故障录波介绍
故障录波介绍

中性点经接地电阻接地方式
接地变压器结构与一般 三相芯式变压器相似。T0 为接地变压器,铁芯为三 相三柱式,每个铁芯上有 两个匝数相等,绕向相同 的绕组,每相上面一个绕 组与下面一个绕组反极性 串联,并将每相下面一个 绕组的首端连在一起作为 中性点,组成曲折形的星 形接线。二次绕组视工程 需要决定是否配置。
接地变零序保护误动、拒动探讨
防范措施 (3)35kV母线并列运行时,不得同时投入两条母线的接 地变。
感谢您的聆听
故障录波在线查看
【波形设置】选项
故障的起始时刻
故障录波在线查看
高度 长度
故障的起始时刻
故障录波离线分析软件
三 典型波形识别
故障录波分析-三相短路电压
故障录波分析-三相短路低压侧电流
0.052s故障开始
0.18s故障结束
故障录波分析-三相短路高压侧电流
故障录波分析-两相短路低压侧电流
故障录波分析-两相短路低压侧电流
实际波形分析-案例 1 保护动作信息
1号接地变保护测控信息
实际波形分析-案例 1 1号接地变零序电流波形
实际波形分析-案例 1
原因分析 直接原因:35kV I段母线所带风机线路上一台配电变压
器A相高压侧引线折断,搭接至变压器本体导致A相接 地故障。 根本原因:35kV I段母线所带风机线路未配置零序电流 互感器,未设置零序电流保护。
五 零序保护误动、拒动探讨
接地变零序保护误动、拒动探讨
(一)两条线路同相接地的电流叠加
当一条线路经高阻接地,由于故障电流小,保护不能动
作;此后,另一条线路又经高阻接地,线路的故障电流也未
达到保护动作值,两条线路同时发生高阻接地等值电路为: 图中,R1 、R2 分别为故障线 路1、线路2的接地过渡电阻; Il1 、IL2 分别为故障线路1、线 路2的零序电流;IR 为流过接 地变的零序电流;XCΣ 、Xb 分 别为线路对地电容、接地变压 器的电抗值;R为接地电阻值。
故障录波装置基础知识讲解

一、故障录波器的作用
(3)对断路器存在的问题给以真实记录,如断路器的拒动、跳跃、断相 和切断空载电流的能力等,均可从故障录波图上分析出来,以便改进。
(4)为检修工作提供依据。例如按断路器切除故障次数进行检修是规程 规定的。但从故障录波分析发现,有时单相接地故障发生在不同相别, 切除故障电流并未集中在断路器的同一相,因此断路器检修工作,应 根据录波实际情况而定,可减少检修次数。
门的数据区中。
(4) (4))将记录的故障数据通过以太网送至分析管理层。
五、数据采集单元
2、数据采集单元的结构
数据采集单元一般由信 号输入电路、主处理器电 路、GPS电路、电源电路 等组成。
(1) 信号输入电路
信号输入电路是模拟量和开关量输入的信号调理部分,它 的作用是将电压互感器和电流互感器或其它设备传来模拟信号 及开关量信号进行准确、合适的转换,再送交主处理器电路进 行采样处理。
(1)模拟量、开关量分别处理后再送至CPU插件、提高 了抗干扰能力,易实现多CPU结构。
(2)多CPU结构提高了装置的可靠性,某个CPU的损坏 不会影响到别的CPU。
(3)总线不外引,加强了抗干扰能力。 (4)使装置的容量可灵活配置。
五、数据采集单元
1、数据采集单元的功能 数据采集单元主要实现以下功能:
(2)保护装置动作不正常(包括误动、拒动、动
2
作信号异常而造成误判断)。
(3)事故过程中,现场人员忙于处理事故,记 录不全,有时次序颠倒,反映情况不真等。
3
一、故障录波器的作用
2、为查找故障点提供依据 3.积累运行经验,提高运行水平
故障录波

型号
DRL600 WFBL-1
WFBL-1
打印机
模拟量通道
开关量通道
1 1
1
96 96
96
96 96
96
1号发电机变压器故障录波装置
2、3号发电机变压器故障录波装置
DRL600故障录波装置总体硬件框架
:
MMI板
C P U
以 太 网 存 储 器 电 源 2
以太网1
以太网2
电 源1 采 集 板
CPU板
故障录波系统的作用; 故障录波系统是继电保护的重要组成部分,它 的作用就是在电力系统发生故障时,通过故障量 的启动,记录下故障前后一段时间内电气量与非 电气量的变化过程,并生成录波文件,以达到协 助故障追忆分析的目的。 故障录波系统的工作原理; 故障录波系统的工作原理是在正常运行情况时, 故障录波装置时时对接入的模拟电气量【电压, 电流,功率】进行采集,当故障发生时,根据预先 的定值,故障录波器动作记录下故障前后3秒内模 拟电气量及开关量数据,并生成故障录波文件。
