函数模型的应用实例练习题及答案解析
【金版新学案】高一数学人教A版必修一练习:3.2.2函数模型的应用实例(含答案详析)

(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(每小题5分,共20分)1.某天0时,小鹏同学生病了,体温上升,吃过药后感觉好多了,中午时他的体温基本正常(正常体温约为37 ℃),但是下午他的体温又开始上升,直到半夜才感觉身上不那么发烫了.下面能大致反映出小鹏这一天(0时至24时)体温变化情况的图象是( )解析: 观察选项A 中的图象,体温逐渐降低,不符合题意;选项B 中的图象不能反映“下午他的体温又开始上升”这一过程;选项D 中的图象不能体现“下午他的体温又开始上升”与“直到半夜才感觉身上不那么发烫了”这一过程.答案: C2.已知A ,B 两地相距150千米,某人开汽车以60千米/时的速度从A 地到达B 地,在B 地停留1小时后再以50千米/时的速度返回A 地,则汽车离开A 地的距离x 关于时间t (小时)的函数解析式是( )A .x =60tB .x =60t +50tC .x =⎩⎪⎨⎪⎧60t ,t 150-50t tD .x =⎩⎪⎨⎪⎧60t ,t 150,t150-t -t解析: 显然出发、停留、返回三个过程中行车速度是不同的,故应分三段表示函数,选D.答案: D3.某地为了抑制一种有害昆虫的繁殖,引入了一种以该昆虫为食物的特殊动物,已知该动物的繁殖数量y (只)与引入时间x (年)的关系为y =a log 2(x +1),若该动物在引入一年后的数量为100只,则第7年它们发展到( )A .300只B .400只C .600只D .700只解析: 将x =1,y =100代入y =a log 2(x +1)得,100=a log 2(1+1),解得a =100,所以x =7时,y =100log 2(7+1)=300.答案: A4.用长度为24 m 的材料围成一矩形场地,并且中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为( )A .3 mB .4 mC .5 mD .6 m解析: 设隔墙的长为x m ,矩形面积为S ,则S =x ·24-4x 2=x (12-2x )=-2x 2+12x =-2(x -3)2+18,所以当x =3时,S 有最大值为18. 答案: A二、填空题(每小题5分,共15分)5.生产某机器的总成本y (万元)与产量x (台)之间的函数关系式是y =x 2-75x ,若每台机器售价为25万元,则该厂获利润最大时生产的机器台数为________台.解析: 设该厂获利润为g (x ),则g (x )=25x -y =25x -(x 2-75x )=-x 2+100x =-(x -50)2+2 500, 当x =50时,g (x )有最大值2 500万元. 答案: 506.甲同学家到乙同学家的途中有一公园,甲同学家到公园的距离与乙同学家到公园的距离都是2 km.下图表示甲从家出发到乙同学家经过的路程y (km)与时间x (min)的关系,其中甲在公园休息的时间是10 min ,那么y =f (x )的解析式为________.解析: 由题图知所求函数是一个分段函数,且各段均是直线,可用待定系数法求得y =f (x )=⎩⎪⎨⎪⎧115x x ,x,110x -x答案: y =f (x )=⎩⎪⎨⎪⎧115x x 30<x110x -x7.某厂有许多形状为直角梯形的铁皮边角料,如图,为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,当截取的矩形面积最大时,矩形的两边长x 、y 应分别为________.解析: 由图知x 、y 满足关系式x 20=24-y 16,即y =24-45x ,矩形的面积S =xy =x ⎝⎛⎭⎫24-45x =-45(x -15)2+180,故x =15,y =12时S 取最大值.答案: x =15,y =12三、解答题(每小题10分,共20分)8.某游乐场每天的盈利额y 元与售出的门票张数x 之间的函数关系如图所示,试由图象解决下列问题:(1)求y 与x 的函数解析式;(2)要使该游乐场每天的盈利额超过1 000元,每天至少卖出多少张门票?解析: (1)由图象知,可设y =kx +b ,x ∈[0,200]时,过点(0,-1 000)和(200,1 000),解得k =10,b =-1 000,从而y =10x -1 000;x ∈(200,300]时,过点(200,500)和(300,2 000),解得k =15,b =-2 500,从而y =15x -2 500,所以y =⎩⎪⎨⎪⎧10x -1 000,x ∈[0,200],15x -2 500,x ∈,300].(2)每天的盈利额超过1 000元,则x ∈(200,300],由15x -2 500>1 000得,x >7003,故每天至少需要卖出234张门票.9.为了保护学生的视力,课桌椅的高度都是按一定的关系配套设计的.研究表明:假设课桌的高度为y cm ,椅子的高度为x cm ,则y 应是x 的一次函数,下表列出了两套符合条件的课桌椅的高度:(1)请你确定y 与(2)现有一把高42.0 cm 的椅子和一张高78.2 cm 的课桌,它们是否配套?为什么? 解析: (1)根据题意,课桌高度y 是椅子高度x 的一次函数,故可设函数解析式为y =kx +b (k ≠0).将符合条件的两套课桌椅的高度代入上述函数解析式.得⎩⎪⎨⎪⎧ 40k +b =75,37k +b =70.2,所以⎩⎪⎨⎪⎧k =1.6,b =11,所以y 与x 的函数解析式是y =1.6x +11. (2)把x =42代入(1)中所求的函数解析式中,有y =1.6×42+11=78.2. 所以给出的这套桌椅是配套的.。
人教a版必修1学案:3.2.2函数模型的应用实例(含答案)

3.2.2 函数模型的应用实例自主学习1.掌握几种初等函数的应用.2.理解用拟合函数的方法解决实际问题的方法. 3.了解应用实例的三个方面和数学建模的步骤.1.函数模型的应用实例主要包括三个方面:(1)________________________________________________; (2)________________________________________________; (3)________________________________________________. 2.面临实际问题,自己建立函数模型的步骤:(1)________________;(2)________;(3)______________; (4)______________; (5)________;(6)______________.对点讲练已知函数模型的应用问题【例1】 某公司生产一种电子仪器的固定成本为20 000元,每生产一台仪器需增加投入100元,已知总收益满足函数:R (x )=⎩⎪⎨⎪⎧400x -12x 2 (0≤x ≤400)80 000 (x >400).其中x 是仪器的月产量.(1)将利润表示为月产量的函数f (x );(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(总收益=总成本+利润)变式迁移1 为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t的函数关系式为y =(116)t -a (a 为常数)如图所示.根据图中提供的信息,回答下列问题:(1)从药物释放开始,每立方米空气中的含药量y (毫克)与时间t (小时)之间的函数关系式为__________________;(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那么从药物释放开始,至少需要经过________小时后,学生才能回到教室.自建函数模型的应用问题【例2】某公司每年需购买某种元件8 000个用于组装生产,每年分n次等量进货,每进一次货(不分进货量大小)费用500元,为了持续生产,需有每次进货的一半库存备用,每件每年库存费2元,问分几次进货可使得每年购买和贮存总费用最低?变式迁移2 某工厂拟建一座平面图为矩形且面积为200 m2的三级污水处理池(平面图如图所示),由于地形限制,长、宽都不能超过16 m,如果池外周壁建造单价为每米400元,中间墙建造单价为每米248元,池底建造单价为每平方米80元(池壁的厚度忽略不计,且池无盖).(1)写出总造价y(元)与污水处理池长x(m)的函数关系式,并指出其定义域.(2)求污水处理池的长和宽各为多少时,污水处理池的总造价最低?并求出最低总造价.