数值分析常微分方程数值解法
数值分析第九章常微分方程数值解法

松弛法
通过迭代更新函数值并逐步放松约束 条件来逼近解,适用于刚性和非刚性 问题。
利用线性组合迭代函数值来逼近解, 具有更高的收敛速度和稳定性。
03
数值解法的稳定性分析
数值解法的稳定性定义
数值解法的稳定性是指当微分方程的初值有微小的扰动时, 其数值解的近似值的变化情况。如果数值解在微小扰动下变 化较小,则称该数值方法是稳定的。
更高的精度和稳定性。
数值逼近法
泰勒级数法
将微分方程的解展开为泰勒级数,通过截断级数来逼 近解。
多项式逼近法
利用多项式来逼近微分方程的解,通过选取合适的基 函数和系数来提高逼近精度。
样条插值法
利用样条函数来逼近微分方程的解,具有更好的光滑 性和连续性。
迭代法
雅可比迭代法
通过迭代更新函数值来逼近微分方程 的解,具有简单易行的优点。
初值和边界条件的处理
根据实际问题,合理设定初值和边界 条件,以获得更准确的数值解。
收敛性和误差分析
对数值解进行收敛性和误差分析,评 估解的精度和稳定性。
数值解法的应用案例分析
人口增长模型
通过数值解法求解人口增长模型,预测未来人口数量,为政策制 定提供依据。
化学反应动力学
利用数值解法研究化学反应的动力学过程,模拟反应过程和结果。
数值分析第九章常微分方 程数值解法
• 引言 • 常微分方程数值解法的基本思想 • 数值解法的稳定性分析 • 数值解法的收敛性和误差分析 • 数值解法的实现和应用案例
01
引言
常微分方程的应用背景
自然科学
描述物理、化学、生物等自然 现象的变化规律。
工程领域
控制系统设计、航天器轨道计 算等。
数值分析常微分方程数值解

许多实际问题的数学模型是微分方程或微分方程的定解问题。
如物体运动、电路振荡、化学反映及生物群体的变化等。
常微分方程可分为线性、非线性、高阶方程与方程组等类;线性方程包含于非线性类中,高阶方程可化为一阶方程组。
若方程组中的所有未知量视作一个向量,则方程组可写成向量形式的单个方程。
因此研究一阶微分方程的初值问题⎪⎩⎪⎨⎧=≤≤=0)(),(y a y bx a y x f dxdy, (9-1) 的数值解法具有典型性。
常微分方程的解能用初等函数、特殊函数或它们的级数与积分表达的很少。
用解析方法只能求出线性常系数等特殊类型的方程的解。
对非线性方程来说,解析方法一般是无能为力的,即使某些解具有解析表达式,这个表达式也可能非常复杂而不便计算。
因此研究微分方程的数值解法是非常必要的。
只有保证问题(9-1)的解存在唯一的前提下,研究其数值解法或者说寻求其数值解才有意义。
由常微分方程的理论知,如果(9-1)中的),(y x f 满足条件(1)),(y x f 在区域} ),({+∞<<∞-≤≤=y b x a y x D ,上连续; (2)),(y x f 在上关于满足Lipschitz 条件,即存在常数,使得y y L y x f y x f -≤-),(),(则初值问题(9-1)在区间],[b a 上存在惟一的连续解)(x y y =。
在下面的讨论中,我们总假定方程满足以上两个条件。
所谓数值解法,就是求问题(9-1)的解)(x y y =在若干点b x x x x a N =<<<<= 210处的近似值),,2,1(N n y n =的方法。
),,2,1(N n y n =称为问题(9-1)的数值解,n n x x h -=+1称为由到1+n x 的步长。
今后如无特别说明,我们总假定步长为常量。
建立数值解法,首先要将微分方程离散化,一般采用以下几种方法: (1) 用差商近似导数在问题(9-1)中,若用向前差商hx y x y n n )()(1-+代替)(n x y ',则得)1,,1,0( ))(,()()(1-=≈-+N n x y x f hx y x y n n n n n)(n x y 用其近似值代替,所得结果作为)(1+n x y 的近似值,记为1+n y ,则有 1(,) (0,1,,1)n n n n y y hf x y n N +=+=-这样,问题(9-1)的近似解可通过求解下述问题100(,) (0,1,,1)()n n n n y y hf x y n N y y x +=+=-⎧⎨=⎩(9-2)得到,按式(9-2)由初值经过步迭代,可逐次算出N y y y ,,21。
数值分析常微分方程数值解法

第8页/共105页
➢ 数值积分方法(Euler公式)
设将方程 y=f (x, y)的两端从 xn 到xn+1 求积分, 得
y( xn1) y( xn )
xn1 f ( x, y( x))dx :
xn
xn1 F ( x)dx
xn
用不同的数值积分方法近似上式右端积分, 可以得到计算 y(xn+1)的不同的差分格 式.
h2 2
y''( )
Rn1
:
y( xn1)
yn1
h2 2
y''( )
h2 2
y''( xn ) O(h3 ).
