【答案】D【解析】52152=+-=d【高考考点】点到直线的距离公式 4.函数1()f x x x=-的图像关于( )A .y 轴对称B . 直线x y -=对称C . 坐标原点对称D . 直线x y =对称 【答案】C 【解析】1()f x x x=-是奇函数,所以图象关于原点对称【高考考点】函数奇偶性的性质5.若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( )A .a <b <cB .c <a <bC . b <a <cD . b <c <a【答案】C【解析】由0ln 111<<-⇒<<-x x e ,令x t ln =且取21-=t 知b <a <c6.设变量x y ,满足约束条件:222y x x y x ⎧⎪+⎨⎪-⎩,,.≥≤≥,则y x z 3-=的最小值为( )A .2-B .4-C .6-D .8- 【答案】D【解析】如图作出可行域,知可行域的顶点是A (-2,2)、B(32,32)及C(-2,-2) 于是8)(min -=A z7.设曲线2ax y =在点(1,a )处的切线与直线062=--y x 平行,则=a ( )A .1B .12C .12-D .1-【答案】A【解析】ax y 2'=,于是切线的斜率a y k x 2'1===,∴有122=⇒=a a8.正四棱锥的侧棱长为32,侧棱与底面所成的角为︒60,则该棱锥的体积为( ) A .3 B .6 C .9 D .18【答案】B【解析】高360sin 32=︒=h ,又因底面正方形的对角线等于32,∴底面积为 6332212=⨯⨯⨯=S ,∴体积63631=⨯⨯=V【备考提示】在底面积的计算时,要注意多思则少算9.44)1()1(x x +-的展开式中x 的系数是( )A .4-B .3-C .3D .4【答案】A【解析】41666141404242404-=-+=-+C C C C C C【易错提醒】容易漏掉1414C C 项或该项的负号10.函数x x x f cos sin )(-=的最大值为( ) A .1 B . 2 C .3D .2【答案】B【解析】)4sin(2cos sin )(π-=-=x x x x f ,所以最大值是2【高考考点】三角函数中化为一个角的三角函数问题【备考提示】三角函数中化为一个角的三角函数问题是三角函数在高考中的热点问题11.设A B C △是等腰三角形,120ABC ∠= ,则以A B ,为焦点且过点C 的双曲线的离心率为( )A .221+ B . 231+ C . 21+ D .31+【答案】B【解析】由题意BC c =2,所以c c AC 3260sin 220=⨯⨯=,由双曲线的定义,有c a c c BC AC a )13(2322-=⇒-=-=,∴231131+=-==ac e【高考考点】双曲线的有关性质,双曲线第一定义的应用12.已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于( ) A .1 B .2 C .3 D .2【答案】C【解析】设两圆的圆心分别为1O 、2O ,球心为O ,公共弦为AB ,其中点为E ,则21EO OO 为矩形,于是对角线OE O O =21,而3122222=-=-=AEOAOE ,∴321=O O【高考考点】球的有关概念,两平面垂直的性质2008年普通高等学校招生全国统一考试文科数学(必修+选修I)第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上. 13.设向量(12)(23)==,,,a b ,若向量λ+a b 与向量(47)=--,c 共线,则=λ . 【答案】 2【解析】λ+a b =)32,2(++λλ则向量λ+a b 与向量(47)=--,c 共线274322=⇒--=++⇔λλλ14.从10名男同学,6名女同学中选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的不同选法共有 种(用数字作答) 【答案】 420【解析】4202701501621026110=+=+C C C C 15.已知F 是抛物线24C y x =:的焦点,A B ,是C 上的两个点,线段AB 的中点为(22)M ,,则A B F △的面积等于 . 【答案】 2【解析】设过M 的直线方程为)2(2-=-x k y ,由0)1(444)2(22222=-+-⇒⎩⎨⎧=-=-k kx x k xy x k y ∴kx x 421=+,2221)1(4kk x x -=,由题意144=⇒=k k,于是直线方程为x y =421=+x x ,021=x x ,∴24=AB ,焦点F (1,0)到直线x y =的距离21=d∴A B F △的面积是216.平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:充要条件① ; 充要条件② . (写出你认为正确的两个充要条件)【答案】两组相对侧面分别平行;一组相对侧面平行且全等;对角线交于一点;底面是平行四边形.注:上面给出了四个充要条件.如果考生写出其他正确答案,同样给分. 三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) 在A B C △中,5cos 13A =-,3cos 5B =.(Ⅰ)求sin C 的值;(Ⅱ)设5B C =,求A B C △的面积.18.(本小题满分12分)等差数列{}n a 中,410a =且3610a a a ,,成等比数列,求数列{}n a 前20项的和20S . 19.(本小题满分12分)甲、乙两人进行射击比赛,在一轮比赛中,甲、乙各射击一发子弹.根据以往资料知,甲击中8环,9环,10环的概率分别为0.6,0.3,0.1,乙击中8环,9环,10环的概率分别为0.4,0.4,0.2. 设甲、乙的射击相互独立.(Ⅰ)求在一轮比赛中甲击中的环数多于乙击中环数的概率;(Ⅱ)求在独立的三轮比赛中,至少有两轮甲击中的环数多于乙击中环数的概率. 20.(本小题满分12分)如图,正四棱柱1111ABC D A B C D -中,124AA AB ==,点E 在1CC 上且EC E C 31=. (Ⅰ)证明:1A C ⊥平面BED ; (Ⅱ)求二面角1A D E B --的大小.21.(本小题满分12分)设a ∈R ,函数233)(x ax x f -=.(Ⅰ)若2=x 是函数)(x f y =的极值点,求a 的值;(Ⅱ)若函数()()()[02]g x f x f x x '=+∈,,,在0=x 处取得最大值,求a 的取值范围.22.(本小题满分12分)设椭圆中心在坐标原点,(20)(01)A B ,,,是它的两个顶点,直线)0(>=k kx y 与AB 相交于点D ,与椭圆相交于E 、F 两点.(Ⅰ)若6ED DF =,求k 的值; (Ⅱ)求四边形AEBF 面积的最大值.AB CD EA 1B 1C 1D 12008年普通高等学校招生全国统一考试 文科数学试题(必修+选修Ⅰ)参考答案和评分参考评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要 考查内容比照评分参考制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题不给中间分.一、选择题1.C 2.B 3.D 4.C 5.C 6.D 7.A 8.B 9.A 10.B 11.B 12.C二、填空题13.2 14.420 15.216.两组相对侧面分别平行;一组相对侧面平行且全等;对角线交于一点;底面是平行四边形. 注:上面给出了四个充要条件.如果考生写出其他正确答案,同样给分. 三、解答题 17.解:(Ⅰ)由5cos 13A =-,得12sin 13A =,由3cos 5B =,得4sin 5B =.