函数模型的选择【例3】某工厂今年1月、2月、3月生产某种产品的数量分别是1万件、1.2万件、1.3万件,为了估测以后每个月的产量,以这三个月的产品数量为依据,用一个函数模拟该产品的月产量y与月份x的关系,模拟函数可以选用二次函数或函数y=ab x+c(其中a,b,c为常数,a≠0),已知4月份该产品的产量为1.37万件,请问用以上哪个函数作为模拟函数较好,并说明理由.变式迁移3 某地西红柿从2月1日起开始上市,通过市场调查,得到西红柿种植成本Q (单位:元/102kg)(1)Q 与上市时间t 的变化关系;Q =at +b ,Q =at 2+bt +c ,Q =a ·b t ,Q =a ·log b t ;(2)利用你选取的函数,求西红柿种植成本最低时的上市天数及最低种植成本.1.解答应用题的基本步骤: (1)设:合理、恰当地设出变量;(2)写:根据题意,抽象概括数量关系,并能用数学语言表示,得到数学问题; (3)算:对所得数学问题进行分析、运算、求解;(4)答:将数学问题的解还原到实际生活问题中,给出最终的答案. 2.在中学阶段,用函数拟合解决实际问题的基本过程是:课时作业一、选择题1现准备用下列函数中的一个近似地表示这些数满足的规律,其中最接近的一个是( )A .V =log 2tB .V =log 12t C .V =t 2-12D .V =2t -22.计算机成本不断降低,若每隔3年计算机价格降低13,则现在价格为8 100元的计算机,9年后的价格可降为( )A .2 400元B .900元C .300元D .3 600元3. 一个高为H ,盛水量为V 0的水瓶的轴截面如图所示,现以均匀速度往水瓶中灌水,直到灌满为止,如果水深h 时水的体积为V ,则函数V =f (h )的图象大致是( )4.某种电热水器的水箱盛满水是200升,加热到一定温度可浴用.浴用时,已知每分钟放水34升,在放水的同时注水,t分钟注水2t2升,当水箱内水量达到最小值时,放水自动停止.现假定每人洗浴用水65升,则该热水器一次至多可供几人洗澡() A.3人B.4人C.5人D.6人二、填空题5.60年国庆,举国欢腾,某旅游胜地的客流量急速增加.某家客运公司为招揽游客,推出了客运定票的优惠政策:如果行程不超过100 km,票价是0.4元/km;如果超过100 km,则超过100 km的部分按0.3元/km定价.则客运票价y元与行程公里x km之间的函数关系是______________________________.6. 右图表示一位骑自行车和一位骑摩托车者在相距为80 km的两城镇间旅行的函数图象,由图可知:骑自行车者用6 h(含途中休息的1 h),骑摩托车者用了2 h.有人根据这个函数图象,提出了关于这两个旅行者的如下信息:①骑自行车者比骑摩托车者早出发3 h,晚到1 h;②骑自行车者是变速运动,骑摩托车者是匀速运动;③骑摩托车者在出发1.5 h后追上骑自行车者.其中正确的序号是__________________________________________________.三、解答题7.某产品的总成本y(万元)与产量x(台)之间的函数关系式是y=3 000+20x-0.1x2(0<x<240,x∈N*),若每台产品的售价为25万元,则生产者不赔本时(销售收入不小于总成本)的最低产量是多少.8.某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100个时,凡多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元.(1)当一次订购量为多少时,零件的实际出厂单价恰降为51元?(2)设一次订购量为x个,零件的实际出厂单价为P元,写出函数P=f(x)的表达式;(3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1 000个,利润又是多少元?3.2.2函数模型的应用实例答案自学导引1.(1)利用给定的函数模型解决实际问题 (2)建立确定性的函数模型解决问题 (3)建立拟合函数模型解决实际问题2.(1)收集数据 (2)描点 (3)选择函数模型 (4)求函数模型 (5)检验 (6)用函数模型解决实际问题对点讲练【例1】 解 (1)设每月产量为x 台,则总成本为20 000+100x ,从而f (x )=⎩⎪⎨⎪⎧-12x 2+300x -20 000 (0≤x ≤400)60 000-100x (x >400).(2)当0≤x ≤400时,f (x )=-12(x -300)2+25 000,∴当x =300时,有最大值25 000;当x >400时,f (x )=60 000-100x 是减函数, f (x )<60 000-100×400<25 000. ∴当x =300时,f (x )取最大值.∴每月生产300台仪器时,利润最大, 最大利润为25 000元.变式迁移1 (1) y =⎩⎨⎧10t , 0≤t ≤110,⎝⎛⎭⎫116t -110, t >110(2)0.6解析 (1)设y =kt (k ≠0),由图象知y =kt 过点(0.1,1),则1=k ×0.1,k =10, ∴y =10t (0≤t ≤0.1);由y =⎝⎛⎭⎫116t -a过点(0.1,1)得1=⎝⎛⎭⎫1160.1-a , a =0.1,∴y =⎝⎛⎭⎫116t -0.1(t >0.1).∴y =⎩⎨⎧10t , 0≤t ≤110,⎝⎛⎭⎫116t -110,t >110.(2)由⎝⎛⎭⎫116t -0.1≤0.25=14,得t ≥0.6, 故至少需经过0.6小时.【例2】 解 设每年购买和贮存元件总费用为y 元,其中购买成本费为固定投入, 设为c 元,则y =500n +2×8 000n ×12+c=500n +8 000n +c =500(n +16n )+c=500(n -4n )2+4 000+c ,当且仅当n =4n,即n =4时,y 取得最小值且y min =4 000+c .所以分4次进货可使得每年购买和贮存元件总费用最低.变式迁移2 解 (1)设污水处理池的长为x m ,则宽为200xm ,总造价为y .∴y =400(2x +2×200x )+248×200x ×2+80×200=800(x +324x )+16 000.∵⎩⎪⎨⎪⎧0<x ≤160<200x≤16,∴12.5≤x ≤16.故其定义域为[12.5,16].(2)先讨论y =800(x +324x)+16 000在[12.5,16]上的单调性.设x 1,x 2∈[12.5,16]且x 1<x 2,则y 1-y 2=800[(x 1-x 2)+324(1x 1-1x 2)]=800(x 1-x 2)(1-324x 1x 2).∵x 1,x 2∈[12.5,16],x 1<x 2, ∴x 1·x 2<162<324.∴1-324x 1x 2<0,x 1-x 2<0.∴y 1-y 2>0.∴此函数在[12.5,16]上单调递减. ∴当x =16时,y min =45 000(元),此时,宽为20016m =12.5 m.∴当池长为16 m ,宽为12.5 m 时, 总造价最低为45 000元.【例3】 解 设f (x )=px 2+qx +r (p ≠0),则有 ⎩⎪⎨⎪⎧f (1)=p +q +r =1,f (2)=4p +2q +r =1.2,f (3)=9p +3q +r =1.3.解得p =-0.05,q =0.35,r =0.7. ∴f (x )=-0.05x 2+0.35x +0.7,∴f (4)=-0.05×42+0.35×4+0.7=1.3. 设g (x )=ab x +c (a ≠0),则有 ⎩⎪⎨⎪⎧g (1)=ab +c =1,g (2)=ab 2+c =1.2,g (3)=ab 3+c =1.3.解得a =-0.8,b =0.5,c =1.4. ∴g (x )=-0.8×0.5x +1.4,∴g (4)=-0.8×0.54+1.4=1.35.经比较可知,用g (x )=-0.8×0.5x +1.4作为模拟函数较好. 变式迁移3 解 (1)由表中数据知,当时间t 变化时,种植成本并不是单调的, 故只能选取Q =at 2+bt +c .即⎩⎪⎨⎪⎧150=a ×502+b ×50+c 108=a ×1102+b ×110+c 150=a ×2502+b ×250+c, 解得Q =1200t 2-32t +4252. (2)Q =1200(t -150)2+4252-2252=1200(t -150)2+100, ∴当t =150天时,西红柿的种植成本最低,为100元/102 kg. 课时作业 1.C 2.A3.D [考察相同的Δh 内ΔV 的大小比较.] 