D S P 板
存 储 器
模 拟 量 变 换 模 块
基于专业继电保护产品设计理念的录波主 CPU独立记录与存储 DRL600装置的录波记录与存储直接由录波主 CPU独立完成,完全不倚赖于网络及后台工 控机,彻底解决了采用“前置处理+后台记录” 的“前后台模式的记录方式”中因网络或后 台工控机故障导致的录波失败;录波主CPU 采用大容量存储器,可保存不少于300次的故 障录波数据文件,存满后采用循环刷新、先 进先出原则。
录波存储及输出方式 暂态记录 自动存于录波CPU模块的硬盘中,可存储不少于350个 波形文件,循环覆盖; 自动镜像储存于MMI模块的硬盘中,存储波形文件的 数量受硬盘大小限制; 监控管理模块为数据远方传输开辟独立的存储空间, 并共享在FTP服务器上,远方的技术管理部门可通过 FTP像在本地一样,方便、快捷、可靠的查看和传输 文件; USB移动存储介质; 以太网通讯输出; MODEM通讯输出; 打印输出。
《故障录波讲解》课件

01
电力系统
用于监测和记录电网中的故障 ,提高电网运行的可靠性和稳
定性。
02
工业自动化
在电机、变压器等电气设备中 应用,监测设备的运行状态和
预防故障。
03
轨道交通
用于监测和记录列车运行中的 电气信号,保障列车的安全运
行。
03
故障录波的获取与处理
故障录波的获取方式
03
传感器监测
自动化巡检
人为观察与记录
通过在关键部位安装传感器,实时监测设 备的运行状态,采集故障发生时的数据。
利用自动化巡检设备,定期对设备进行检 查,记录运行数据,以便后续分析。
操作人员通过日常观察,记录设备异常情 况,并及时上报。
故障录波的处理方法
01
02
03
数据清洗
去除无关数据和异常值, 确保数据的准确性和可靠 性。
特征提取
从故障录波中提取关键特 征,如波形、频率、幅值 等,用于后续分析。
故障录波是电力系统故障诊断、事故分析、继电保护整定计算的重要 依据,对于保障电力系统的安全稳定运行具有重要意义。
故障录波的作用
故障定位
通过对故障录波的分析,可以确定故障 发生的位置和类型,为快速隔离和修复 故障提供依据。
保护动作分析
通过对保护装置的动作行为和故障录波 数据的对比分析,可以评估保护装置的 性能和正确性。
根据记录数据长度
可以分为长时段录波器和短时段录波器。长时段录波器记录的电气量数据长度较长,适用于对系统动态行为的分析; 而短时段录波器记录的电气量数据长度较短,适用于对保护动作行为的分析。
根据应用场合
可以分为线路故障录波器、变压器故障录波器和母线故障录波器等。不同的故障录波器适用于不同的应 用场合,记录的电气量数据也各有侧重。
什么是故障录波器

故障录波器电力故障录波装置(有时会简称为暂态故障录波装置TFR),故障录波器用于电力系统,可在系统发生故障(如线路短路、接地等,以及系统过电压、负荷不平衡等)时,自动地、准确地记录故障前、后过程的各种电气量(主要数字量,比如开关状态变化,模拟量,主要是电压、电流数值)的变化情况,通过这些电气量的分析、比较,对分析处理事故、判断保护是否正确动作、提高电力系统安全运行水平均有着重要作用。
故障录波器是提高电力系统安全运行的重要自动装置,当电力系统发生故障或振荡时,它能自动记录整个故障过程中各种电气量的变化。
目录.1故障录波器的作用.2故障录波器的启动方式故障录波器的作用1、根据所记录波形,可以正确地分析判断电力系统、线路和设备故障发生的确切地点、发展过程和故障类型,以便迅速排除故障和制定防止对策。
2、分析继电保护和高压断路器地动作情况,及时发现设备缺陷,揭示电力系统中存在的问题。
3、积累第一手材料,加强对电力系统规律的认识,不断提高电力系统运行水平。
故障录波器的启动方式启动方式的选择,应保证在系统发生任何类型故障时,故障录波器都能可靠的启动。
一般包括以下启动方式:负序电压、低电压、过电流、零序电流、零序电压。