······················································································· 2分所以16sin sin()sin cos cos sin 65C A B A B A B =+=+=. ·········································· 5分(Ⅱ)由正弦定理得45sin 13512sin 313BC BAC A ⨯⨯===. ················································· 8分所以A B C △的面积1sin 2S B C A C C =⨯⨯⨯1131652365=⨯⨯⨯83=. ·························10分18.解:设数列{}n a 的公差为d ,则3410a a d d =-=-, 642102a a d d =+=+,1046106a a d d =+=+. ···························································································· 3分由3610a a a ,,成等比数列得23106a a a =,即2(10)(106)(102)d d d -+=+, 整理得210100d d -=,解得0d =或1d =. ···································································································· 7分 当0d =时,20420200S a ==. ················································································· 9分 当1d =时,14310317a a d =-=-⨯=, 于是2012019202S a d ⨯=+207190330=⨯+=.······················································12分 19.解:记12A A ,分别表示甲击中9环,10环,12B B ,分别表示乙击中8环,9环,A 表示在一轮比赛中甲击中的环数多于乙击中的环数,B 表示在三轮比赛中至少有两轮甲击中的环数多于乙击中的环数,12C C ,分别表示三轮中恰有两轮,三轮甲击中环数多于乙击中的环数.(Ⅰ)112122A A B A B A B =++ , ············································································· 2分112122()()P A P A B A B A B =++ 112122()()()P A B P A B P A B =++112122()()()()()()P A P B P A P B P A P B =++0.30.40.10.40.10.40.2=⨯+⨯+⨯=. ······································································ 6分(Ⅱ)12B C C =+,···································································································· 8分22213()[()][1()]30.2(10.2)0.096P C C P A P A =-=⨯⨯-=, 332()[()]0.20.008P C P A ===,1212()()()()0.0960.0080.104P B P C C P C P C =+=+=+=. ·································12分20.解法一:依题设,2A B =,1C E =.(Ⅰ)连结A C 交B D 于点F ,则B D A C ⊥.由三垂线定理知,1BD A C ⊥. ···················································································· 3分 在平面1A C A 内,连结E F 交1A C 于点G ,由于1A A A C F CC E==故1R t R t A AC FC E △∽△,1AA C C FE ∠=∠,C F E ∠与1FC A ∠互余.于是1A C EF ⊥.1A C 与平面BED 内两条相交直线B D E F ,都垂直,所以1A C ⊥平面BED .······························································································· 6分 (Ⅱ)作G H D E ⊥,垂足为H ,连结1A H .由三垂线定理知1A H D E ⊥,故1A HG ∠是二面角1A D E B --的平面角. ································································ 8分EF ==C E C F C G E F ⨯==,3EG ==.13E G E F=,13E F F D G H D E⨯=⨯=又1A C ==,113A G A C C G =-=.11tan A G A H G H G∠==.所以二面角1A D E B --的大小为arctan ··························································12分 解法二:以D 为坐标原点,射线D A 为x 轴的正半轴, 建立如图所示直角坐标系D xyz -.依题设,1(220)(020)(021)(204)B C E A ,,,,,,,,,,,.(021)(220)D E D B ==,,,,,,11(224)(204)A C DA =--= ,,,,,. ·································· 3分 (Ⅰ)因为10A C DB = ,10A C DE =,故1A C BD ⊥,1A C D E ⊥.ABC D E A 1B 1C 1D 1 FH G又DB DE D = ,所以1A C ⊥平面D BE . ······························································································· 6分 (Ⅱ)设向量()x y z =,,n 是平面1D A E 的法向量,则DE ⊥n ,1D A ⊥ n .故20y z +=,240x z +=.令1y =,则2z =-,4x =,(412)=-,,n . ····························································· 9分 1A C <> ,n 等于二面角1A D E B --的平面角,111cos 42A C A C A C<>==,n n n . 所以二面角1A D E B --的大小为arccos 42. ·························································12分21.解:(Ⅰ)2()363(2)f x ax x x ax '=-=-.因为2x =是函数()y f x =的极值点,所以(2)0f '=,即6(22)0a -=,因此1a =. 经验证,当1a =时,2x =是函数()y f x =的极值点. ··············································· 4分 (Ⅱ)由题设,3222()336(3)3(2)g x ax x ax x ax x x x =-+-=+-+. 当()g x 在区间[02],上的最大值为(0)g 时,(0)(2)g g ≥,即02024a -≥. 