4.B [设最多用t 分钟,则水箱内水量y =200+2t 2-34t ,当t =172时,y 有最小值,此时共放水34×172=289(升),可供4人洗澡.]5.y =⎩⎪⎨⎪⎧0.4x ,0<x ≤100,40+0.3(x -100),x >1006.①②解析 ③错,骑摩托车者出发1.5 h 时走了60 km ,而从图中可看出骑自行车者走的距离大于60 km.7.解 由题意得⎩⎪⎨⎪⎧3 000+20x -0.1x 2≤25x 0<x <240解得150≤x <240,x ∈N *∴生产者不赔本时的最低产量是150台.8.解 (1)设每个零件的实际出厂价恰好降为51元时,一次订购量为x 0个,则x 0=100+60-510.02=550(个).∴当一次订购量为550个时,每个零件的实际出厂价恰好降为51元. (2)当0<x ≤100时,P =60; 当100<x <550时,P =60-0.02(x -100)=62-0.02x ; 当x ≥550时,P =51.∴P =f (x )=⎩⎪⎨⎪⎧60, 0<x ≤100,62-0.02x , 100<x <550,51, x ≥550(x ∈N +).(3)设销售商一次订购量为x 个时,工厂获得的利润为S 元,则 S =(P -40)x =⎩⎪⎨⎪⎧20x , 0<x ≤100,22x -0.02x 2, 100<x <550,11x , x ≥550(x ∈N +)当x =500时,S =22×500-0.02×5002=6 000(元);当x =1 000时,S =11×1 000=11 000(元).∴当销售商一次订购500个零件时,该厂获得的利润是6 000元;如果一次订购1 000个零件时,利润是11 000元.。
16三角函数模型简单应用练习及参考答案

1.6 三角函数模型简单应用练习题:1.你能利用函数sin y x =的奇偶性画出图象吗?它与函数sin y x =的图象有什么联系?2.已知:1sin 2α=-,若(1),22ππα∈-⎛⎫⎪⎝⎭; (2)(0,2)απ∈;(3)α是第三象限角;(4)α∈R .分别求角α。
3.已知[]0,2θπ∈, sin ,cos θθ分别是方程210x kx k -++=的两个根,求角θ.4.设A 、B 、C 、D 是圆内接四边形ABCD 的四个内角,求证: (1)sin A =sin C ;(2)cos (A +B )=cos (C +D ); (3)tan (A +B +C )=-tan D .5.某商品一年内出厂价格在6元的基础上按月份随正弦曲线波动,已知3月份达到最高价格8元,7月份价格最低为4元,该商品在商店内的销售价格在8元基础上按月份随正弦曲线波动,5月份销售价格最高为10元,9月份销售价最低为6元,假设商店每月购进这种商品m 件,且当月销完,你估计哪个月份盈利最大?6.把一张纸卷到圆柱形的纸筒面上,卷上几圈.用剪刀斜着..将纸筒剪断,再把卷着的纸展开,你就会看到:纸的边缘线是一条波浪形的曲线,试一试动手操作一下.它是正弦曲线吗?7.如图,铁匠师傅在打制烟筒弯脖时,为确保对接成直角,在铁板上的下剪线正好是余弦曲线:cos xy a a=的一个周期的图象,问弯脖的直径为12 cm 时,a 应是多少cm ?8.已知函数f (x )=x 2cos 12-,试作出该函数的图象,并讨论它的奇偶性、周期性以及区间[0,2π]上的单调性。
9、(14分)如图,扇形AOB 的半径为2,扇形的圆心角为4π,PQRS 是扇形的内接矩形,设∠AOP=θ, (1) 试用θ表示矩形PQRS 的面积y ;(2)利用正、余弦的和(差)与倍角公式化简矩形面积表达式y.10.某人用绳拉车沿直线方向前进100米,若绳与行进方向的夹角为30°,人的拉力为20牛,则人对车所做的功为多少焦.11.某港口水的深度y (米)是时间t ,单位:时)(24t 0≤≤,记作y=f(x),下面是某日水深的数据:经长期观察,y=f(t)的曲线可以近似地看成函数b t Asin y +=ϖ的图象。
数学建模-指数函数模型的应用(含答案解析)

数学建模-指数函数模型的应用学校:___________姓名:___________班级:___________考号:___________一、解答题1.观察实际情景,提出并分析问题(1)实际情景2022年2月,某地发生了新冠肺炎疫情,新冠肺炎是一种传染病,其传染过程的强度和广度分为:(1)散发:是指传染病在人群中散在发生;(2)流行:是指某一地区或某一单位,在某一时期内,某种传染病的发病率,超过了历年同期的发病水平;(3)大流行:指某种传染病在一个短时期内迅速传播、蔓延,超过了一般的流行强度;(4)暴发:指某一局部地区或单位,在短期内突然出现众多的同一种疾病的病人. 如果在新冠肺炎传染的过程中不认为介入,切断其传染链,则对整个社会经济的发展带来严重的后果.(2)提出问题如果没有人工干预,不同时间段内的病例数会按照怎样的规律进行增长呢,对于某个时间内新增的病例数是否可以预测,以期对其传播蔓延进行必要的控制,减少人民生命财产的损失呢?(3)分析问题可以通过收集合适地区的新增病例数并结合建立适当的数学模型,找出病例数增长规律,并对一定时间后新增病例进行估计以支持卫生部门的防疫工作.2.收集数据利用互联网等信息技术,我们可以搜索到一些原始的数据.例如,我们搜集到某地区一周内的累计病例数,请结合上述数据建立合理的数学模型,并估计第9天新增病例数.3.分析数据累计病例数是时间的函数,但没有现成的函数模型.因此,可以先画出散点图,利用图象直观分析这组数据的变化规律,从而帮助我们选择函数类型,散点图如图所示:当然,我们可以利用信息技术,通过函数拟合的方法来帮助选择适当的函数模型. 4.建立模型根据散点图的形状可设函数模型近似为e at y k =,利用表中的数据可求0.221000e t y =. 5.检验模型画出函数的图形,对比散点图,吻合度很好.6.问题解决该地区病例数y 与时间t 基本满足0.221000e t y =的函数关系,第9天时,预计新增病例数为:0.2291000e 7242y ⨯=≈,我们会发现累计病例数急剧增加,需卫生防疫部门及时介入,采取相应阻断措施.7.问题拓展在上述模型的建立的过程中,我们根据散点图选择了函数模型,然后利用其中的两个点求出模型的两个参数,随着点的选择的不同,所得函数的模型也相异,那么请同学利用课余时间思考如何评价不同模型的优劣?2.大气压强p =压力受力面积,它的单位是“帕斯卡”(Pa ,21Pa 1N/m =),已知大气压强()Pa p 随高度()m h 的变化规律是0e kh p p -=,0p 是海平面大气压强,10.000126m k -=.当地高山上一处大气压强是海平面处大气压强的13,求高山上该处的海拔.3.牛奶保鲜时间因储藏时温度的不同而不同,假定保鲜时间与储藏温度间的关系为指数型函数,若牛奶放在0℃的冰箱中,保鲜时间约是192h ,而在22℃的厨房中则约是42h.(1)写出保鲜时间y (单位:h )关于储藏温度x (单位:℃)的函数解析式;(2)利用(1)中结论,指出温度在30℃和16℃的保鲜时间;(参考数据15110.125732⎛⎫ ⎪≈⎝⎭,81170.32832⎛⎫≈ ⎪⎝⎭,精确到1h )(3)运用上面的数据,作此函数的图象.二、单选题4.我国某科研机构新研制了一种治疗新冠肺炎的注射性新药,并已进入二期临床试验阶段.已知这种新药在注射停止后的血药含量c (t )(单位:mg/L )随着时间t (单位:h )的变化用指数模型()0e ktc c t -=描述,假定某药物的消除速率常数0.1k =(单位:1h -),刚注射这种新药后的初始血药含量02000mg/L c =,且这种新药在病人体内的血药含量不低于1000mg/L 时才会对新冠肺炎起疗效,现给某新冠病人注射了这种新药,则该新药对病人有疗效的时长大约为( )(参考数据:ln20.693,ln3 1.099≈≈)A .5.32hB .6.23hC .6.93hD .7.52h 5.2021年,郑州大学考古科学队在荣阳官庄遗址发现了一处大型青铜铸造作坊.利用碳14测年确认是世界上最古老的铸币作坊.已知样本中碳14的质量N 随时间t (单位:年)的衰变规律满足5730012t N N ⎛⎫=⋅ ⎪⎝⎭(0N 表示碳14原有的质量).经过测定,官庄遗址青铜布币样本中碳14的质量约是原来的2至34,据此推测青铜布币生产的时期距今约多少年?()(参考数据:2log 3 1.6≈) A .2600年 B .3100年 C .3200年D .3300年参考答案:1.略【详解】略2.约为8719m 【分析】解方程001e 3kh p p -=即可得解. 【详解】解:由001e 3kh p p p -==可得ln3kh -=-,可得()ln 38719m h k =≈. 3.