(1) 相电流突变和相电压突变:相电流突变量起动采用:△i(k)=||i(k)-i(k-N)|-|i(k-N)-i(k-2N)|| i(k)为电流一个瞬时点相电压突变量起动采用:△u(k)=||u(k)-u(k-N)|-|u(k-N)-u(k-2N)||注:式中N 为一个工频周期内的采样点数,采用分相判别,用计算出的相电流或相电压突变量与定值比较,连判三次满足突变量起动定值即被确认为起动。
(2) 相电流、相电压越限及零序电流、零序电压越限起动用计算出的各相电压、各相电流以及零序电压、零序电流(采用专用通道输入,而非采用对称分量法计算得到)同整定值比较以判断是否起动。
(3)频率越限与频率变化率起动本装置采用硬件测频,用测得的频率与频率越限定值比较以判定是否起动。
故障录波及常见故障波形讲解PPT012

05
故障录波器的主要参数
➢ 5、录波数据采样及记录方式
• 5.1、模拟量采样方式
模拟量采样及记录方式按下图执行
系统大扰动开始时刻
A
B
C
D
t=00.0000
t(s)
模拟量采样时段顺序
• A时段:系统大扰动开始前的状态数据,记录时间为40ms~100ms可调。采样
频率10kHz、5kHz、2kHz、1kHz可设。B时段:系统大扰动后初期的状态数据, 记录时间200ms~2000ms可调。采样频率同A段。 C时段:系统大扰动后中期的 状态数据,记录时间1.0s~10s可调。数据输出速率1kHz、0.5kHz、0.25kHz可 设。D时段:系统动态过程数据,不定长录波,录波时间最长为30min,数据输出速 率50Hz,10Hz,1Hz可设,输出为有效值。
(3)加强培训:利用系统维护的机会,请故障录波 器厂家人员到现场讲解。
08 典型故障波形的分析
➢ 1、单相接地短路故障
根据分析的单相接地短路故障录波图得出以下特点: (1)一相电流增大,一相电压降低;出现零序电流、零序电 压 (2)电流增大、电压降低为相同相别 (3)零序电流向位与故障电流同向,零序电压与故障相电 压反向 根据以上分析,判断为单相接地故障,故障相为接地电流 明显增大的那一相。
05 故障录波器的主要参数
➢ 1、采样速率
采样速率的高低决定了录波器对高次谐波的 记录能力,在系统发生故障之初,故障波形的高次 谐波非常严重,因此,为了较真实地记录故障的暂 态过程,录波器要有较高的采样速率。电力行业 标准规定,故障录波器的采样速率应达到5kHz。 但高的采样速率,则要使用较多的存储空间,同时 在进行数据传输时,要花费更长的时间,这很不利 于故障后的快速分析故障。
故障录波四步分析法讲解

故障录波四步分析法讲解故障录波是电力系统中的一种常见设备,它能够捕捉到电力系统中出现的异常波形,并将这些波形记录下来。
故障录波数据对于电力系统的故障分析、事故处理以及设备运行状态评估都有着重要的作用。
而故障录波的四步分析法则是一种对故障录波数据进行系统分析的方法。
故障录波四步分析法概述故障录波四步分析法指的是从故障录波数据的挑选、分析、诊断以及判定四个步骤入手,对故障录波数据进行分析的方法。
具体来讲,故障录波四步分析法包括以下四个步骤:1. 故障录波数据的挑选对于整个电力系统中存在的大量故障录波数据,我们需要首先从中挑选出与我们正在研究的故障类型以及特有的电学特征相一致的数据。
例如,如想要研究一次侧接地故障的波形,我们需要把一次侧的故障录波数据从整个数据中筛选出来。
2. 故障录波数据的分析在确定了可以用于研究的故障录波数据之后,我们需要对这些数据进行进一步的分析。
在此步骤中需要关注的重点包括:•波形特征的分析,包括波形起点、极值点、波形衰减等。
•电学特征的分析,包括电流的大小、相位角、频率响应等。
在了解了故障录波数据的基本信息之后,我们需要对这些数据进行进一步的诊断。
主要包括:•确定故障类型,它可以是接地故障、短路故障等。
•确定故障位置,例如故障发生是在哪个支路、哪个相位等。
•确定故障性质,例如故障是否单相、三相、瞬时短路等。
4. 故障录波数据的判定最后,根据对故障录波数据的挑选、分析和诊断,可以得出对发生故障位置的初步判断。
在此步骤中需要打打决策,例如进行临时保护动作等。
故障录波四步分析法应用案例下面以一种典型的短路故障为例,介绍故障录波四步分析法的应用:1. 故障录波数据的挑选首先,我们需要从大量的故障录波数据中挑选出符合要求的数据。
