Ch数值计算方法之数值积分
《数值积分方法》课件

数值积分的分类
按方法分类
可分为直接法和间接法。直接法如蒙特卡洛方法,间 接法如梯形法则、辛普森法则等。
按精确度分类
可分为低阶和高阶方法。低阶方法如梯形法则,高阶 方法如复合梯形法则、复合辛普森法则等。
按使用范围分类
可分为有限区间上的数值积分和无限区间上的数值积 分。
02
直接法
矩形法
总结词:简单直观
在金融建模中的应用
期权定价模型
数值积分方法可以用于求解期权定价模型,从而为金融衍生品定价提供依据。例如,二叉 树模型和蒙特卡洛模拟等。
利率衍生品定价
在利率衍生品定价中,数值积分方法可以用于求解利率期限结构模型,例如LIBOR市场模 型等。
风险管理
通过数值积分方法,可以对金融风险进行量化评估和管理。例如,计算VaR(风险价值) 和CVaR(条件风险价值)等指标,以评估投资组合的风险暴露程度。
自适应插值控制法
总结词
自适应插值控制法是一种通过插值技术来提 高数值积分精度的控制方法。
详细描述
在数值积分过程中,自适应插值控制法利用 插值技术对积分函数进行逼近,以提高数值 积分的精度。这种方法能够根据积分区间和 积分函数的特性,自动选择合适的插值方法 ,以获得更高的积分精度。同时,自适应插 值控制法还能够有效地处理复杂积分函数和
80%
算法设计与实现
数值积分方法的设计与实现是计 算数学的重要研究内容,推动了 科学计算的发展。
数值积分的概念
定义
数值积分是对函数在某个区间 上的定积分进行数值逼近的方 法。
思想
通过选取适当的积分点和权函 数,将定积分的计算转化为数 值逼近问题。
近似公式
常用的数值积分公式有梯形公 式、辛普森公式、复合梯形公 式、复合辛普森公式等。
数值积分简介

定积分的数值计算方法
Newton-Cote’s 积分
若节点可以自由选取,则,一个自然的办法就是取等距节点。对区间做等距分割。 该数值积分称为Newton-Cote’s积分
定积分的数值计算方法
设节点步长
ba h , xi a ih, i 0, , n n
x a th
ai li ( x)dx
2、F(x)求不出 3、F(x)非常复杂
定义数值积分如下:是离散点上的函数值的线性组合
In ( f )
a
i 0
n
i
f ( xi )
称为积分系数,与f(x)无关,与积分区间和积分点有关
定积分的数值计算方法
两个问题: 1、系数ai如何选取,即选取原则 2、若节点可以自由选取,取什么点好?
定义
代数精度
m 1 1 b h1 1 a f ( x, y0 )dx 2 2 f ( x0 , y0 ) f ( xi , y0 ) 2 f ( xm , y0 ) 2 i 1 m 1 1 b h1 1 a f ( x, yn )dx 2 2 f ( x0 , yn ) f ( xi , yn ) 2 f ( xm , yn ) 2 i 1
定积分的数值计算方法
误差
注意到,Simpson公式有3阶代数精度,因此为了对误差有更精确地估计,我们 用3次多项式估计误差
ab ab ab ab P3 (a) f (a), P3 (b) f (b), P3 ( ) f( ), P3 ' ( ) f '( ) 2 2 2 2
E2 ( f ) I ( f ) S ( f ) I ( f ) I ( P3 ) I ( P3 ) S ( f )
Ch数值计算方法之数值积分

6. 柯特斯公式
•
作为课外作业,大家可以取n=4,相应地k可以取0,1 ,2,3 和4,仿照上面的方式,可以得到:
从而可进一步写出相应的求积公式,这就是柯特斯公式。
•
在后面将要介绍的龙贝格求积算法中,我们将产生梯形序列, 辛卜生序列,柯特斯序列和龙贝格序列,前三个序列都是基 于牛顿-柯特斯公式产生的序列,而龙贝格序列则不是。
3.变步长复化梯形公式
• 假设对某个n,我们利用复化梯形公式,也就是上面的
(3)式,得到了Tn,如果它不满足我们的精度要求, 那么我们可以把每个子区间再对分一次,这相当于 把积分区间划分为2n等分。
a)/(2n),则有
• 记y0,y1,y2,…,y2(n-1),y2n-1,y2n为等分点,记t=(b-