(1)22719232x y ⎛⎫=⋅ ⎪⎝⎭()0x(2)储藏温度为30C ︒保鲜时间约24小时;储藏温度为16C ︒保鲜时间约为63小时.(3)图象见解析【分析】(1)设(0x y k a k =≠,0a >且1)a ≠,则利用牛奶放在0C ︒的冰箱中,保鲜时间约为192h ,放在22C ︒的厨房中,保鲜时间约为42h ,即可得出函数解析式; (2)将30x =与16x =代入函数解析式,求值即可;(3)根据函数解析式画出函数草图.(1)解:设(0x y k a k =≠,0a >且1)a ≠,则有2219242?k k a =⎧⎨=⎩,∴1221927()32k a =⎧⎪⎨=⎪⎩,22719232xy ⎛⎫∴=⋅ ⎪⎝⎭()0x .(2)解:30x =时,30227192()3242y =≈,即储藏温度为30C ︒保鲜时间约24小时;16x =时,16227192()6332y =≈,即储藏温度为16C ︒保鲜时间约为63小时.(3)解:因为22719232x y ⎛⎫=⋅ ⎪⎝⎭()0x ,函数图象如下所示:.4.C【分析】利用已知条件()0.100e e 200kt t t c c --==,该药在机体内的血药浓度变为1000mg/L 时需要的时间为1t ,转化求解即可.【详解】解:由题意得:()0.100e e 200kt t t c c --==设该要在机体内的血药浓度变为1000mg/L 需要的时间为1t()10.1120001000e t t c -=≥10.12e 1t -≥ 故0.1ln 2t -≥-,ln 2 6.930.1t ≤≈ 故该新药对病人有疗效的时长大约为6.93h故选:C5.A【分析】根据题意列出不等式,求出22922865t <<,从而求出正确答案.57300001324t N N N ⎛⎫<⋅< ⎪⎝⎭,解得:22922865t <<,故选A. 故选:A。
范文函数模型的应用实例练习题及答案解析

1.某公司为了适应市场需求,对产品结构做了重大调整.调整后初期利润增长迅速,后来增长越来越慢,若要建立恰当的函数模型来反映该公司调整后利润y 与产量x 的关系,则可选用( )A .一次函数B .二次函数C .指数型函数D .对数型函数解析:选D.一次函数保持均匀的增长,不符合题意;二次函数在对称轴的两侧有增也有降;而指数函数是爆炸式增长,不符合“增长越来越慢”;因此,只有对数函数最符合题意,先快速增长,后来越来越慢.2.某种植物生长发育的数量yA .y =2x -1B .y =x 2-1C .y =2x -1D .y =-+2解析:选D.画散点图或代入数值,选择拟合效果最好的函数,故选D.3.如图表示一位骑自行车者和一位骑摩托车者在相距80 km 的两城镇间旅行的函数图象,由图可知:骑自行车者用了6小时,沿途休息了1小时,骑摩托车者用了2小时,根据这个函数图象,推出关于这两个旅行者的如下信息:①骑自行车者比骑摩托车者早出发了3小时,晚到1小时;②骑自行车者是变速运动,骑摩托车者是匀速运动;③骑摩托车者在出发了小时后,追上了骑自行车者. 其中正确信息的序号是( ) A .①②③ B .①③C .②③D .①② 解析:选A.由图象可得:①骑自行车者比骑摩托车者早出发了3小时,晚到1小时,正确;②骑自行车者是变速运动,骑摩托车者是匀速运动,正确;③骑摩托车者在出发了小时后,追上了骑自行车者,正确.4.长为4,宽为3的矩形,当长增加x ,且宽减少x2时面积最大,此时x =________,面积S =________. 解析:依题意得:S =(4+x )(3-x 2)=-12x 2+x +12 =-12(x -1)2+1212,∴当x =1时,S max =1212. 答案:1 12121)A .指数函数B .反比例函数C .一次函数D .二次函数解析:选C.画出散点图,结合图象(图略)可知各个点接近于一条直线,所以可用一次函数表示.2.某林场计划第一年造林10000亩,以后每年比前一年多造林20%,则第四年造林( )A .14400亩B .172800亩C .17280亩D .20736亩解析:选=10000×(1+20%)3=17280.3.某商品价格前两年每年递增20%,后两年每年递减20%,则四年后的价格与原来价格相比,变化情况是( )A .增加%B .减少%C .减少%D .不增不减解析:选B.设该商品原价为a ,四年后价格为a (1+2·(1-2=.所以(1-a ==%a ,即比原来减少了%.4.据调查,某自行车存车处在某星期日的存车量为2000辆次,其中变速车存车费是每辆一次元,普通车存车费是每辆一次元,若普通车存车数为x 辆次,存车费总收入为y 元,则y 关于x 的函数关系式是( )A .y =+800(0≤x ≤2000)B .y =+1600(0≤x ≤2000)C .y =-+800(0≤x ≤2000)D .y =-+1600(0≤x ≤2000)解析:选D.由题意知,变速车存车数为(2000-x )辆次,则总收入y =+(2000-x )×=+1600-=-+1600(0≤x ≤2000).5.如图,△ABC 为等腰直角三角形,直线l 与AB 相交且l ⊥AB ,直线l 截这个三角形所得的位于直线右方的图形面积为y ,点A 到直线l 的距离为x ,则y =f (x )的图象大致为四个选项中的( )解析:选C.设AB =a ,则y =12a 2-12x 2=-12x 2+12a 2,其图象为抛物线的一段,开口向下,顶点在y 轴上方.故选C.6.小蜥蜴体长15 cm ,体重15 g ,问:当小蜥蜴长到体长为20 cm 时,它的体重大约是( )A .20 gB .25 gC .35 gD .40 g解析:选C.假设小蜥蜴从15 cm 长到20 cm ,体形是相似的.这时蜥蜴的体重正比于它的体积,而体积与体长的立方成正比.记体长为20 cm 的蜥蜴的体重为W 20,因此有W 20=W 15·203153≈(g),合理的答案为35 g .故选C.7.现测得(x ,y )的两组值为(1,2),(2,5),现有两个拟合模型,甲:y =x 2+1;乙:y =3x -1.若又测得(x ,y )的一组对应值为(3,,则应选用________作为拟合模型较好.解析:图象法,即描出已知的三个点的坐标并画出两个函数的图象(图略),比较发现选甲更好. 答案:甲8.一根弹簧,挂重100 N 的重物时,伸长20 cm ,当挂重150 N 的重物时,弹簧伸长________.解析:由10020=150x,得x =30. 答案:30 cm9.某工厂8年来某产品年产量y 与时间t 年的函数关系如图,则:①前3年总产量增长速度越来越快;②前3年中总产量增长速度越来越慢;③第3年后,这种产品停止生产;④第3年后,这种产品年产量保持不变.以上说法中正确的是________.解析:观察图中单位时间内产品产量y 变化量快慢可知①④.答案:①④10.某公司试销一种成本单价为500元的新产品,规定试销时销售单价不低于成本单价,又不高于800元.经试销调查,发现销售量y (件)与销售单价x (元)之间的关系可近似看作一次函数y =kx +b (k ≠0),函数图象如图所示.(1)根据图象,求一次函数y =kx +b (k ≠0)的表达式;(2)设公司获得的毛利润(毛利润=销售总价-成本总价)为S 元.试问销售单价定为多少时,该公司可获得最大毛利润最大毛利润是多少此时的销售量是多少解:(1)由图象知,当x =600时,y =400;当x =700时,y =300,代入y =kx +b (k ≠0)中, 得⎩⎪⎨⎪⎧ 400=600k +b ,300=700k +b ,解得⎩⎪⎨⎪⎧ k =-1,b =1000.所以,y =-x +1000(500≤x ≤800).(2)销售总价=销售单价×销售量=xy ,成本总价=成本单价×销售量=500y ,代入求毛利润的公式,得S =xy -500y =x (-x +1000)-500(-x +1000)=-x 2+1500x -500000=-(x -750)2+62500(500≤x ≤800).所以,当销售单价定为750元时,可获得最大毛利润62500元,此时销售量为250件.11.物体在常温下的温度变化可以用牛顿冷却规律来描述:设物体的初始温度是T 0,经过一定时间t 后的温度是T ,则T -T a =(T 0-T a )·(12)t h ,其中T a 表示环境温度,h 称为半衰期. 现有一杯用88 ℃热水冲的速溶咖啡,放在24 ℃的房间中,如果咖啡降温到40 ℃需要20 min ,那么降温到35 ℃时,需要多长时间解:由题意知40-24=(88-24)·(12)20h , 即14=(12)20h . 解之,得h =10.故T -24=(88-24)·(12)t 10. 当T =35时,代入上式,得35-24=(88-24)·(12)t 10, 即(12)t 10=1164. 两边取对数,用计算器求得t ≈25.因此,约需要25 min ,可降温到35 ℃.12.某地区为响应上级号召,在2011年初,新建了一批有200万平方米的廉价住房,供困难的城市居民居住.由于下半年受物价的影响,根据本地区的实际情况,估计今后住房的年平均增长率只能达到5%.(1)经过x 年后,该地区的廉价住房为y 万平方米,求y =f (x )的表达式,并求此函数的定义域.(2)作出函数y =f (x )的图象,并结合图象求:经过多少年后,该地区的廉价住房能达到300万平方米解:(1)经过1年后,廉价住房面积为200+200×5%=200(1+5%);经过2年后为200(1+5%)2;…经过x 年后,廉价住房面积为200(1+5%)x ,∴y =200(1+5%)x (x ∈N *).(2)作函数y =f (x )=200(1+5%)x (x ≥0)的图象,如图所示.作直线y =300,与函数y =200(1+5%)x 的图象交于A 点,则A (x 0,300),A 点的横坐标x 0的值就是函数值y =300时所经过的时间x 的值.因为8<x 0<9,则取x 0=9,即经过9年后,该地区的廉价住房能达到300万平方米.。