局部截断误差主项
19
第20页/共105页
➢ 向后Euler法的局部截断误差
向后Euler法的计算公式
yn1 yn hf ( xn1, yn1 ), n 0, 1, 2,
定义其局部截断误差为
y 计算 的n递1 推公式,此类计算格式统称为差分格式.
3
第4页/共105页
数值求解一阶常微分方程初值问题
y' f ( x, y), a x b,
y(a)
y0
难点: 如何离散 y ?
➢ 常见离散方法
差商近似导数 数值积分方法 Taylor展开方法
4
第5页/共105页
➢ 差商近似导数(Euler公式)
(0 x 1)
y(0) 1.
解 计算公式为
yn1
yn
hfn
yn
h( yn
2xn ), yn
y0 1.0
n 0, 1, 2,
取步长h=0.1, 计算结果见下表
13
求常微分方程的数值解

求常微分方程的数值解一、背景介绍常微分方程(Ordinary Differential Equation,ODE)是描述自然界中变化的数学模型。
常微分方程的解析解往往难以求得,因此需要寻找数值解来近似地描述其行为。
求解常微分方程的数值方法主要有欧拉法、改进欧拉法、龙格-库塔法等。
二、数值方法1. 欧拉法欧拉法是最简单的求解常微分方程的数值方法之一。
它基于导数的定义,将微分方程转化为差分方程,通过迭代计算得到近似解。
欧拉法的公式如下:$$y_{n+1}=y_n+f(t_n,y_n)\Delta t$$其中,$y_n$表示第$n$个时间步长处的函数值,$f(t_n,y_n)$表示在$(t_n,y_n)$处的导数,$\Delta t$表示时间步长。
欧拉法具有易于实现和理解的优点,但精度较低。
2. 改进欧拉法(Heun方法)改进欧拉法又称Heun方法或两步龙格-库塔方法,是对欧拉法进行了精度上提升后得到的一种方法。
它利用两个斜率来近似函数值,并通过加权平均来计算下一个时间步长处的函数值。
改进欧拉法的公式如下:$$k_1=f(t_n,y_n)$$$$k_2=f(t_n+\Delta t,y_n+k_1\Delta t)$$$$y_{n+1}=y_n+\frac{1}{2}(k_1+k_2)\Delta t$$改进欧拉法比欧拉法精度更高,但计算量也更大。
3. 龙格-库塔法(RK4方法)龙格-库塔法是求解常微分方程中最常用的数值方法之一。
它通过计算多个斜率来近似函数值,并通过加权平均来计算下一个时间步长处的函数值。
RK4方法是龙格-库塔法中最常用的一种方法,其公式如下:$$k_1=f(t_n,y_n)$$$$k_2=f(t_n+\frac{\Delta t}{2},y_n+\frac{k_1\Delta t}{2})$$ $$k_3=f(t_n+\frac{\Delta t}{2},y_n+\frac{k_2\Delta t}{2})$$ $$k_4=f(t_n+\Delta t,y_n+k_3\Delta t)$$$$y_{n+1}=y_n+\frac{1}{6}(k_1+2k_2+2k_3+k_4)\Delta t$$三、数值求解步骤对于给定的常微分方程,可以通过以下步骤求解其数值解:1. 确定初值条件:确定$t=0$时刻的函数值$y(0)$。
数值分析常微分方程的数值解法

《计算机数学基础》数值部分第五单元辅导14 常微分方程的数值解法一、重点内容 1. 欧拉公式:),...,,,(),()(1-210=⎩⎨⎧+=+=≈01+1+n k kh x x y x hf y y x y kk k k k k局部截断误差是O (h 2)。
2. 改进欧拉公式:预报-校正公式:⎪⎩⎪⎨⎧++=+=++++)],(),([2),(1111k k k k k k k k k k y x f y x f hy y y x hf y y 校正值预报值即 ))],(,(),([211k k k k k k k k y x hf y x f y x f hy y +++=++ 或表成平均的形式:⎪⎪⎪⎩⎪⎪⎪⎨⎧+21=+=+=1+1+)(),(),(c p k p k k c k k k p y y y y x hf y y y x hf y y改进欧拉法的局部截断误差是O (h 3)3. 龙格-库塔法二阶龙格-库塔法的局部截断误差是O (h 3) 三阶龙格-库塔法的局部截断误差是O (h 4) 四阶龙格−库塔法公式: )22(643211κκκκ++++=+hy y k k其中 κ1=f (x k ,y k );κ2=f (x n +12h ,y k +21h κ1);κ3=f (x k +12h ,y n +21h κ2);κ4=f (x k +h ,y k +h κ3)四阶龙格-库塔法的局部截断误差是O (h 5)。