1.复化中点公式
• 复化中点公式也许最不为人们所注意,以至在一般
的教科书中还没有这个名称,我们在后面将会看到, 对于求数值积分来说,它实际上是最有用的公式。
• 把积分区间[a,b]划分为n等分,记x0,x1,…,xn为等分
点,记[xj-1,xj]为第j个子区间, zj为区间的中点, j=1,2,…,n,记h=(b-a)/n,记Mn为所有子区间上利用 中点公式所求得的积分值的和,那么我们有
作为课外练习,鼓励大家给出完整证明。
6.基本结论
• 我们可以利用上面的定理所给出的方法证明辛卜生
公式的代数精度是3,而中点公式和梯形公式的代数 精度是1。
• 现在我们可以对这三个公式作一个简单的评价:
• 中点公式和梯形公式的代数精度虽然都是1,但中点公
式只计算一个点的函数值,而梯形公式却要计算两个点 处的函数值,所以中点公式优于梯形公式。
数值计算方法之数值积分

数值计算方法之数值积分数值积分是数值计算中的一个重要内容,它是对函数在其中一区间上的积分进行数值近似计算的方法。
数值积分在计算机科学、自然科学以及工程领域都有广泛的应用,如求解不定积分、概率密度函数的积分、求解微分方程初值问题等。
数值积分的基本思想是将积分区间划分为若干小区间,然后对每个小区间进行数值近似计算,再将结果相加得到近似的积分值。
常用的数值积分方法包括矩形法、梯形法、辛普森法等。
首先介绍矩形法。
矩形法是将积分区间划分为若干个小区间,然后用每个小区间的函数值与该小区间的宽度相乘得到每个小矩形的面积,最后将所有小矩形的面积相加得到近似的积分值。
矩形法分为左矩形法、右矩形法和中矩形法三种。
左矩形法即用每个小区间的最左端点的函数值进行计算,右矩形法用最右端点的函数值进行计算,中矩形法用每个小区间中点的函数值进行计算。
梯形法是将积分区间划分为若干个小区间,然后用每个小区间两个端点的函数值与该小区间的宽度相乘,再将每个小梯形的面积相加得到近似的积分值。
梯形法相较于矩形法更为精确,但需要更多的计算量。
辛普森法是将积分区间划分为若干个小区间,然后用每个小区间的三个点的函数值进行插值,将插值函数进行积分得到该小区间的近似积分值,最后将所有小区间的近似积分值相加得到近似的积分值。
辛普森法相比矩形法和梯形法更为精确,但计算量更大。
除了以上几种基本的数值积分方法外,还有龙贝格积分法、高斯积分法等更为精确的数值积分方法。
这些方法的原理和步骤略有不同,但都是通过将积分区间分割为若干小区间,然后进行数值近似计算得到积分值的。
总结起来,数值积分是通过将积分区间分割为若干小区间,然后对每个小区间进行数值近似计算得到积分值的方法。
常用的数值积分方法包括矩形法、梯形法、辛普森法等。
数值积分在计算机科学、自然科学以及工程领域均有广泛应用,是数值计算中的重要内容。
数值积分方法

数值积分方法数值积分,又称为数值分析,是一种应用科学和数学技术来求解数学分析中几何或者微分方程的数学方法。
在实际应用中,有一系列的数值积分方法可以应用于解决某些数学问题,其中包括这些方法的微元法、有限元法、线性多项式插值法、指数插值法、函数拟合法和通用积分等方法。
通过合理的数值技术及其应用,可以有效地解决众多实际问题。
数值积分是数值分析中最基本的方法,指将数学分析中的连续函数或曲线所表示的求和问题离散化,以使其被数值计算机计算出来,也被称为数值积分。
当需要用数值积分方法求某函数的定积分时,首先必须找出该函数的积分表达式,然后对该表达式进行离散化,得到计算机可以处理的函数,最后根据具体的算法,得到数值积分的解。
数值积分方法具有多种形式,分别适用于不同实际问题。
首先,常用的数值积分方法有积分公式,如梯形公式、抛物线公式、Simpson 公式等,以及牛顿-拉夫逊多项式插值公式等,这些积分公式可以以直接的方式计算定积分,但是这种方法只适用于简单的定积分计算,在复杂定积分的计算中效果不佳。
其次,还有多元积分法,如变步长梯形法、双积分法等,这些积分法可以帮助求解一些复杂的定积分,但是计算时间较长。
此外,还有有限元法、隐式Runge-Kutta法、快速积分法等,这些积分方法能够帮助求解非定积分问题,其计算效率也相对较高。