3.2.2 函数模型的应用实例 word版含答案

3.2.2 函数模型的应用实例【选题明细表】知识点、方法题号利用已知函数模型解决问题3,5,7,10 自建函数模型解决问题1,2,4,9拟合函数模型解决问题6,81.某公司为了适应市场需求对产品结构做了重大调整,调整后初期利润增长迅速,后来增长越来越慢,若要建立恰当的函数模型来反映该公司调整后利润y与时间x的关系,可选用( D )(A)一次函数 (B)二次函数(C)指数型函数 (D)对数型函数解析:由题意可知,函数模型对应的函数是个增函数,而且增长速度越来越慢,故应采用对数型函数来建立函数模型,故选D.2.研究表明,当死亡生物组织内的碳14的含量不足死亡前的千分之一时,用一般的放射性探测器就测不到碳14了.若某一死亡生物组织内的碳14经过n(n∈N)个“半衰期”后用一般的放射性探测器测不到碳14了,则n 的最小值是( B )(A)9 (B)10 (C)11 (D)12解析:根据题意可知()n<,即2n>1 000,n∈N,所以n的最小值是10.故选B.3.某种动物繁殖量y(只)与时间x(年)的关系为y=alog3(x+1),设这种动物第2年有100只,到第8年它们将发展到( A )(A)200只 (B)300只 (C)400只 (D)500只解析:由题意,繁殖数量y(只)与时间x(年)的关系为y=alog3(x+1),这种动物第2年有100只,所以100=alog3(2+1),所以a=100,所以y=100log3(x+1),所以当x=8时,y=100log3(8+1)=100×2=200.4.(2018·海淀区高一月考)2011年12月,某人的工资纳税额是245元,若不考虑其他因素,则他该月工资收入为( A )级数全月应纳税所得额税率(%)1 不超过1 500元 32 1 500~4 500元10注:本表所称全月应纳税所得额是以每月收入额减去3 500元(起征点)后的余额.(A)7 000元 (B)7 500元 (C)6 600元 (D)5 950元解析:设此人该月工资收入为x元.1 500×3%=45元.(x-3 500-1 500)×10%=245-45,得x=7 000元.5.某商店迎来店庆,为了吸引顾客,采取“满一百送二十,连环送”的酬宾促销方式,即顾客在店内花钱满100元(可以是现金,也可以是奖励券或两者合计),就送20元奖励券;满200元,就送40元奖励券;满300元,就送60元奖励券;…当日花钱最多的一位顾客共花出现金 70 040元,如果按照酬宾促销方式,他最多能得到优惠( C )(A)17 000元 (B)17 540元(C)17 500元 (D)17 580元解析:这位顾客花的70 000元可得奖励券700×20=14 000(元),只有这位顾客继续把奖励券消费掉,也才能得到最多优惠,但当他把 14 000元奖励券消费掉可得140×20=2 800(元)奖励券,再消费又可得到28×20=560(元)奖励券,560元消费再加上先前70 040中的40元共消费600元应得奖励券6×20=120元.120元奖励券消费时又得20元奖励券.所以他总共会得到14 000+2 800+560+120+20=17 500(元)优惠.故选C.6.(2017·泉州高一月考)在某种新型材料的研制中,实验人员获得了下列一组实验数据:现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是( B )x 1.992 3 4 5.15 6.126 y 1.517 4.041 8 7.5 12 18.01 (A)y=2x-2 (B)y=(x2-1)(C)y=log2x (D)y=lo x解析:由题意可得表中数据y随x的变化趋势.函数在(0,+∞)上是增函数,且y的变化随x的增大越来越快.因为A中函数是线性增加的函数,C中函数是比线性增加还缓慢的函数,D 中函数是减函数,所以排除A,C,D;所以B中函数y=(x2-1)符合题意.7.(2018·湖北宜昌一中月考)把物体放在冷空气中冷却,如果物体原来的温度是θ1℃,空气的温度是θ0℃,t min后物体的温度θ℃可由公式θ=θ0+(θ1-θ0)e-0.24t求得.把温度是100 ℃的物体,放在 10 ℃的空气中冷却t min后,物体的温度是40 ℃,那么t的值约等于.(保留三位有效数字,参考数据:ln 3取1.099,ln 2取0.693)解析:依题意将θ1=100,θ0=10,θ=40代入公式θ=θ0+(θ1-θ0)e-0.24t可得,e-0.24t=,即-0.24t=ln ,解得t=≈4.58.-=-=-=答案=-=-=-:4.588.现测得(x,y)的两组值为(1,2),(2,5),现有两个拟合模型,甲:y= x2+1,乙:y=3x-1,若又测得(x,y)的一组对应值为(3,10.2),则应选用作为拟合模型较好.解析:对于甲:x=3时,y=32+1=10,对于乙:x=3时,y=8,因此用甲作为拟合模型较好.-=-=-=答案=-=-=-:甲9.为了发展电信事业,方便用户,电信公司对移动电话采用不同的收费方式,其中所使用的“如意卡”与“便民卡”在某市范围内每月(30天)的通话时间x(分)与通话费用y(元)的关系如图所示.(1)分别求出通话费用y1,y2与通话时间x之间的函数解析式;(2)请帮助用户计算在一个月内使用哪种卡便宜.解:(1)由题中图象可设y1=k1x+29,y2=k2x,把点B(30,35),C(30,15)分别代入y1,y2的解析式,得k1=,k2=.所以y1=x+29(x≥0),y2=x(x≥0).(2)令y1=y2,即x+29=x,则x=96.当x=96时,y1=y2,两种卡收费一致;当x<96时,y1>y2,使用“便民卡”便宜;当x>96时,y1<y2,使用“如意卡”便宜.10.某租赁公司拥有汽车100辆,当每辆车的月租金为3 000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3 600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?解:(1)当每辆车的月租金定为3 600元时,未租出的车辆数为=12,所以这时租出了88辆车.(2)设每辆车的月租金定为x元,则租赁公司的月收益为f(x)=(100-)(x-150)-×50,整理得f(x)=-+162x-21 000=-(x-4 050)2+307 050.所以当x=4 050时,f(x)最大,最大值为f(4 050)=307 050,即当每辆车的月租金定为4 050元时,租赁公司的月收益最大,最大月收益为307 050元.。
函数模型的应用实例 word版含答案