在这个案例中,我们需要挑选出短路故障发生在某个特定支路下的录波数据,并将其与其他支路下的录波数据进行比较。
2. 故障录波数据的分析接下来,我们需要对选定的故障录波数据进行分析。
故障录波的分析说明

故障录波的分析说明一、录波报告的组成包括保护及自动装置、故障录波装置的动作报告及录波图形。
二、录波图形(一)短路的基本特点当采用母线PT作为保护用的PT量时:1、大电流接地系统单相短路时,故障相的电流突然增大,故障相的电压(其实是母线电压)在短路过程中降低,故障切除后电压恢复正常。
短路过程中,出现零序电流、零序电压。
2、两相短路时,两个故障相的电流突然增大,但电流相位相反。
故障的两相电压(其实是母线电压)在短路过程中降低,故障切除后恢复正常。
如是单纯的相间短路,没有零序电流、零序电压。
如是两相对地的相间短路,有零序电流、零序电压。
3、三相短路时,三相的电流突然增大。
三相电压(其实是母线电压)在短路过程中降低,故障切除后恢复正常。
因为是相间短路,没有零序电流、零序电压。
当采用线路PT作为保护用的PT量时:1、大电流接地系统单相短路时,故障相的电流突然增大,故障相的电压(其实是线路电压)在短路过程中降低,故障切除后(开关跳开后)电压为零。
短路过程中,出现零序电流、零序电压。
2、两相短路时,两个故障相的电流突然增大,但电流相位相反。
故障的两相电压(其实是线路电压)在短路过程中降低,故障切除后(开关跳开后)电压为零。
如是单纯的相间短路,没有零序电流、零序电压。
如是两相对地的相间短路,有零序电流、零序电压。
3、三相短路时,三相的电流突然增大。
三相电压(其实是线路电压)在短路过程中降低,故障切除后(开关跳开后)电压为零。
因为是相间短路,没有零序电流、零序电压。
(二)分析录波图形的几个要点:1、判断是否发生短路:有无某相电流电流突增,电压突降。
2、开关是否跳闸:先是突然出现短路电流然后短路电流消失判断。
3、重合闸是否动作:采用线路PT时可从电压变化看判断(降低——为零——重新出现正常)。
采用母线PT时,可看重合闸开关量是否动作。
如发生永久性故障,从短路电流是否再次出现也可以判断。
4、重合闸动作是否成功:看重合闸动作后是否再出现短路电流,开关是否重新跳闸判定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电力系统中性点接地方式
大电流接地系统 小电流接地系统
中性点直接接地 中性点经低阻抗接地 中性点不接地 中性点经消弧线圈接地 中性点经高阻抗接地
中性点直接接地系统单相接地
I
• 发生单相接地故障时,非故障相的工频电压升高不会超 过1.4倍运行相电压;暂态过电压水平也相对较低;故 障电流很大,继电保护装置能迅速断开故障线路。
由以上分析可知,当中性点不接地系统发生单相接地时: 1. 零序电压与接地相的相电压大小相等、方向相反。 2.故障相对地电压降为零;非故障相对地电压升高为相电 压的 3 倍,即升高为线电压,相位差为60°。三个线电压 仍保持对称和大小不变。 3.非故障相电容电流增大为正常相对地电容电流的 3倍, 超前相应的相对地电压90°;产生的总零序电流为正常相 对地电容电流的3倍,超前零序电压90°。
故障录波器手动录波
选择【监视】->【手动录波】,在弹出的窗口中可以选择子站、输入 周波数。
录波结束后,“在故障信息窗口” 会自动列出本手动录波文件,选中 此文件,然后点击鼠标右键,在弹出的菜单中选择【查看波形】,就会 将此文件下载转换并自动用分析软件打开。
故障录波在线查看
【选择波形】选项
故障的起始时刻
故障录波器界面
故障录波器界面
故障录波器本机时间设定
故障录波器定值整定
通道名称
故障录波器定值整定
故障录波
故障录波器接线
模拟量信号
二 故障录波文件
故障录波文件组成和导出
一个完整的故障文件由头文件、配置文件、数据文件三类文件组 成,其文件名的前缀均相同,后缀名分别为“.HDR”、 “.CFG”、“.DAT”。
中性点经接地电阻接地方式