故得65a ≤. ·············································································································· 9分反之,当65a ≤时,对任意[02]x ∈,,26()(3)3(2)5g x x x x x +-+≤23(210)5x x x =+- 3(25)(2)5x x x =+-0≤,而(0)0g =,故()g x 在区间[02],上的最大值为(0)g .综上,a 的取值范围为65⎛⎤-∞ ⎥⎝⎦,. ···············································································12分22.(Ⅰ)解:依题设得椭圆的方程为2214xy +=,直线A B E F ,的方程分别为22x y +=,(0)y kx k =>. ··········································· 2分 如图,设001122()()()D x kx E x kx F x kx ,,,,,,其中12x x <, 且12x x ,满足方程22(14)4k x +=,故21x x =-=.①由6ED DF = 知01206()x x x x -=-,得021215(6)77x x x x =+==;由D 在A B 上知0022x kx +=,得0212x k=+.所以212k=+化简得2242560k k -+=, 解得23k =或38k =. ··································································································· 6分(Ⅱ)解法一:根据点到直线的距离公式和①式知,点E F ,到A B 的距离分别为1h ==2h ==. ······························································· 9分又AB ==AEBF 的面积为121()2S A B h h =+12==2008年普通高等学校招生全国统一考试第 11 页 共 11 页=≤当21k =,即当12k =时,上式取等号.所以S的最大值为 ·····························12分 解法二:由题设,1BO =,2A O =.设11y kx =,22y kx =,由①得20x >,210y y =->,故四边形AEBF 的面积为BEF AEF S S S =+△△222x y =+···················································································································· 9分==≤=当222x y =时,上式取等号.所以S的最大值为. ··············································12分。
2008年高考真题精品解析2008年普通高等学校招生全国统一考试(四川延考卷)(文科)2100

2008年高考真题精品解析2008年普通高等学校招生全国统一考试(四川延考卷)(文科)测试题 2019.91,若点到双曲线,则双曲线的离心率为(A(B C)(D)2,在一次读书活动中,一同学从4本不同的科技书和2本不同的文艺书中任选3本,则所选的书中既有科技书又有文艺书的概率为(A)(B)(C)(D)3,过点的直线与圆相交于两点,则的最小值为(A)(B)(C)D)4,已知两个单位向量与的夹角为,则的充要条件是(A)(B)(C)(D)5,设函数的图象关于直线及直线对称,且时,,则(A)(B)(C)(D)6,一个正方体的展开图如图所示,为原正方体的顶点,为原正方体一条棱的中点。
在原来的正方体中,与所成角的余弦值为(2,0)P22221x ya b-=15122345(1,1)22(2)(3)9x y-+-=,A B||AB45a b135︒||1a bλ+>λ∈(λ∈(,0)(2,)λ∈-∞+∞(,(2,)λ∈-∞+∞()y f x=()x R∈0x=1x=[0,1]x∈2()f x x=3()2f-=12143494,,B C D ACD AB(A )(B ) (C ) (D )7,在△中,内角对边的边长分别是,已知。
(Ⅰ)若,且为钝角,求内角与的大小; (Ⅱ)若,求△面积的最大值。
8,一条生产线上生产的产品按质量情况分为三类:类、类、类。
检验员定时从该生产线上任取2件产品进行一次抽检,若发现其中含有类产品或2件都是类产品,就需要调整设备,否则不需要调整。
已知该生产线上生产的每件产品为类品,类品和类品的概率分别为,和,且各件产品的质量情况互不影响。
(Ⅰ)求在一次抽检后,设备不需要调整的概率;(Ⅱ)若检验员一天抽检3次,以表示一天中需要调整设备的次数,求的分布列和数学期望。
9,如图,一张平行四边形的硬纸片中,,。
沿它的对角线把△折起,使点到达平面外点的位置。
(Ⅰ)证明:平面平面;(Ⅱ)如果△为等腰三角形,求二面角的大小。
2008年高考试题——数学文(四川卷)

2008年普通高等学校招生全国统一考试(四川卷)数 学(文科)及参考答案本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3至第4页。
全卷满分150分,考试时间120分钟。
考生注意事项:1. 答题前,务必在试题卷、答题卡规定的地方填写自己的座位号、姓名,并认真核对答题卡上所粘贴的条形码中“座位号、姓名、科类”与本人座位号、姓名、科类是否一致。
2. 答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动、用橡皮擦干净后,再选涂其他答案标号。
3. 答第Ⅱ卷时,必须用0.5毫米黑色墨水签字笔在答题卡上.....书写。
在试题卷上作答无效.........。
4. 考试结束,监考员将试题卷和答题卡一并收回。
参考公式:如果事件A 、B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件A 、B 相互独立,那么 其中R 表示球的半径()()()P A B P A P B ⋅=⋅ 球的体积公式如果事件A 在一次实验中发生的概率是p ,那么 343V R π=n 次独立重复实验中事件A 恰好发生k 次的概率 其中R 表示球的半径()()()1,0,1,2,,n kk kn n P k C p p k n -=-=第Ⅰ卷一.选择题:1.设集合{}{}{}1,2,3,4,5,1,2,3,2,3,4U A B ===,则()U A B = ð( B )(A){}2,3 (B){}1,4,5 (C){}4,5 (D){}1,5 【解】:∵{}{}1,2,3,2,3,4A B == ∴{}2,3A B = 又∵{}1,2,3,4,5U = ∴(){}1,4,5U A B = ð 故选B ; 2.函数()1ln 212y x x ⎛⎫=+>- ⎪⎝⎭的反函数是( C ) (A)()112xy e x R =-∈ (B)()21x y e x R =-∈ (C)()()112xy e x R =-∈ (D)()21xy e x R =-∈【解】:∵由()ln 21y x =+反解得()112y x e =- ∴()112x y e =- 从而淘汰(B)、(D) 又∵原函数定义域为12x >- ∴反函数值域为12y >- 故选C ;【考点】:此题重点考察求反函数的方法,考察原函数与反函数的定义域与值域的互换性;【突破】:反解得解析式,或利用原函数与反函数的定义域与值域的互换对选项进行淘汰;3.设平面向量()()3,5,2,1a b ==-,则2a b -= ( A )(A)()7,3 (B)()7,7 (C)()1,7 (D)()1,3【解】:∵()()3,5,2,1a b ==- ∴()()()()23,522,1345273a b -=--=+-=,,故选C ; 【考点】:此题重点考察向量加减、数乘的坐标运算; 【突破】:准确应用向量的坐标运算公式是解题的关键; 4.