二、实例例1 用欧拉法解初值问题⎩⎨⎧1=060≤≤0--='2)().(y x xy y y ,取步长h =0.2。
计算过程保留4位小数。
解h =0.2, f (x )=-y -xy 2。
首先建立欧拉迭代格式),,)((.),(210=-420=--=+=21+k y x y y hx hy y y x hf y y k k k kk k k k k k k当k =0,x 1=0.2时,已知x 0=0,y 0=1,有y (0.2)≈y 1=0.2×1(4-0×1)=0.8000当k =1,x 2=0.4时,已知x 1=0.2, y 1=0.8,有 y (0.4)≈y 2=0.2×0.8×(4-0.2×0.8)=0.614 4 当k =2,x 3=0.6时,已知x 2=0.4,y 2=0.6144,有 y (0.6)≈y 3=0.2×0.6144×(4-0.4×0.4613)=0.8000例2 用欧拉预报-校正公式求解初值问题⎩⎨⎧1=10=++'2)(sin y x y y y ,取步长h =0.2,计算y (0.2),y (0.4)的近似值,计算过程保留5位小数。
数值分析第五章常微分方程数值解法讲解

? ? ?
? ?
yn+1
?
1 2
yp ? yc
§1 欧拉方法 /* Euler's Method */
y( xn?1) ? y(xn ) ? hy?( xn ) ? y(xn ) ? yn
y( xn?1) ? yn?1 ? yn ? h f ( xn , yn )
§1 Euler's Method
Taylor 展开法
yn?1 ? yn ? h f (xn , yn ) n ? 0, 1,...
?
y??xn?1 ??
y??xn ??
hy???xn ??
h2 2
y????xn ??
?
yn?1
?
? hf
?
y
xn ? 1 ,?
??? yn ? 1
?
y ?xn?1 ??? ?
y ?xn ?
?
hy??xn ??
h2 y???xn ??
h3 2
y????xn ??
而
y ?xn?1 ??
y ?xn ??
就是用差商近似导数
在xn点用一阶向前差 商近似一阶导数
y ?( xn ) ?
y(xn?1) ? h
y(xn )
y(xn?1) ? y(xn ) ? hy?(xn )
Euler's method
? y(xn ) ? yn y(xn?1) ? yn?1 ? yn ? h f (xn , yn )
? 欧拉公式的改进 :
式。隐式公式不能直接求解,一般需要用 Euler 显式公式
得到初值,然后用Euler 隐式公式迭代求解。因此隐式公
式较显式公式计算复杂,但稳定性好(后面分析)。
常微分方程的数值解法

常微分方程的数值解法1. 引言常微分方程是自变量只有一个的微分方程,广泛应用于自然科学、工程技术和社会科学等领域。
由于常微分方程的解析解不易得到或难以求得,数值解法成为解决常微分方程问题的重要手段之一。
本文将介绍几种常用的常微分方程的数值解法。
2. 欧拉方法欧拉方法是最简单的一种数值解法,其具体步骤如下:- 将自变量的区间等分为n个子区间;- 在每个子区间上假设解函数为线性函数,即通过给定的初始条件在每个子区间上构造切线;- 使用切线的斜率(即导数)逼近每个子区间上的解函数,并将其作为下一个子区间的初始条件;- 重复上述过程直至达到所需的精度。
3. 改进的欧拉方法改进的欧拉方法是对欧拉方法的一种改进,主要思想是利用两个切线的斜率的平均值来逼近每个子区间上的解函数。
具体步骤如下: - 将自变量的区间等分为n个子区间;- 在每个子区间上构造两个切线,分别通过给定的初始条件和通过欧拉方法得到的下一个初始条件;- 取两个切线的斜率的平均值,将其作为该子区间上解函数的斜率,并计算下一个子区间的初始条件;- 重复上述过程直至达到所需的精度。
4. 二阶龙格-库塔方法二阶龙格-库塔方法是一种更为精确的数值解法,其基本思想是通过近似计算解函数在每个子区间上的平均斜率。