数值积分方法在实际应用中得到了广泛的应用,如仿真求解有限元方程,求解复杂的拟合问题,估计系统的运行参数,计算力学分析等等都与数值积分技术有关。
另外,今天在这一领域,全球多家著名计算数值分析软件公司也在不断改进技术,开发出更加高效的数值积分软件,从而更好地服务于实际问题的求解。
总之,数值积分方法是一门重要的数值分析学科,可用于解决多种实际问题,广泛应用于科学和技术领域,具有重要的现实意义。
数值计算中的数值积分方法

数值计算中的数值积分方法数值计算是应用数学的一个分支,它主要涉及数值计算方法、算法和数值实验。
其中,数值积分作为数值计算中的一个重要环节,其作用在于将连续函数转化为离散的数据,从而方便计算机进行计算和处理。
本文将介绍数值积分的概念、方法和应用。
一、数值积分的概念数值积分是利用数值方法对定积分进行估计的过程。
在数值积分中,积分被近似为离散区间的和,从而可以被计算机进行处理。
数值积分中,被积函数的精确的积分值是无法计算的,而只能通过数值方法进行估计。
数值积分的目的是通过选取合适的算法和参数来尽可能减小误差,达到精度和效率的平衡。
二、数值积分的方法1. 矩形法矩形法是数学上最简单的数值积分方法之一。
矩形法的算法是将要积分的区间分为若干个小区间,然后计算每个小区间中矩形的面积,最后将所有小矩形的面积加起来得到近似的积分值。
矩形法的精度一般较低,适用于计算不需要高精度的函数积分。
2. 梯形法梯形法是数值积分中常用的一种方法,其原理是将区间分为若干个梯形,并计算每个梯形的面积,最后将所有梯形的面积加起来得到近似的积分值。
梯形法的计算精度较高,但其计算量较大。
3. 辛普森法辛普森法是数值积分中一种高精度的方法,它是利用二次多项式去估计原函数。
辛普森法的原理是将区间分为若干等分小区间,并计算每个小区间中的二次多项式的积分值,最后将所有小区间的积分值加起来得到近似的积分值。
辛普森法的优点是其精度高,计算量相对较小。
三、数值积分的应用数值积分方法在各个领域都有广泛的应用。
例如,它可以被用于工程学、物理学和金融学中的数值计算。
在工程学中,数值积分被用于数值模拟和计算机辅助设计中。
在物理学中,数值积分则被用于数值求解微分方程和计算机模拟等领域。
在金融学中,数值积分则被应用于计算复杂的金融模型和风险分析。
总之,数值积分方法是数学和计算机科学中非常重要的一部分。
通过不同的数值积分方法来近似计算定积分,我们能够利用计算机更加高效地进行数学计算和数据分析,从而使得数学和物理等学科的研究者能够更加快速地得出准确的结果。
数值积分使用数值方法计算定积分

数值积分使用数值方法计算定积分定积分是数学中的重要概念,用于求解曲线下面的面积。
在某些情况下,定积分无法通过解析解来求解,此时可以使用数值方法来进行近似计算。
数值积分是一种广泛应用的技术,本文将介绍数值积分的基本原理以及常见的数值方法。
一、数值积分的基本原理数值积分的基本原理是将曲线下的面积近似为若干个矩形的面积之和。
假设要计算函数f(x)在区间[a, b]上的定积分,首先将[a, b]等分成n个小区间,每个小区间的宽度为Δx=(b-a)/n。
然后,在每个小区间上选择一个代表点xi,计算其对应的函数值f(xi),然后将所有矩形的面积相加,即可得到近似的定积分值。
二、矩形法矩形法是数值积分中最简单的方法之一。
它将每个小区间上的函数值看作是一个常数,然后通过计算矩形的面积来近似定积分的值。
矩形法主要有两种形式:左矩形法和右矩形法。
1. 左矩形法左矩形法使用小区间左端点的函数值来代表整个小区间上的函数值。
即近似矩形的面积为f(xi) * Δx,其中xi为小区间的左端点。
然后将所有矩形的面积相加,得到近似的定积分值。
2. 右矩形法右矩形法与左矩形法相似,仅仅是使用小区间右端点的函数值来代表整个小区间上的函数值。
近似矩形的面积为f(xi + Δx) * Δx,其中xi为小区间的左端点。
同样地,将所有矩形的面积相加,得到近似的定积分值。
三、梯形法梯形法是比矩形法更精确的数值积分方法。