()2tan cot cos x x x +=( D )(A)tan x (B)sin x (C)cos x (D)cot x【解】:∵()22222sin cos sin cos tan cot cos cos cos cos sin sin cos x x x x x x x x x x x x x +⎛⎫+=+=⋅ ⎪⎝⎭cos cot sin xx x== 故选D ; 【点评】:此题重点考察各三角函数的关系;【突破】:熟悉三角公式,化切为弦;以及注意22sin cos sin cos 1,tan ,cot cos sin x xx x x x x x+===; 5.不等式的解集为( A )(A)()1,2- (B)()1,1- (C)()2,1- (D)()2,2-【解】:∵22x x -< ∴222x x -<-< 即222020x x x x ⎧-+>⎨--<⎩,12x Rx ∈⎧⎨-<<⎩, ∴()1,2x ∈- 故选A ;【点评】:此题重点考察绝对值不等式的解法; 【突破】:准确进行不等式的转化去掉绝对值符号为解题的关键,可用公式法,平方法,特值验证淘汰法;6.直线3y x =绕原点逆时针旋转090,再向右平移1个单位,所得到的直线为( A )(A)1133y x =-+ (B)113y x =-+ (C)33y x =- (D)113y x =+【解】:∵直线3y x =绕原点逆时针旋转090的直线为13y x =-,从而淘汰(C),(D ) 又∵将13y x =-向右平移1个单位得()113y x =--,即1133y x =-+ 故选A ;【点评】:此题重点考察互相垂直的直线关系,以及直线平移问题;【突破】:熟悉互相垂直的直线斜率互为负倒数,过原点的直线无常数项;重视平移方法:“左加右减”; 7.ABC ∆的三内角,,A B C 的对边边长分别为,,a b c ,若,2a A B ==,则c o s B =( B )(A)3(B)4(C)5(D)6【解】:∵ABC ∆中2a A B ⎧=⎪⎨⎪=⎩∴sin sin sin 22sin cos A B A B B B⎧=⎪⎨⎪==⎩∴cos B = 故选B ; 【点评】:此题重点考察解三角形,以及二倍角公式;【突破】:应用正弦定理进行边角互化,利用三角公式进行角的统一,达到化简的目的;在解三角形中,利用正余弦定理进行边角转化是解题的基本方法,在三角函数的化简求值中常要重视角的统一,函数的统一,降次思想的应用。
2008高考全国卷Ⅱ数学文科试卷含详细解答(全word版)080625

2008年普通高等学校招生全国统一考试文科数学(必修+选修I)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至10页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.不能答在试题卷上.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B = 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(012)k kn k k n P k C p p k n -=-= ,,,,一、选择题1.若sin 0α<且tan 0α>是,则α是( ) A .第一象限角 B . 第二象限角 C . 第三象限角 D . 第四象限角 【答案】C【解析】sin 0α<,α在三、四象限;tan 0α>,α在一、三象限,∴选C2.设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-=Z 则,≤≤( )A .{}01,B .{}101-,,C .{}012,,D .{}1012-,,, 【答案】B【解析】{}1,0,1,2--=M ,{}3,2,1,0,1-=N ,∴{}1,0,1-=N M 【高考考点】集合的运算,整数集的符号识别 3.原点到直线052=-+y x 的距离为( ) A .1B .3C .2D .5【答案】D【解析】52152=+-=d【高考考点】点到直线的距离公式4.函数1()f x x x=-的图像关于( ) A .y 轴对称 B . 直线x y -=对称 C . 坐标原点对称 D . 直线x y =对称【答案】C 【解析】1()f x x x=-是奇函数,所以图象关于原点对称 【高考考点】函数奇偶性的性质5.若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( ) A .a <b <cB .c <a <bC . b <a <cD . b <c <a【答案】C【解析】由0ln 111<<-⇒<<-x x e ,令x t ln =且取21-=t 知b <a <c 6.设变量x y ,满足约束条件:222y x x y x ⎧⎪+⎨⎪-⎩,,.≥≤≥,则y x z 3-=的最小值为( )A .2-B .4-C .6-D .8- 【答案】D【解析】如图作出可行域,知可行域的顶点是A (-2,2)、B(32,32)及C(-2,-2) 于是8)(m in -=A z7.设曲线2ax y =在点(1,a )处的切线与直线062=--y x 平行,则=a ( ) A .1B .12C .12-D .1-【答案】A【解析】ax y 2'=,于是切线的斜率a y k x 2'1===,∴有122=⇒=a a8.正四棱锥的侧棱长为32,侧棱与底面所成的角为︒60,则该棱锥的体积为( ) A .3 B .6C .9D .18【答案】B【解析】高360sin 32=︒=h ,又因底面正方形的对角线等于32,∴底面积为 6332212=⨯⨯⨯=S ,∴体积63631=⨯⨯=V 【备考提示】在底面积的计算时,要注意多思则少算9.44)1()1(x x +-的展开式中x 的系数是( )A .4-B .3-C .3D .4【答案】A【解析】41666141404242404-=-+=-+C C C C C C 【易错提醒】容易漏掉1414C C 项或该项的负号 10.函数x x x f cos sin )(-=的最大值为( ) A .1 B .2 C .3D .2【答案】B【解析】)4sin(2cos sin )(π-=-=x x x x f ,所以最大值是2【高考考点】三角函数中化为一个角的三角函数问题【备考提示】三角函数中化为一个角的三角函数问题是三角函数在高考中的热点问题11.设ABC △是等腰三角形,120ABC ∠=,则以A B ,为焦点且过点C 的双曲线的离心率为( )A .221+ B .231+ C . 21+ D .31+【答案】B【解析】由题意BC c =2,所以c c AC 3260sin 220=⨯⨯=,由双曲线的定义,有c a c c BC AC a )13(2322-=⇒-=-=,∴231131+=-==ac e 【高考考点】双曲线的有关性质,双曲线第一定义的应用12.已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于( ) A .1 B .2C .3D .2【答案】C【解析】设两圆的圆心分别为1O 、2O ,球心为O ,公共弦为AB ,其中点为E ,则21EO OO 为矩形,于是对角线OE O O =21,而3122222=-=-=AE OA OE ,∴321=O O【高考考点】球的有关概念,两平面垂直的性质2008年普通高等学校招生全国统一考试文科数学(必修+选修I)第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上. 13.设向量(12)(23)==,,,a b ,若向量λ+a b 与向量(47)=--,c 共线,则=λ . 【答案】 2【解析】λ+a b =)32,2(++λλ则向量λ+a b 与向量(47)=--,c 共线274322=⇒--=++⇔λλλ14.从10名男同学,6名女同学中选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的不同选法共有 种(用数字作答) 【答案】 420【解析】4202701501621026110=+=+C C C C15.