课时作业(二十四)函数模型的应用实例一、选择题1.一个模具厂一年中12月份的产量是1月份产量的m倍,那么该模具厂这一年中产量的月平均增长率是()A.m11 B.m12C.12m-1 D.11m-1解析:选D设每月的产量增长率为x,1月份产量为a,则a(1+x)11=ma,所以1+x =11m,即x=11m-1.2.某自行车存车处在某一天总共存放车辆4 000辆次,存车费为:电动自行车0.3元/辆,普通自行车0.2元/辆.若该天普通自行车存车x辆次,存车费总收入为y元,则y与x的函数关系式为()A.y=0.2x(0≤x≤4 000)B.y=0.5x(0≤x≤4 000)C.y=-0.1x+1 200(0≤x≤4 000)D.y=0.1x+1 200(0≤x≤4 000)解析:选C由题意得y=0.3(4 000-x)+0.2x=-0.1x+1 200.3.下面是一幅统计图,根据此图得到的以下说法中,正确的个数是()(1)这几年生活水平逐年得到提高;(2)生活费收入指数增长最快的一年是2013年;(3)生活价格指数上涨速度最快的一年是2014年;(4)虽然2015年生活费收入增长缓慢,但生活价格指数也略有降低,因而生活水平有较大的改善.A.1 B.2C.3 D.4解析:选C 由题意知,“生活费收入指数”减去“生活价格指数”的差是逐年增大的,故(1)正确;“生活费收入指数”在2013~2014年最陡;故(2)正确;“生活价格指数”在2014~2015年比较平缓,故(3)不正确;“生活价格指数”略呈下降,而“生活费收入指数”呈上升趋势,故(4)正确.4.某公司招聘员工,面试人数按拟录用人数分段计算,计算公式为y =⎩⎪⎨⎪⎧ 4x ,1≤x <10,x ∈N , 2x +10,10≤x <100,x ∈N ,1.5x ,x ≥100,x ∈N ,其中,x 代表拟录用人数,y 代表面试人数,若面试人数为60,则该公司拟录用人数为( )A .15B .40C .25D .130解析:选C 若4x =60,则x =15>10,不合题意;若2x +10=60,则x =25,满足题意;若1.5x =60,则x =40<100,不合题意.故拟录用25人.5.某城市出租汽车的收费标准是:起步价为6元,行程不超过2千米者均按此价收费;行程超过2千米,超过部分按3元/千米收费(不足1千米按1千米计价);另外,遇到堵车或等候时,汽车虽没有行驶,但仍按6分钟折算1千米计算(不足1千米按1千米计价).陈先生坐了一趟这种出租车,车费24元,车上仪表显示等候时间为11分30秒,那么陈先生此趟行程的取值范围是( )A .[5,6)B .(5,6]C .[6,7)D .(6,7]解析:选B 若按x (x ∈Z)千米计价,则6+(x -2)×3+2×3=24,得x =6.故实际行程应属于区间(5,6].二、填空题6.在不考虑空气阻力的情况下,火箭的最大速度v (米/秒)和燃料的质量M (千克)、火箭(除燃料外)的质量m (千克)的函数关系式是v =2 000·ln ⎝⎛⎭⎫1+M m .当燃料质量是火箭质量的________倍时,火箭的最大速度可达12千米/秒.解析:当v =12 000时,2 000·ln ⎝⎛⎭⎫1+M m =12 000, ∴ln ⎝⎛⎭⎫1+M m =6,∴M m=e 6-1. -=-=-=答案=-=-=-:e 6-17.一水池有2个进水口、1个出水口,2个进水口的进水速度如图甲、乙所示,出水口的排水速度如图丙所示,某天0点到6点,该水池的蓄水量如图丁所示.给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水.其中一定正确的论断序号是________.解析:从0点到3点,两个进水口的进水量为9,故①正确;由排水速度知②正确;4点到6点可以是不进水,不出水,也可以是开一个进水口(速度快的)、一个排水口,故③不正确.-=-=-=答案=-=-=-:①②8.某化工厂打算投入一条新的生产线,但需要经环保部门审批后方可投入生产.已知该生产线连续生产n 年的累计产量为f (n )=12n (n +1)(2n +1)吨,但如果年产量超过150吨,将会给环境造成危害.为保护环境,环保部门应给该厂这条生产线拟定最长的生产期限是________年.解析:由题意知,第一年产量为a 1=12×1×2×3=3; 以后各年产量分别为a n =f (n )-f (n -1) =12n (n +1)(2n +1)-12n (n -1)(2n -1) =3n 2(n ∈N *),令3n 2≤150,得1≤n ≤52⇒1≤n ≤7,故生产期限最长为7年.-=-=-=答案=-=-=-:7三、解答题9.某租车公司拥有汽车100辆,当每辆车的月租金为3 000元时,可全部租出,当每辆车的月租金每增加60元时,未租出的车将会增加一辆,租出的车每月需要维护费160元,未租出的车每月需要维护费40元.(1)当每辆车的月租金定为3 900元时,能租出多少辆车?(2)当每辆车的月租金为多少元时,租车公司的月收益最大?最大月收益是多少? 解:(1)租金增加了900元,900÷60=15,所以未租出的车有15辆,一共租出了85辆.(2)设租金提高后有x 辆未租出,则已租出(100-x )辆.租赁公司的月收益为y 元,y =(3 000+60x )(100-x )-160(100-x )-40x ,其中x ∈[0,100],x ∈N ,整理,得y =-60x 2+3 120x +284 000=-60(x -26)2+324 560,当x =26时,y =324 560,即最大月收益为324 560元.此时,月租金为3 000+60×26=4 560(元).10.某公司生产一种产品,每年需投入固定成本0.5万元,此外每生产1百件这样的产品,还需增加投入0.25万元,经市场调查知这种产品年需求量为5百件,产品销售数量为t (百件)时,销售所得的收入为⎝⎛⎭⎫5t -12t 2万元. (1)该公司这种产品的年生产量为x 百件,生产并销售这种产品得到的利润为当年产量x 的函数f (x ),求f (x );(2)当该公司的年产量为多大时当年所获得的利润最大.解:(1)当x ≤5时,f (x )=5x -12x 2-(0.25x +0.5)=-x 22+194x -12; 当x >5时,f (x )=5×5-12×52-(0.25x +0.5)=12-14x ;所以f (x )=⎩⎨⎧ -x 22+194x -12,0<x ≤5,12-14x ,x >5.(2)当0<x ≤5时,f (x )=-x 22+194x -12=-12⎝⎛⎭⎫x -1942+34532, 故当x =194百件=475件时,f (x )max =34532(万元); 当x >5时,f (x )=12-14x <12-54<34532. 故当该公司的年产量为475件时,当年获得的利润最大.11.国庆期间,某旅行社组团去风景区旅游,若旅行团人数在30人或30人以下,飞机票价格为900元;若旅行团人数多于30人,则给予优惠:每多1人,飞机票价格就减少10元,直到达到规定人数75人为止.旅行团乘飞机,旅行社需付给航空公司包机费15 000元.(1)写出飞机票的价格关于人数的函数;(2)旅行团人数为多少时,旅行社可获得最大利润?解:(1)设旅行团人数为x ,飞机票价格为y 元,则y =⎩⎪⎨⎪⎧ 900,0<x ≤30,900-10(x -30),30<x ≤75,即y =⎩⎪⎨⎪⎧900,0<x ≤30,1 200-10x ,30<x ≤75. (2)设旅行社获利S 元, 则S =⎩⎪⎨⎪⎧ 900x -15 000,0<x ≤30,x (1 200-10x )-15 000,30<x ≤75. 即S =⎩⎪⎨⎪⎧900x -15 000,0<x ≤30,-10(x -60)2+21 000,30<x ≤75. 因为S =900x -15 000在区间(0,30]上单调递增,当x =30时,S 取最大值12 000,又因为S=-10(x-60)2+21 000在区间(30,75]上,当x=60时,S取最大值21 000.故当x=60时,旅行社可获得最大利润.。
【优化指导】高一数学人教A版必修1活页课时作业:3.2.2-函数模型的应用实例-Word版含解析[-高考]
![【优化指导】高一数学人教A版必修1活页课时作业:3.2.2-函数模型的应用实例-Word版含解析[-高考]](https://img.taocdn.com/s3/m/cd7a0c485901020206409c26.png)