它通过使用每个小区间的两个端点处函数值的平均值来代表整个小区间上的函数值,并计算梯形的面积来近似定积分的值。
梯形法的计算公式为:(f(xi) + f(xi + Δx)) * Δx / 2,其中xi为小区间的左端点。
将所有梯形的面积相加,得到近似的定积分值。
四、辛普森法辛普森法是一种更加高阶的数值积分方法,它使用三个点对应的函数值来逼近曲线。
将每个小区间看作一个二次函数,可以通过拟合这个二次函数来近似定积分的值。
辛普森法的计算公式为:(f(xi) + 4 * f(xi + Δx/2) + f(xi + Δx)) * Δx / 6,其中xi为小区间的左端点。
数值积分法

数值积分法
数值积分法是一种对积分形式进行数值求解的方法,也常称数值积分技术。
数值积分是在计算技术及数学运算中非常重要的一种技术,它主要应用于定积分、不定积分和高维积分的求解,它广泛地应用于工程科学技术中,为工程实践提供了技术支持。
数值积分的基本思想是采用一定的数值方法对积分方程进行步进运算,把不容易精确求解的积分问题变为若干个步进步长固定的离散状态的积分状态,从而利用问题的离散和近似性来求解积分问题。
数值积分包括定积分、不定积分和高维积分等。
定积分可以采用梯形公式、Simpson公式和三点高斯公式等。
梯形公式是最常用的积分公式,原理是把定积分看作一个多边形;Simpson公式是二阶精度的数值积分公式,它的变化灵活;三点高斯公式是基于三个节点(3和4阶)的积分解法。
不定积分采用Gauss-Legendre三点、Gauss-Lobatto七点、Newton-Cotes三、四点和Maszkarinow公式等。
Gauss-Legendre三点公式主要用于正态分布函数的积分——其精度为2阶; Gauss-Lobatto七点公式采用一系列不同权重值,用于求解非线性三次方程,精度为3阶;Newton-Cotes三点、四点和Maszkarinow公式也通常用于积分运算。
高维积分主要包括Monte-Carlo方法和偏微分法。
Monte-Carlo法将积分区间映射到概率空间,在概率空间中设定采样点,然后求解相应的积分值;偏微分法是用一系列多项式做有限元函数,以计算机代替定积分的积分算法。
因此,数值积分法是一种重要的数值分析工具,它能够在有限时间精确地解决复杂的积分问题。
熟练掌握数值积分法,有助于提高计算效率,进而更好地解决实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
b
a
f ( x )dx (b a) f( 梯形公式
ab ) 2
( 2)
b
1 1 f ( x ) dx ( b a ) [ f ( a ) f ( b )] a 2 2 辛卜生公式
b
a
1 4 ab 1 f ( x )dx (b a) [ f (a ) f ( ) f (b )] 6 6 2 6
kn k 0
b
a
f ( x )dx
w
k
f ( x ) R[ f ]
k
(1’)
其中R[f]表示的就是截断误差。
• •
考察前面给出的三个求积公式,如果被积函数是线性函数, 那么利用中点公式或梯形公式所得到的结果就是准确值,否 则一般不是。对于一般的非线性函数,感觉上辛卜生公式更 好一些。 为了刻划求积公式对一般的被积函数的精确度,我们引进代 数精度的概念。
b
b
• 不难验证,求积公式也保持函数的线性关系不变,
即
w
k 0
k n
k
[u f ( x k ) v g( x k )]
k n k 0
u w k f ( x k ) v w k g( x k )
k 0
k n
3.几种常见的求积公式
•
在后面的讨论中,我们将经常用到下面一些非常简单的求积 公式,他们是中点公式、梯形公式和辛卜生公式。
kn
(1)
其中w0,w1,…,wn仅与x0,x1,…,xn有关而与被积函数f(x) 无关。我们把这样的公式称为求积公式,也称为机 械求积公式。
1.术语和记号
• 为了计算f(x) 在区间[a,b]上的定积分近似值,我们
通常的做法是,把积分区间[a,b]划分为n等分,记 h=(b-a)/n,x0=a,xk=a+kh,k=0,1,2,…,n,称x0,x1,…,xn 为[a,b]的一个等份分划。