已知F 是抛物线24C y x =:的焦点,A B ,是C 上的两个点,线段AB 的中点为(22)M ,,则ABF △的面积等于 . 【答案】 2【解析】设过M 的直线方程为)2(2-=-x k y ,由0)1(444)2(22222=-+-⇒⎩⎨⎧=-=-k kx x k xy x k y ∴k x x 421=+,2221)1(4k k x x -=,由题意144=⇒=k k ,于是直线方程为x y =421=+x x ,021=x x ,∴24=AB ,焦点F (1,0)到直线x y =的距离21=d∴ABF △的面积是216.平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:充要条件① ; 充要条件② . (写出你认为正确的两个充要条件)【答案】两组相对侧面分别平行;一组相对侧面平行且全等;对角线交于一点;底面是平行四边形.注:上面给出了四个充要条件.如果考生写出其他正确答案,同样给分.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) 在ABC △中,5cos 13A =-,3cos 5B =. (Ⅰ)求sinC 的值;(Ⅱ)设5BC =,求ABC △的面积.18.(本小题满分12分)等差数列{}n a 中,410a =且3610a a a ,,成等比数列,求数列{}n a 前20项的和20S .19.(本小题满分12分)甲、乙两人进行射击比赛,在一轮比赛中,甲、乙各射击一发子弹.根据以往资料知,甲击中8环,9环,10环的概率分别为0.6,0.3,0.1,乙击中8环,9环,10环的概率分别为0.4,0.4,0.2. 设甲、乙的射击相互独立.(Ⅰ)求在一轮比赛中甲击中的环数多于乙击中环数的概率;(Ⅱ)求在独立的三轮比赛中,至少有两轮甲击中的环数多于乙击中环数的概率. 20.(本小题满分12分) 如图,正四棱柱1111ABCD A B C D -中,124AA AB ==,点E 在1CC 上且EC E C 31=.(Ⅰ)证明:1AC ⊥平面BED ; (Ⅱ)求二面角1A DE B --的大小. 21.(本小题满分12分)设a ∈R ,函数233)(x ax x f -=.(Ⅰ)若2=x 是函数)(x f y =的极值点,求a 的值;(Ⅱ)若函数()()()[02]g x f x f x x '=+∈,,,在0=x 处取得最大值,求a 的取值范围. 22.(本小题满分12分)设椭圆中心在坐标原点,(20)(01)A B ,,,是它的两个顶点,直线)0(>=k kx y 与AB 相交于点D ,与椭圆相交于E 、F 两点.(Ⅰ)若6ED DF =,求k 的值;(Ⅱ)求四边形AEBF 面积的最大值.AB CD EA 1B 1C 1D 12008年普通高等学校招生全国统一考试 文科数学试题(必修+选修Ⅰ)参考答案和评分参考评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要 考查内容比照评分参考制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题不给中间分.一、选择题1.C 2.B 3.D 4.C 5.C 6.D 7.A 8.B 9.A 10.B 11.B 12.C 二、填空题13.2 14.420 15.216.两组相对侧面分别平行;一组相对侧面平行且全等;对角线交于一点;底面是平行四边形. 注:上面给出了四个充要条件.如果考生写出其他正确答案,同样给分. 三、解答题 17.解:(Ⅰ)由5cos 13A =-,得12sin 13A =, 由3cos 5B =,得4sin 5B =. ······························································································· 2分所以16sin sin()sin cos cos sin 65C A B A B A B =+=+=. ··············································· 5分(Ⅱ)由正弦定理得45sin 13512sin 313BC B AC A ⨯⨯===. ······················································ 8分 所以ABC △的面积1sin 2S BC AC C =⨯⨯⨯1131652365=⨯⨯⨯83=. ··························· 10分 18.解:设数列{}n a 的公差为d ,则3410a a d d =-=-, 642102a a d d =+=+,1046106a a d d =+=+. ····································································································· 3分由3610a a a ,,成等比数列得23106a a a =,即2(10)(106)(102)d d d -+=+, 整理得210100d d -=,解得0d =或1d =. ············································································································· 7分 当0d =时,20420200S a ==. ························································································· 9分 当1d =时,14310317a a d =-=-⨯=, 于是2012019202S a d ⨯=+207190330=⨯+=. ·························································· 12分 19.解:记12A A ,分别表示甲击中9环,10环,12B B ,分别表示乙击中8环,9环,A 表示在一轮比赛中甲击中的环数多于乙击中的环数,B 表示在三轮比赛中至少有两轮甲击中的环数多于乙击中的环数,12C C ,分别表示三轮中恰有两轮,三轮甲击中环数多于乙击中的环数.(Ⅰ)112122A A B A B A B =++ , ···················································································· 2分112122()()P A P A B A B A B =++ 112122()()()P A B P A B P A B =++112122()()()()()()P A P B P A P B P A P B =++0.30.40.10.40.10.40.2=⨯+⨯+⨯=. ············································································· 6分 (Ⅱ)12B C C =+, ············································································································· 8分22213()[()][1()]30.2(10.2)0.096P C C P A P A =-=⨯⨯-=, 332()[()]0.20.008P C P A ===,1212()()()()0.0960.0080.104P B P C C P C P C =+=+=+=. ···································· 12分20.解法一:依题设,2AB =,1CE =.(Ⅰ)连结AC 交BD 于点F ,则BD AC ⊥.