具体步骤如下: - 将自变量的区间等分为n个子区间;- 在每个子区间上计算解函数的斜率,并以该斜率的平均值近似表示该子区间上解函数的斜率;- 利用该斜率近似值计算下一个子区间的初始条件,并进一步逼近解函数;- 重复上述过程直至达到所需的精度。
5. 龙格-库塔法(四阶)龙格-库塔法是目前常用的数值解法之一,其精度较高。
四阶龙格-库塔法是其中较为常用的一种,其具体步骤如下:- 将自变量的区间等分为n个子区间;- 在每个子区间上进行多次迭代计算,得到该子区间上解函数的近似值;- 利用近似值计算每个子区间上的斜率,并以其加权平均值逼近解函数的斜率;- 计算下一个子区间的初始条件,并进一步逼近解函数;- 重复上述过程直至达到所需的精度。
常微分方程的数值求解

常微分方程的数值求解在数学中,常微分方程是一类重要的数学模型,通常用来描述物理、化学、生物等自然现象中的变化规律。
对于一些复杂的微分方程,无法通过解析方法进行求解,这时候就需要借助数值方法来近似求解。
本文将介绍常微分方程的数值求解方法及其应用。
一、数值求解方法常微分方程的数值求解方法主要包括欧拉法、改进的欧拉法、龙格-库塔法等。
欧拉法是最简单也是最常用的数值求解方法,其基本思想是根据微分方程的导数近似求解下一个时间步上的解,并通过逐步迭代来得到整个解的数值近似。
改进的欧拉法在欧拉法的基础上做出了一定的修正,提高了数值求解的精度。
而龙格-库塔法则是一种更加精确的数值求解方法,通过考虑多个点的斜率来进行求解,从而减小误差。
二、应用领域常微分方程的数值求解方法在科学研究和工程实践中有着广泛的应用。
在物理学中,通过数值求解微分方程可以模拟天体运动、粒子运动等现象;在生物学领域,可以模拟生物种群的增长和变化规律;在工程领域,可以通过数值求解微分方程来设计控制系统、优化结构等。
三、实例分析以一个简单的一阶常微分方程为例:dy/dx = -y,初始条件为y(0) = 1。
我们可以用欧拉法来进行数值求解。
将时间间隔取为0.1,通过迭代计算可以得到y(1)的近似值为0.367。
而利用改进的欧拉法或者龙格-库塔法可以得到更加精确的数值近似。
这个例子展示了数值方法在解决微分方程问题上的有效性。
四、总结常微分方程是求解自然界中变化规律的重要数学工具,而数值方法则是解决一些难以解析求解的微分方程的有效途径。
通过本文的介绍,读者可以了解常微分方程的数值求解方法及其应用,希望可以对相关领域的研究和实践有所帮助。
至此,关于常微分方程的数值求解的文章正文部分结束。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
欧拉法具有 1 阶精度。
例1: 用欧拉公式求解初值问题
y 2xy2 (0 x 1.2)
y
0
1
取步长 h 0.1。
解: 应用Euler公式于题给初值问题的具体形式为:
yi1 yi 2hxi yi2 i 0,1,...,11
y
0
1
其中 xi 0。.1i 计算结果列于下表:
i
xi
L 0 s.t. f (x, y1) f (x, y2 ) L y1 y2 ,
x [a, b], y1, y2 [ y(x) , y(x) ]
二、初值问题解的存在唯一性
考虑一阶常微分方程的初值问题 /* Initial-Value Problem */:
dy f ( x, y) x [a, b] dx y(a) y0
定义 若某算法的局部截断误差为O(hp+1),则称该 算法有p 阶精度。
欧拉法的R局i 的部主截项断误差:
/* leading term */
Ri
y(xi1)
yi1
[ y(xi ) hy(xi )
h2 2
y(xi ) O(h3)][ yi
hf (xi ,
yi )]
h2 2
y( xi ) O(h3 )
yi y(xi ) (i 1, ... , n)
的方法称为微分方程的数值解法。 y1,L , yn 称为微分方程的数值解。
称节点间距 hi xi1 xi (i 0, ... , n 1)为步长, 通常采用等距节点,即取 hi = h (常数)。
三、初值问题的离散化方法
离散化方法的基本特点是依照某一递推公式, 按节点从左至右的顺序依次求出y(xi )的近似 yi 值(i 1, ... , n),取 y0。