活页作业(二十六) 函数模型的应用实例1) A .14 400亩 B .172 800亩 C .20 736亩D .17 280亩解析:设年份为x ,造林亩数为y ,则 y =10 000×(1+20%)x -1, ∴x =4时,y =17 280(亩).故选D. 答案:D2.某公司招聘员工,面试人数按拟录用人数分段计算,计算公式为:y =⎩⎪⎨⎪⎧4x ,1≤x <10,x ∈N *2x +10,10≤x <100,x ∈N *,1.5x ,x ≥100,x ∈N *其中,x 代表拟录用人数,y 代表面试人数.若应聘的面试人数为60,则该公司拟录用人数为( ) A .15 B .40 C .25 D .130解析:令y =60,若4x =60,则x =15>10,不合题意; 若2x +10=60,则x =25,满足题意; 若1.5x =60,则x =40<100,不合题意; 故拟录用人数为25,故选C. 答案:C3.用长度为24 m 的材料围成一矩形场地,并且中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为( ) A .3 m B .4 m C .5 mD .6 m 解析:设隔墙的长为x m ,矩形面积为S ,则 S =x ·24-4x2=x (12-2x )=-2x 2+12x =-2(x -3)2+18,(0<x <6)所以当x =3时,S 有最大值为18. 答案:A4.今有一组实验数据如下表所示:A .u =log 2tB .u =2t -2C .u =t 2-12D .u =2t -2解析:由散点图可知,图象不是直线,排除D ; 图象不符合对数函数的图象特征,排除A ; 当t =3时,2t -2=23-2=6, t 2-12=32-12=4, 而由表格知当t =3时,u =4.04,故模型u =t 2-12能较好地体现这些数据关系.故选C.答案:C5.从盛满20升纯酒精的容器里倒出1升,然后用水加满,再倒出1升混合溶液,再用水加满,这样继续下去,则所倒次数x 和酒精残留量y 之间的函数关系为________.解析:第一次倒完后,y =19; 第二次倒完后,y =19×1920=192201;第三次倒完后,y =19×1920×1920=193202;…第x 次倒完后,y =19x20x -1=20×⎝⎛⎭⎫1920x . 答案:y =20×⎝⎛⎭⎫1920x6.将进货单价为8元的商品按10元/个销售时,每天可卖出100个,若此商品的销售单价涨1元,日销售量就减少10个,为了获取最大利润,此商品的销售单价应定为________元.解析:设销售单价应涨x 元, 则实际销售单价为(10+x )元, 此时日销售量为(100-10x )个,每个商品的利润为(10+x )-8=2+x (元), ∴总利润y =(2+x )(100-10x ) =-10x 2+80x +200=-10(x -4)2+360(0<x <10,且x ∈N *). ∴当x =4时y 有最大值,此时单价为14元. 答案:147.大西洋鲑鱼每年都要逆流而上,游回产地产卵,研究鲑鱼的科学家发现鲑鱼的游速可以表示为函数v =12·log 3Q 100,单位是m/s ,其中Q 表示鲑鱼的耗氧量的单位数. (1)当一条鲑鱼的耗氧量是2 700个单位时,它的游速是多少? (2)计算一条鲑鱼静止时耗氧量的单位数. 解:(1)由题意得v =12log 32 700100=32(m/s).当一条鲑鱼的耗氧量是2 700个单位时,它的游速是32 m/s.(2)当一条鲑鱼静止时,即v =0(m/s). 则0=12log 3Q 100,解得Q =100.所以当一条鲑鱼静止时耗氧量的单位数是100.8.如图,点P 在边长为1的正方形边上运动,设M 是CD 的中点,则当P 沿A -B -C -M 运动时,点P 经过的路程x 与△APM 的面积y 之间的函数y =f (x )的图象大致是( )解析:依题意,当0<x ≤1时,S △APM =12×1×x =12x ;当1<x ≤2时,S △APM =S 梯形ABCM -S △ABP -S △PCM=12×⎝⎛⎭⎫1+12×1-12×1×(x -1)-12×12×(2-x )=-14x +34; 当2<x ≤2.5时,S △APM =S 梯形ABCM -S 梯形ABCP =12×⎝⎛⎭⎫1+12×1-12×(1+x -2)×1 =34-12x +12=-12x +54.∴y =f (x )=⎩⎪⎨⎪⎧12x (0<x ≤1),-14x +34(1<x ≤2),-12x +54(2<x ≤2.5).再结合图象知应选A. 答案:A9.某个病毒经30分钟繁殖为原来的2倍,且知病毒的繁殖规律为y =e kt (其中k 为常数,t 表示时间,单位:小时,y 表示病毒个数),则k =________,经过5小时,1个病毒能繁殖为________个.解析:当t =0.5时,y =2, ∴2=e 12k ,∴k =2ln 2,∴y =e 2t ln 2,当t =5时,y =e 10ln 2=210=1 024. 答案:2ln 2 1 02410.某产品生产厂家根据以往的生产销售经验得到下面的统计规律:每生产产品x 百台,其总成本为G (x )万元,其中固定成本为2万元,并且每生产100台的生产成本为1万元(总成本=固定成本+生产成本),销售收入R (x )满足R (x )=⎩⎪⎨⎪⎧-0.4x 2+4.2x -0.8,0≤x ≤510.2,x >5.假定该产品产销平衡,那么根据上述统计规律,解决下列问题:(1)要使工厂有盈利,产品数量x 应控制在什么范围?(2)工厂生产多少台产品时盈利最大?并求此时每台产品的售价为多少? 解:依题意,G (x )=x +2,设利润函数为f (x ),则f (x )=⎩⎪⎨⎪⎧-0.4x 2+3.2x -2.8(0≤x ≤5)8.2-x (x >5).(1)要使工厂有盈利,则有f (x )>0. 当0≤x ≤5时,有-0.4x 2+3.2x -2.8>0. 解得1<x <7, ∴1<x ≤5.当x >5时,有8.2-x >0, 解得x <8.2,∴5<x <8.2.综上,要使工厂盈利,应满足1<x <8.2,即产品数量应控制在大于100台小于820台的范围内. (2)当0≤x ≤5时,f (x )=-0.4(x -4)2+3.6,故当x =4时,f (x )有最大值3.6,当x >5时,f (x )<8.2-5=3.2. 故当工厂生产400台产品时,盈利最大,此时,每台产品的售价为R (4)×104400=240(元).11.一块形状为直角三角形的铁皮,直角边长分别是40 cm 与60 cm ,现在将它剪成一个矩形,并以此三角形的直角为矩形的一个角,问怎样剪才能使剩下的残料最少?并求出此时残料的面积.解:设直角三角形为△ABC ,AC =40,BC =60,矩形为CDEF ,如图所示,设CD =x ,CF =y ,则由Rt △AFE ~Rt △EDB 得AF ED =FE BD ,即40-y y =x 60-x,解得y =40-23x ,记剩下的残料面积为S ,则S =12×60×40-xy =23x 2-40x +1 200=23(x -30)2+600(0<x <60), 故当x =30时,S min =600,此时y =20,所以当x =30,y =20时,剩下的残料面积最小为600 cm 2.12.下表是某款车的车速与刹车后的停车距离,试分别就y =a ·e kx ,y =ax n ,y =ax 2+bx +c 三种函数关系建立数学模型,并探讨最佳模拟,根据最佳模拟求车速为120 km/h 时的刹车距离.解:若以y =a ·e kx 得⎩⎪⎨⎪⎧ 4=a ·e 10k ,18=a ·e 40k,解得⎩⎪⎨⎪⎧k =0.050 136,a =2.422 8.∴y =2.422 8e 0.050 136x .以此函数式计算车速度为90 km/h,100 km/h 时,停车距离分别为220.8 m,364.5 m ,与实际数据相比,误差较大.若以y =a ·x n 为模拟函数,将(10,4)、(40,18)代入函数关系式,得⎩⎪⎨⎪⎧ 4=a ·10n ,18=a ·40n,解得⎩⎪⎨⎪⎧n =1.085,a =0.328 9.∴y =0.328 9x 1.085.以此函数关系计算车速度为90 km/h,100 km/h 时,停车距离分别为43.39 m,48.65 m ,与实际情况误差也较大. 若以y =ax 2+bx +c 为模拟函数,将(10,4)、(40,18)、(60,34)代入函数式,得解得⎩⎨⎧a =1150b =215,c =2∴y =1150x 2+215x +2.以此函数解析式计算车速为90 km/h,100 km/h 时,停车距离分别为68 m 、82 m ,与前两个相比,它较符合实际情况.当x =120时,y =114(m).即当车速为120 km/h 时,停车距离为114 m. 用函数模型解应用题的四个步骤.(四步八字)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.某公司为了适应市场需求,对产品结构做了重大调整.调整后初期利润增长迅速,后来增长越来越慢,若要建立恰当的函数模型来反映该公司调整后利润y 与产量x 的关系,则可选用( )
A .一次函数
B .二次函数
C .指数型函数
D .对数型函数 解析:选D.一次函数保持均匀的增长,不符合题意; 二次函数在对称轴的两侧有增也有降;
而指数函数是爆炸式增长,不符合“增长越来越慢”;
因此,只有对数函数最符合题意,先快速增长,后来越来越慢. 2
A .y =2x -1
B .y =x 2
-1
C .y =2x
-1 D .y =-+2
解析:选D.画散点图或代入数值,选择拟合效果最好的函数,故选D.