由三垂线定理知,1BD AC ⊥. ···························································································· 3分 在平面1A CA 内,连结EF 交1AC 于点G ,由于1AA ACFC CE==故1Rt Rt A AC FCE △∽△,1AAC CFE ∠=∠, CFE ∠与1FCA ∠互余.于是1AC EF ⊥. 1AC 与平面BED 内两条相交直线BDEF ,都垂直, 所以1AC ⊥平面BED .········································································································ 6分 (Ⅱ)作GH DE ⊥,垂足为H ,连结1A H .由三垂线定理知1A H DE ⊥,故1A HG ∠是二面角1A DE B --的平面角. ······································································ 8分EF ==CE CF CG EF ⨯==,EG ==13EG EF =,13EF FD GH DE ⨯=⨯=又1A C ==11AG AC CG =-=11tan AG A HG HG∠== 所以二面角1A DE B --的大小为arctan ······························································· 12分 解法二:以D 为坐标原点,射线DA 为x 轴的正半轴, 建立如图所示直角坐标系D xyz -.依题设,1(220)(020)(021)(204)B C E A ,,,,,,,,,,,.(021)(220)DE DB ==,,,,,,11(224)(204)AC DA =--= ,,,,,. ······································ 3分 (Ⅰ)因为10AC DB = ,10AC DE =, 故1AC BD ⊥,1AC DE ⊥. 又DB DE D = ,AB CD EA 1B 1C 1D 1 FH G所以1AC ⊥平面DBE . ········································································································ 6分 (Ⅱ)设向量()x y z =,,n 是平面1DA E 的法向量,则DE ⊥n ,1DA ⊥ n .故20y z +=,240x z +=.令1y =,则2z =-,4x =,(412)=-,,n . ··································································· 9分 1AC <> ,n 等于二面角1A DE B --的平面角,111cos 42AC AC AC <>==,n n n . 所以二面角1A DE B --的大小为arccos 42······························································ 12分 21.解:(Ⅰ)2()363(2)f x ax x x ax '=-=-.因为2x =是函数()y f x =的极值点,所以(2)0f '=,即6(22)0a -=,因此1a =. 经验证,当1a =时,2x =是函数()y f x =的极值点. ···················································· 4分 (Ⅱ)由题设,3222()336(3)3(2)g x ax x ax x ax x x x =-+-=+-+. 当()g x 在区间[02],上的最大值为(0)g 时,(0)(2)g g ≥,即02024a -≥.故得65a ≤. ························································································································· 9分 反之,当65a ≤时,对任意[02]x ∈,,26()(3)3(2)5g x x x x x +-+≤23(210)5xx x =+- 3(25)(2)5xx x =+- 0≤,而(0)0g =,故()g x 在区间[02],上的最大值为(0)g .综上,a 的取值范围为65⎛⎤-∞ ⎥⎝⎦,. ······················································································ 12分22.(Ⅰ)解:依题设得椭圆的方程为2214x y +=,直线AB EF ,的方程分别为22x y +=,(0)y kx k =>. ················································ 2分 如图,设001122()()()D x kx E x kx F x kx ,,,,,,其中12x x <, 且12x x ,满足方程22(14)4k x +=,故21x x =-=由6ED DF = 知01206()x x x x -=-,得021215(6)77x x x x =+==;由D 在AB 上知0022x kx +=,得0212x k=+. 所以212k =+,化简得2242560k k -+=,解得23k =或38k =. ············································································································ 6分 (Ⅱ)解法一:根据点到直线的距离公式和①式知,点E F ,到AB 的距离分别为1h ==2h ==. ····································································· 9分又AB ==,所以四边形AEBF 的面积为121()2S AB h h =+ 12==第 11 页 共 11 页=≤当21k =,即当12k =时,上式取等号.所以S的最大值为 ······························· 12分 解法二:由题设,1BO =,2AO =.设11y kx =,22y kx =,由①得20x >,210y y =->,故四边形AEBF 的面积为BEF AEF S S S =+△△222x y =+······························································································································· 9分===当222x y =时,上式取等号.所以S的最大值为 ·················································· 12分。
2008高考全国卷Ⅱ数学文科试卷含答案(全word版)-推荐下载

A.1
B. 2
C.3
C. 3
D.18
11.设 △ABC 是等腰三角形, ABC 120 ,则以 A,B 为焦点且过点 C 的双曲线的离
心率为( )
1 2
A.
2
1 3
B.
2
C. 1 2
12.已知球的半径为 2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为 2,则两圆的圆心距等于( )
;
.
19.(本小题满分 12 分) 甲、乙两人进行射击比赛,在一轮比赛中,甲、乙各射击一发子弹.根据以往资料知,甲 击中 8 环,9 环,10 环的概率分别为 0.6,0.3,0.1,乙击中 8 环,9 环,10 环的概率分别 为 0.4,0.4,0.2. 设甲、乙的射击相互独立. (Ⅰ)求在一轮比赛中甲击中的环数多于乙击中环数的概率; (Ⅱ)求在独立的三轮比赛中,至少有两轮甲击中的环数多于乙击中环数的概率.