常微分方程的数值解法分为 (1)初值问题的数值解法 (2)边值问题的数值解法
一、初值问题的数值解法
1、一阶常微分方程初值问题的一般形式
y f (x, y), a x b
y(a)
y0
(1)
2. 迭代格式的构造
(1) 构造思想:将连续的微分方程及初值条件离散为线性方程 组加以求解。由于离散化的出发点不同,产生出各种不同的数 值方法。基本方法有:有限差分法(数值微分)、有限体积法 (数值积分)、有限元法(函数插值)等等。
洛伦兹方程是大气流体动力学模型的一个简化的常微分方程组:
dx dt
x
y
dy
dt
rx
y
xz
dz dt
bz
xy
该方程组来源于模拟大气对流,该模型除了在天气预报中有显 著的应用之外,还可以用于研究空气污染和全球侯变化。洛伦 兹借助于这个模型,将大气流体运动பைடு நூலகம்强度x与水平和垂直方
向的温度变化y和z联系了起来。参数 称为普兰特数,r是规范 化的瑞利数,b 和几何形状相关。洛伦兹方程是非线性方程组,
(2) 一般构造方法: 离散点函数值集合 + 线性组合结构 → 近似公式
3. 微分方程的数值解法需要解决的主要问题
(1) 如何将微分方程离散化,并建立求其数值解的迭代公式? (2) 如何估计迭代公式的局部截断误差与整体误差? (3) 如何保证迭代公式的稳定性与收敛性?
4、相关定义
记 D {(x, y) a x b, y(x) y y(x) } 称 f (x, y)在区域D上对 y 满足Lipschitz条件是指:
x0
x1
记为
y( x1 ) y( x0 ) hy( x0 ) y0 h f ( x0 , y0 )
y1
亦称为欧拉折线法
/* Euler’s polygonal arc method*/
yi1 yi h f (xi , yi ) (i 0, ... , n 1)
定义 在假设 yi = y(xi),即第 i 步计算是精确的前提 下,考虑的截断误差 Ri = y(xi+1) yi+1 称为局部截断 误差 /* local truncation error */。
yi
y xi
1
0.1 1.000000 0.990099
2
0.2 0.980000 0.961538
3
0.3 0.941584 0.917431
如果计算 y,i1只用到前一步的值 ,y则i 称这类方
法为如单果步计方算法yi。1需用到前r步的值yi, yi1,L , yir1
,则称这类方法为r步方法。
§2 欧拉方法 /* Euler’s Method */
➢ 欧拉公式(单步显示公式):
向前差商近似导数
y( x0 )
y( x1 ) h
y( x0 )
(Numerical Methods for Ordinary Differential Equations )
问题驱动:蝴蝶效应 洛伦兹吸引子(Lorenz attractor)是由MIT大学的气象学家E dward Lorenz在1963年给出的,他给出第一个混沌现象——蝴 蝶效应。
图10.1.1蝴蝶效应示意图
无法求出解析解,必须使用数值方法求解上述微分方程组。洛
伦兹用数值解绘制结果图10.1.1,并发现了混沌现象。
§1 引 言
微分方程数值解一般可分为:常微分方程数值解和偏微分 方程数值解。自然界与工程技术中的许多现象,其数学表达式 可归结为常微分方程(组)的定解问题。一些偏微分方程问题 也可以转化为常微分方程问题来(近似)求解。Newton最早采 用数学方法研究二体问题,其中需要求解的运动方程就是常微 分方程。许多著名的数学家,如 Bernoulli(家族),Euler、 Gauss、Lagrange和Laplace等,都遵循历史传统,研究重要 的力学问题的数学模型,在这些问题中,许多是常微分方程的 求解。作为科学史上的一段佳话,海王星的发现就是通过对常 微分方程的近似计算得到的。本章主要介绍常微分方程数值解 的若干方法。
只要f (x, y)在a,b R1上连续, 且关于 y 满足
Lipschitz 条件,即存在与 x, y无关的常数 L 使 | f (x, y1) f (x, y2 ) | L | y1 y2 |
对任意定义在 a,b上的 y1 x, y2 x都成立,
则上述IVP存在唯一解。
求函数 y(x) 在一系列节点 a = x0< x1<…< xn= b 处的近似值