3.如图表示一位骑自行车者和一位骑摩托车者在相距80 km 的两城镇间旅行的函数图象,由图可知:骑自行车者用了6小时,沿途休息了1小时,骑摩托车者用了2小时,根据这个函数图象,推出关于这两个旅行者的如下信息:
①骑自行车者比骑摩托车者早出发了3小时,晚到1小时; ②骑自行车者是变速运动,骑摩托车者是匀速运动; ③骑摩托车者在出发了小时后,追上了骑自行车者. 其中正确信息的序号是( ) A .①②③ B .①③ C .②③ D .①②
解析:选A.由图象可得:①骑自行车者比骑摩托车者早出发了3小时,晚到1小时,正确;②骑自行车者是变速运动,骑摩托车者是匀速运动,正确;③骑摩托车者在出发了小时后,追上了骑自行车者,正确.
4.长为4,宽为3的矩形,当长增加x ,且宽减少x
2
时面积最大,此时x =________,
面积S =________.
解析:依题意得:S =(4+x )(3-x 2)=-12
x 2
+x +12
=-12(x -1)2
+1212,∴当x =1时,S max =1212
.
答案:1 121
2
1
( ) A .指数函数 B .反比例函数 C .一次函数 D .二次函数
解析:选C.画出散点图,结合图象(图略)可知各个点接近于一条直线,所以可用一次函数表示.
2.某林场计划第一年造林10000亩,以后每年比前一年多造林20%,则第四年造林( ) A .14400亩 B .172800亩
C .17280亩
D .20736亩
解析:选=10000×(1+20%)3
=17280.
3.某商品价格前两年每年递增20%,后两年每年递减20%,则四年后的价格与原来价格相比,变化情况是( )
A .增加%
B .减少%
C .减少%
D .不增不减 解析:选B.设该商品原价为a ,
四年后价格为a (1+2·(1-2
=. 所以(1-a ==%a , 即比原来减少了%.
4.据调查,某自行车存车处在某星期日的存车量为2000辆次,其中变速车存车费是每辆一次元,普通车存车费是每辆一次元,若普通车存车数为x 辆次,存车费总收入为y 元,则y 关于x 的函数关系式是( )
A .y =+800(0≤x ≤2000)
B .y =+1600(0≤x ≤2000)
C .y =-+800(0≤x ≤2000)
D .y =-+1600(0≤x ≤2000)
解析:选D.由题意知,变速车存车数为(2000-x )辆次, 则总收入y =+(2000-x )×
=+1600-=-+1600(0≤x ≤2000).
5.如图,△ABC 为等腰直角三角形,直线l 与AB 相交且l ⊥AB ,直线l 截这个三角形所得的位于直线右方的图形面积为y ,点A 到直线l 的距离为x ,则y =f (x )的图象大致为四个选项中的( )
解析:选C.设AB =a ,则y =12a 2-12x 2=-12x 2+12
a 2
,其图象为抛物线的一段,开口向下,
顶点在y 轴上方.故选C.
6.小蜥蜴体长15 cm ,体重15 g ,问:当小蜥蜴长到体长为20 cm 时,它的体重大约是( )
A .20 g
B .25 g
C .35 g
D .40 g 解析:选C.假设小蜥蜴从15 cm 长到20 cm ,体形是相似的.这时蜥蜴的体重正比于它的体积,而体积与体长的立方成正比.记体长为20 cm 的蜥蜴的体重为W 20,因此有W 20=
W 15·20
315
3≈(g),合理的答案为35 g .故选C.
7.现测得(x ,y )的两组值为(1,2),(2,5),现有两个拟合模型,甲:y =x 2
+1;乙:y =3x -1.若又测得(x ,y )的一组对应值为(3,,则应选用________作为拟合模型较好.
解析:图象法,即描出已知的三个点的坐标并画出两个函数的图象(图略),比较发现选甲更好.
答案:甲
8.一根弹簧,挂重100 N 的重物时,伸长20 cm ,当挂重150 N 的重物时,弹簧伸长________.
解析:由10020=150
x
,得x =30.
答案:30 cm
9.某工厂8年来某产品年产量y 与时间t 年的函数关系如图,则: ①前3年总产量增长速度越来越快; ②前3年中总产量增长速度越来越慢; ③第3年后,这种产品停止生产;
④第3年后,这种产品年产量保持不变.
以上说法中正确的是________.
解析:观察图中单位时间内产品产量y 变化量快慢可知①④. 答案:①④
10.某公司试销一种成本单价为500元的新产品,规定试销时销售单价不低于成本单
价,又不高于800元.经试销调查,发现销售量y (件)与销售单价x (元)之间的关系可近似看作一次函数y =kx +b (k ≠0),函数图象如图所示.
(1)根据图象,求一次函数y =kx +b (k ≠0)的表达式;
(2)设公司获得的毛利润(毛利润=销售总价-成本总价)为S 元.试问销售单价定为多少时,该公司可获得最大毛利润?最大毛利润是多少?此时的销售量是多少?
解:(1)由图象知,当x =600时,y =400;当x =700时,y =300,代入y =kx +b (k ≠0)中,
得⎩
⎪⎨
⎪⎧
400=600k +b ,300=700k +b ,解得⎩
⎪⎨
⎪⎧
k =-1,
b =1000.
所以,y =-x +1000(500≤x ≤800).
(2)销售总价=销售单价×销售量=xy , 成本总价=成本单价×销售量=500y , 代入求毛利润的公式,得
S =xy -500y =x (-x +1000)-500(-x +1000)
=-x 2
+1500x -500000
=-(x -750)2
+62500(500≤x ≤800).
所以,当销售单价定为750元时,可获得最大毛利润62500元,此时销售量为250件. 11.物体在常温下的温度变化可以用牛顿冷却规律来描述:设物体的初始温度是T 0,经
过一定时间t 后的温度是T ,则T -T a =(T 0-T a )·(12)t
h ,其中T a 表示环境温度,h 称为半衰
期.
现有一杯用88 ℃热水冲的速溶咖啡,放在24 ℃的房间中,如果咖啡降温到40 ℃需要20 min ,那么降温到35 ℃时,需要多长时间?
解:由题意知40-24=(88-24)·(12
)20
h ,
即14=(12)20h . 解之,得h =10.
故T -24=(88-24)·(12)t
10.
当T =35时,代入上式,得
35-24=(88-24)·(12)t
10,
即(12)t 10=1164
. 两边取对数,用计算器求得t ≈25.
因此,约需要25 min ,可降温到35 ℃.
12.某地区为响应上级号召,在2011年初,新建了一批有200万平方米的廉价住房,供困难的城市居民居住.由于下半年受物价的影响,根据本地区的实际情况,估计今后住房的年平均增长率只能达到5%.
(1)经过x 年后,该地区的廉价住房为y 万平方米,求y =f (x )的表达式,并求此函数的定义域.
(2)作出函数y =f (x )的图象,并结合图象求:经过多少年后,该地区的廉价住房能达到300万平方米?
解:(1)经过1年后,廉价住房面积为
200+200×5%=200(1+5%);
经过2年后为200(1+5%)2;
…
经过x年后,廉价住房面积为200(1+5%)x,
∴y=200(1+5%)x(x∈N*).
(2)作函数y=f(x)=200(1+5%)x(x≥0)的图象,如图所示.
作直线y=300,与函数y=200(1+5%)x的图象交于A点,则A(x0,300),A点的横坐标x0的值就是函数值y=300时所经过的时间x的值.
因为8<x0<9,则取x0=9,
即经过9年后,该地区的廉价住房能达到300万平方米.。