A.1
B. 3
C.2
C.0,1 2,
D. 5
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2008年普通高等学校招生全国统一考试(四川延考卷)文 科一、选择题:本大题共12小题,每小题5分,共60分.每小题只有一个正确选项. 1.集合{1,0,1}A =-,A 的子集中,含有元素0的子集共有( )A .2个B .4个C .6个D .8个 2.函数1lg y x x =-+的定义域为( )A .(0,)+∞B .(,1]-∞C .(,0)[1,)-∞+∞D .(0,1]3.41(1)(1)x x++的展开式中含2x 项的系数为( )A .4B .5C .10D .12 4.不等式21x -<的解集为( )A .{|13}x x <<B .{|02}x x <<C .{|12}x x <<D .{|23}x x << 5.已知1tan 2α=,则cos sin cos sin αααα+=+( ) A .2 B .2- C .3 D .3-6.一个正三棱锥的底面边长等于一个球的半径,该正三棱锥的高等于这个球的直径,则球的体积与正三棱锥体积的比值为( ) A .833π B .33π C .32π D .83π 7.若点(2,0)P 到双曲线22221x y a b-=的一条渐近线的距离为2,则双曲线的离心率为( )A .2B .3C .22D .238.在一次读书活动中,一同学从4本不同的科技书和2本不同的文艺书中任选3本,则所选的书中既有科技书又有文艺书的概率为( )A .15B .12C .23D .459.过点(0,1)的直线与圆224x y +=相交于A ,B 两点,则AB 的最小值为( )A .2B .23C .3D .2510.已知两个单位向量a 与b 的夹角为3π,则a b λ+ 与a b λ- 互相垂直的充要条件是( )A .32λ=-或32λ= B .12λ=-或12λ= C .1λ=-或1λ= D .λ为任意实数11.设函数()y f x =()x R ∈的图像关于直线0x =及直线1x =对称,且[0,1]x ∈时,2()f x x =,则3()2f -=( )A .12 B .14 C .34 D .9412.在正方体1111ABCD A BC D -中,E 是棱11A B 的中点,则1A B 与1D E 所成角的余弦值为( ) A .510 B .1010 C .55 D .105二、填空题:本大题共4小题,每小题4分,共16分. 13.函数11x y e +=-()x R ∈的反函数为_____________________. 14.函数2()3sin cos f x x x =-的最大值是____________. 15.设等差数列{}n a 的前n 项和为n S ,且55S a =.若40a ≠,则74a a =__________. 16.已知90AOB ∠=︒,C 为空间中一点,且60AOC BOC ∠=∠=︒,则直线OC 与平面AOB 所成角的正弦值为___________.三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)在ABC ∆中,内角A ,B ,C 对边的边长分别是a ,b ,c ,已知2222a c b +=.(Ⅰ)若4B π=,且A 为钝角,求内角A 与C 的大小;(Ⅱ)求sin B 的最大值.18.(本小题满分12分)一条生产线上生产的产品按质量情况分为三类:A 类、B 类、C 类.检验员定时从该生产线上任取2件产品进行一次抽检,若发现其中含有C 类产品或2件都是B 类产品,就需要调整设备,否则不需要调整.已知该生产线上生产的每件产品为A 类品,B 类品和C 类品的概率分别为0.9,0.05和0.05,且各件产品的质量情况互不影响.(Ⅰ)求在一次抽检后,设备不需要调整的概率;(Ⅱ)若检验员一天抽检3次,求一天中至少有一次需要调整设备的概率.19.(本小题满分12分)如图,一张平行四边形的硬纸片0ABC D 中,1AD BD ==,2AB =.沿它的对角线BD 把0BDC ∆折起,使点0C 到达平面0ABC D 外点C 的位置. (Ⅰ)证明:平面0ABC D ⊥平面0CBC ; (Ⅱ)当二面角A BD C --为120︒时,求AC 的长20.(本小题满分12分)在数列{}n a 中,11a =,2112(1)n n a a n+=+⋅.(Ⅰ)证明数列2{}n an 是等比数列,并求{}n a 的通项公式; (Ⅱ)令112n n n b a a +=-,求数列{}n b 的前n 项和n S ;(Ⅲ)求数列{}n a 的前n 项和n T .21.(本小题满分12分)已知椭圆1C 的中心和抛物线2C 的顶点都在坐标原点O ,1C 和2C 有公共焦点F ,点F 在x 轴正半轴上,且1C 的长轴长、短轴长及点F 到1C 右准线的距离成等比数列.(Ⅰ)当2C 的准线与1C 右准线间的距离为15时,求1C 及2C 的方程;(Ⅱ)设过点F 且斜率为1的直线l 交1C 于P ,Q 两点,交2C 于M ,N 两点.当8MN =时,求PQ 的值.22.(本小题满分14分)设函数32()2f x x x x =--+. (Ⅰ)求()f x 的单调区间和极值;(Ⅱ)若当[1,2]x ∈-时,3()3af x -≤≤,求a b -的最大值.2008年普通高等学校招生全国统一考试(四川延考卷)文 科参考答案一、选择题:本大题共12小题,每小题5分,共60分.每小题只有一个正确选项. 1.解:A 的子集共328=个,含有元素0的和不含元素0的子集各占一半,有4个.选B2.解:选D .由100x x -≥⎧⎨>⎩01x ⇒<≤. 3.解: 选C .41223344411(1)(1)(1)(1)x C x C x C x x x++=+++++ ,其展开式中含2x 项的系数为234410C C +=.4.解:选A .21x -<121x ⇔-<-<13x ⇔<<. 5.解:选C .cos sin 1tan 3cos sin 1tan αααααα++==+-6.解: 设球的半径为r 3143V r π⇒=;正三棱锥的底面面积234S r =,2h r =,2321332346V r r r ⇒=⨯⨯=。
所以 12833V V π=,选A 7.解:设过一象限的渐近线倾斜角为α2sin 4512k αα⇒=⇒=⇒= 所以b y x x a =±=±a b ⇒=,因此2,2cc a e a===,选A 。
8.解:因文艺书只有2本,所以选3本必有科技书。
问题等价于选3本书有文艺书的概率:343644()1()11205C P A P A C =-=-=-=9.解:如图AB 最小时,弦心距最大为1,2222123AB =-=10:2222()()()()(1)(1)0a b a b a b a b a b a b a b λλλλλλλλ+⊥-⇔+∙-=-+-∙=-∙=20101a b λλ∙≠⇔-=⇔=± 。
另外a 与b 是夹角为3π的单位向量,画图知1λ=时a b + 与a b -构成菱形,排除A ,B ,D 选项明显不对,故选C 。
11.解:23311111()()(1)(1)()()2222224f f f f f -==+=-===12.解:如图以D 为坐标系原点,AB 为单位长,1,,DA DC DD 分别为,,x y z 轴建立坐标系,易见1(0,1,1)AB =- ,11(1,,0)2D E = , 所以1111(0,1,1)(1,,0)1022cos ,1105(0,1,1)(1,,0)224A B D E -<>===- ,选B 。