接地变压器结构与一般 三相芯式变压器相似。T0 为接地变压器,铁芯为三 相三柱式,每个铁芯上有 两个匝数相等,绕向相同 的绕组,每相上面一个绕 组与下面一个绕组反极性 串联,并将每相下面一个 绕组的首端连在一起作为 中性点,组成曲折形的星 形接线。二次绕组视工程 需要决定是否配置。
故障录波分析-两相短路高压侧电流
故障录波分析-两相短路电压
故障录波分析-两相短路低压侧电流
非金属性短路电流情况? AB相相短 短 短电电短路路路流流路电电电减减电阻阻感去去阻023CC1.mΩ2相Ω相ΩH电电流流
故障录波分析-两相短路电压
短短短短路路路路电电电电阻感阻阻230Ωm1.2ΩHΩ
中性点不接地系统单相接地故障
中性点不接地系统单相接地故障
1. 接地相U对地电压为零: 2. V、W相的对地电压为: 3. 故障点的零序电压为:
Uw’ -3Uu
Uv’
中性点不接地系统单相接地故障 4. V、W相的电容电流分别为:
5. 故障点的零序电流为:
Icv Icw
Ic
中性点不接地系统单相接地故障
故障录波分析-单相接地电压(无接地变)
电流无变化
故障录波分析-单相接地电流
故障录波分析-单相接地电压
接35地kV点母电线压电压
故障录波分析-单相接地电流变化情况
接地时电刻阻变50化Ω
故障录波分析-两相短路接地电流
接地变电流
故障录波分析-两相短路接地电压
3故5k障V点母电线压电压
故障录波分析-案例分析
故障录波在线查看
【波形设置】选项
故障的起始时刻
故障录波在线查看
高度 长度
故障的起始时刻
故障录波离线分析软件
三 典型波形识别
故障录波分析-三相短路电压
故障录波分析-三相短路低压侧电流
0.052s故障开始
0.18s故障结束
故障录波分析-三相短路高压侧电流
故障录波分析-两相短路低压侧电流
故障录波分析-两相短路低压侧电流
故障录波
徐明军 2019年12月10日
思索
故障录波器为什么会动作? 信号如何变化会导致故障录波启动? 故障录波数据如何分析?
目录
Contens
1 故障录波器介绍 2 故障录波文件 3 典型波形识别 4 实际波形分析 5 零序保护误动、拒动探讨
一 故障录波器介绍
故障录波器基础知识
故障录波装置是在电力系统发生故障时,自动、 准确记录故障前、后、过程中电气量、非电气量以及 开关量的自动记录装置。
风电场集电系统中性点接地方式变迁
2011年之前多为中性点不接地或经消弧线圈接地 电容电流大于30A时配置消弧消谐柜 2011.2.24甘肃酒泉大规模风电脱网 《防止风电大面积脱网重点措施》(5.3)
1)对新建风电场,建议汇集线系统采用经电阻接地方式并配 置单相接地故障保护。 2)汇集线系统采用不接地或经消弧线圈接地方式的风电场, 应配置带跳闸功能的小电流接地选线装置,在单相接地后快速 切除故障,若不成功则跳开主变低压侧开关隔离故障。
中性点经接地电阻接地方式
零序CT安装
×
√
×
√
跳闸矩阵配置
跳闸指令
位
设置 接线
出口 7
0
跳 XX
出口 6
0
跳 XX
出口 5
0
跳 XX
出口 4
0
跳 XX
出口 3
0
跳 XX
出口 2
1
跳 370
出口 1
1
跳 301
出口 0
1
跳 315
不使用时置零
母 主接 联 变地 开 低变 关 压开
侧关 开 关
故障录波分析-接地故障
线路出现断路为何零序保护动作?
故障录波分析-单相断线电流
流流流过过过集接集电地电线变线路电路电流电流流
四 实际波形分析
实际波形分析
实际波形分析
实际波形分析
实际波形分析-案例 1
(一)03时23分49秒29毫秒,某变电站35kV 1#接地变 保护动作跳闸,保护测控装置动作报告为“高压零流Ⅰ段 动作”。03时23分49秒288毫秒,1#接地变所接1#主变 低压侧断路器跳闸。35kV I段母线失压,站用变停运,全 站失压。导致2#SVG因散热系统失电而跳闸。
电力系统的各种故障信息是通过故障录波器及事 件记录(SOE,Series of event)记录的。变电站采 用的微机保护和微机故障录波器由故障启动,具有信 息数据采集,存储分析以及波形输出等功能。 故障录波器的启动是靠故障特征明显的电气量,如电 压、电流、频率、开关量。
故障录波器界面
选择【监视】->【通道监视】,在弹出的窗口中选中 子站,即可以查看该子站的所有模拟量通道采样值
实际波形分析-案例 1 保护动作信息