• 设f(x)为被积函数,[a,b]为积分区间,x0,x1,…,xn为
[a,b]内的n+1个互异的点,记Ln(x)为相应的拉格朗 日插值多项式,那么我们有 f(x)=Ln(x)+Rn(x)
两边同时积分得:a f ( x )dx a Ln ( x )dx a Rn ( x )dx 如果我们取
k 0
k n
f ( x )dx [l ( x ) f ( x )]dx
b b a a k 0 k k
k n
f ( x )dx [ l ( x )dx ] f ( x )
b b a k 0 a k k
k n
w k a l k ( x )dx
b b k n k 0 a k
• 假如x0,x1,…,xn为[a,b]的一个等份分划那么求积公式
(1)中的w0,w1,…,wn结论,只要给出了一个如何确定(1)式中的诸
w0,w1,…,wn的机制,我们就可以得到相应的对任何 被积函数都有效的计算定积分方法。
2.求积公式的性质
5.代数精度的概念
•
定义:一个求积公式
b
a
f ( x )dx
w
k 0
kn
k
f ( xk )
如果对所有的次数不超过m的多项式严格相等,而对某些 m+1次多项式不相等,则称该公式具有代数精度m,或该公 式的代数精度为m。
• •
利用求积公式的线性性,我们不难证明下面的结论。
定理:如果求积公式对1,x,…,xm严格相等,而对xm+1不相 等,则该公式的代数精度为m。
k 0,1,..., n
k
f ( x )dx w f ( x )
• 与梯形公式相比,辛卜生公式只多计算一个点的函数值,
但代数精度却增加到3,显然辛卜生公式更为优越。
10.2 牛顿-柯特斯求积公式
• 牛顿-柯特斯求积公式就是利用Lagrange插值多项式
导出的求积公式。
• 把一般的函数的积分转化为相应的插值多项式函数
的积分也是我们学习插值法的基本目的之一。
1.利用插值多项式近似替代被积函数
12.1 求积公式与代数精度的概念
• 由定积分的定义可知,连续函数f(x) 在区间[a,b]上
的定积分近似值可以表示为[a,b]内的一些点 x0,x1,…,xn处的函数值f(x0),f(x1),…,f(xn)的加权和或 线性组合,即
b
a
f ( x )dx w k f ( x k )
k 0
• 微积分学中我们曾研究过,定积分保持函数的线性
关系不变,它的含义是,若f(x),g(x)都是[a,b]上的可 积函数,则对任意实数u,v,我们有u· f(x)+v· g(x)也是 [a,b]上的可积函数,而且
b a
[u f ( x ) v g( x )]dx u a f ( x )dx v a g( x )dx
•
中点公式我是我们课程中强调的一个名词,与求积公式( 1) 对比分析,可以认为它是这样一种机制:把积分区间分为 2 等分,取w0=w2=0,w1=1所形成的求积公式。从几何上看, 它实际上是取区间中点的函数值与区间长的积作为定积分值, 类似于用中位线乘以高来计算梯形的面积。
4.截断误差
• •
在求积公式中,我们使用的是近似等号,这是因为,对于一 般的被积函数来说,利用这些公式计算所得的结果除了舍入 误差外,还有截断误差,因为定积分是用极限来定义的。 有时为了进行误差分析,我们可以把上面的(1)式写成
作为课外练习,鼓励大家给出完整证明。
6.基本结论
• 我们可以利用上面的定理所给出的方法证明辛卜生
公式的代数精度是3,而中点公式和梯形公式的代数 精度是1。
• 现在我们可以对这三个公式作一个简单的评价:
• 中点公式和梯形公式的代数精度虽然都是1,但中点公
式只计算一个点的函数值,而梯形公式却要计算两个点 处的函数值,所以中点公式优于梯形公式。
b b b
b
a b
f ( x )dx a Ln ( x )dx
b
那么截段误差为:a Rn ( x )dx
2.利用插值多项式导出求积公式
利用 a f ( x )dx a Ln ( x )dx
b b
以及 可得 亦即 记 则有
Ln ( x ) [l k ( x ) f ( x k )]