(如果连结1,D C EC ,用余弦定理解三角形也可以求得答案。
) 二、填空题:本大题共4小题,每小题4分,共16分.13.解:11111ln(1)x x y e e y x y ++=-⇒=+⇒+=+,所以反函数ln(1)1(1)y x x =+->-, 14.解: 因为3sin 3x ≤,2cos 0x ≥,2()3sin cos 3f x x x ⇒=-≤,正好sin 1,cos 0x x ==时取等号。
(另22237()3sin cos sin 3sin 1(sin )24f x x x x x x =-=+-=+-在sin 1x =时取最大值) 15.解:551234142300S a a a a a a a a a =⇒+++=⇒+=+=,取特殊值令231,1,a a ==-43a ⇒=-74129a a a =-=-,所以743a a = 16.解:由对称性点C 在平面AOB 内的射影D 必在AOB ∠的平分线上作DE OA ⊥于E ,连结CE 则由三垂线定理CE OE ⊥,设1DE =1,2OE OD ⇒==,又60,2COE CE OE OE ∠=⊥⇒= , 所以222CD OC OD =-=因此直线OC 与平面AOB 所成角的正弦值2sin 2COD ∠=三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤. 17.解:(Ⅰ)由题设及正弦定理,有222sin sin 2sin 1A C B +==. 故22sin cos C A =.因为A 为钝角,所以sin cos C A =-. 由cos cos()4A C ππ=--,可得sin sin()4C C π=-,得8C π=,58A π=.(Ⅱ)由余弦定理及条件2221()2b a c =+,有22cos 4a c B ac+=,因222a c ac +≥,所以1cos 2B ≥.故3sin 2B ≤, 当a c =时,等号成立.从而,sin B 的最大值为32. 18.解:(Ⅰ)设i A 表示事件“在一次抽检中抽到的第i 件产品为A 类品”,1,2i =. i B 表示事件“在一次抽检中抽到的第i 件产品为B 类品”,1,2i =.i C 表示事件“一次抽检后,设备不需要调整”. 则121212C A A A B B A =⋅+⋅+⋅.由已知 ()0.9i P A =,()0.05i P B =,1,2i =.所以,所求的概率为121212()()()()P C P A A P A B P B A =⋅+⋅+⋅ 20.920.90.050.9=+⨯⨯=.(Ⅱ)由(Ⅰ)知,一次抽检后,设备不需要调整的概率为()0.9P C =. 故所求概率为: 310.90.271-= 19.解:(Ⅰ)证明:因为01AD BC BD ===,02AB C D ==,所以090DBC ∠=︒. 因为折叠过程中,090DBC DBC ∠=∠=︒, 所以DB BC ⊥,又0DB BC ⊥,故DB ⊥平面0CBC . 又DB ∈平面0ABC D , 所以平面0ABC D ⊥平面0CBC .(Ⅱ)解法一:如图,由(Ⅰ)知BC DB ⊥,0BC DB ⊥,所以0CBC ∠是二面角0C BD C --的平面角.由已知得,060CBC ∠=︒.作0CF C B ⊥,垂足为F , 由01BC BC ==可得32CF =,12BF =.连结AF ,在ABF ∆中, 2221113(2)()22c o s 135224AF =+-⨯⨯⨯︒=. 因为平面0ABC D ⊥平面0CBC ,所以CF ⊥平面0ABC D ,可知CF AF ⊥. 在Rt AFC ∆中,22133244AC AF CF =+=+=. 解法二:由已知得090ADB DBC ∠=∠=︒.以D 为原点,射线DA ,DB 分别为x ,y 轴的正半轴,建立如图所示的空间直角坐标系D xyz -.则(1,0,0)A ,(0,1,0)B ,0(1,1,0)C -,(0,0,0)D .由(Ⅰ)知BC DB ⊥,0BC DB ⊥,所以0CBC ∠为二面角0C BD C --的平面角.由已知可得060CBC ∠=︒,所以13(,1,)22C -.所以2213(1)1()222AC =--++= ,即AC 的长为2. 20.解:(Ⅰ)由条件得1221(1)2n na a n n+=⋅+,又1n =时,21n a n =, 故数列2{}n a n 构成首项为1,公式为12的等比数列.从而2112n n a n -=,即212n n n a -=.(Ⅱ)由22(1)21222n n n nn n n b ++=-=得23521222nn n S +=+++ , 231135212122222n n n n n S +-+⇒=++++ , 两式相减得 : 23113111212()222222n n n n S ++=++++- , 所以 2552n n n S +=-.(Ⅲ)由231121()()2n n n S a a a a a a +=+++-+++ 得1112n n n n T a a T S +-+-=所以11222n n n T S a a +=+-2146122n n n -++=-. 21.解:(Ⅰ)设1C :22221x y a b +=(0)a b >>,其半焦距为c (0)c >.则2C :24y cx =.由条件知22(2)2()a b a c c=-,得2a c =.1C 的右准线方程为2a x c=,即4x c =.2C 的准线方程为x c =-.由条件知515c =, 所以3c =,故6a =,33b =.从而1C :2213627x y +=, 2C :212y x =. (Ⅱ)由题设知l :y x c =-,设11(,)M x y ,22(,)N x y ,33(,)P x y ,44(,)Q x y .由24y cxy x c⎧=⎨=-⎩,得2260x cx c -+=,所以126x x c +=.而1228MN MF FN x x c c =+=++=,由条件8MN =,得1c =.由(Ⅰ)得2a =,3b =.从而,1C :22143x y +=,即223412x y +=. 由2234121x y y x ⎧+=⎨=-⎩,得27880x x --=.所以3487x x +=,3487x x =-.故223488242()2[()4]777PQ x x =-=+⋅=.22.解:(Ⅰ)2'()321(31)(1)f x x x x x =--=+-.于是,当1(,1)3x ∈-时,'()0f x <;1(,)(1,)3x ∈-∞-+∞ 时,'()0f x >. 故()f x 在1(,1)3-单调减少,在1(,)3-∞-,(1,)+∞单调增加.当13x =-时,()f x 取得极大值159()327f -=;当1x =时,()f x 取得极小值(1)1f =.(Ⅱ)根据(Ⅰ)及(1)1f -=,(2)4f =,()f x 在[1,2]-的最大值为4,最小值为1.因此,当[1,2]x ∈-时,3()3af x b -≤+≤的充要条件是33343a b a b -≤+≤⎧⎨-≤+≤⎩,即a ,b 满足约束条件334343a b a b a b a b +≥-⎧⎪+≤⎪⎨+≥-⎪⎪+≤⎩,由线性规划得,a b -的最大值为7.。