研究生结构风工程风洞试验报告

合集下载

小型风洞实验报告模板

小型风洞实验报告模板

小型风洞实验报告模板1. 实验目的本实验旨在通过搭建小型风洞,模拟风场环境,以了解流体力学相关概念,并探究在风洞中空气流动特性的变化。

2. 实验原理利用风机产生气流,经过管道进入风洞,再通过风洞内的模型,观察和测量气流在模型前后的压力、速度等参数的变化,从而了解气流对物体的影响。

3. 实验装置和材料1. 小型风洞:风洞箱、风机、风洞管道、模型支架等。

2. 模型:可以选择不同几何形状的模型,如平板、球体等。

3. 测量仪器:差压传感器、风速计等。

4. 实验步骤4.1 搭建风洞1. 搭建风洞箱,确保密封性良好。

2. 将风机安装在风洞箱的一侧。

3. 连接风机与风洞箱之间的管道,确保气流能顺畅流动。

4.2 安装模型1. 根据实验需求选择合适的模型,并将其安装在风洞箱内的模型支架上。

2. 确保模型位置稳定,并与风洞箱内的气流方向对齐。

4.3 进行实验测量1. 在模型前后位置处,分别安装差压传感器和风速计。

2. 根据实验要求,记录模型前后气流的压力差和速度差等参数。

3. 可以使用数据采集系统,将实验数据进行记录和处理。

4.4 分析实验数据1. 根据实验所得数据,计算压差和速度差的平均值,并进行比较和分析。

2. 根据流体力学相关理论,理解实验结果所呈现的物理现象,如气流分离、阻力等。

5. 实验结果与讨论根据实验数据的分析,可以得出以下结论:1. 模型前后的压差随着模型的形状和尺寸的变化而变化,进一步验证了伯努利定律在风洞中的适用性。

2. 模型前后的速度差与模型的形状和尺寸密切相关,不同形状的模型会产生不同的气流效应。

3. 在实验中发现,当气流速度较大时,模型前后的压差和速度差明显增大。

本实验结果表明,小型风洞是一个有效的工具,可以用于研究和理解物体在气流中的行为。

通过改变模型的形状和尺寸,可以进一步探究气流对物体的影响,并为飞行器设计、建筑结构等领域提供参考依据。

6. 实验结论通过本次小型风洞实验,我们对气流的特性和模型的影响有了更深入的了解。

大跨度屋盖结构风洞试验研究报告

大跨度屋盖结构风洞试验研究报告

大跨度屋盖结构风洞试验研究报告摘要:本研究利用风洞试验的方法,对大跨度屋盖结构的风荷载特性进行了详细研究。

通过在风洞中模拟真实气象条件下的风场,对不同大跨度屋盖结构进行试验,并测量了其受风荷载时的位移、应力等参数。

试验结果表明,大跨度屋盖结构的风荷载特性与气象条件、结构形态等因素密切相关,为大跨度屋盖结构的设计与施工提供了重要的参考依据。

引言:大跨度屋盖结构因其合理的设计、良好的景观性和广泛的应用领域而备受关注。

然而,由于其结构特点导致的风荷载问题一直是该领域的热点和难点。

风洞试验是研究大跨度屋盖结构风荷载特性的重要方法之一,其模拟真实风场,能够测量结构在风荷载作用下的位移、应变、应力等参数,为结构安全性与可靠性的评估提供准确的数据。

试验方法:本研究选择了一种常见的大跨度屋盖结构作为试验对象,通过风洞模拟真实气象条件下的风场,并使用专业的传感器测量受风荷载作用下的位移、应变、应力等参数。

试验过程中,分别模拟了不同风速、风向等条件,以全面了解结构在不同风荷载下的工作性能。

试验结果与分析:试验结果表明,大跨度屋盖结构在不同风荷载下表现出不同的受力特性。

当风速较小时,结构的受力处于较小的范围内,位移、应变、应力等参数较小。

随着风速的增加,结构逐渐受到较大的风荷载,位移、应变、应力等参数增大。

同时,试验还发现,结构的形态对其受力特性影响较大。

例如,当结构采用弧形或三角形的设计时,其承受风荷载的能力更强,位移、应变、应力等参数较小。

结论:通过大跨度屋盖结构风洞试验,本研究深入研究了结构在风荷载作用下的特性。

试验结果表明,大跨度屋盖结构的受力性能与气象条件、结构形态等因素有着密切的关系。

因此,在大跨度屋盖结构的设计与施工中,应综合考虑这些因素,以确保结构的安全性与可靠性。

风工程实验报告

风工程实验报告

一、实验目的1. 了解眼镜蛇探针(Cobra probe )的原理,掌握使用眼镜蛇探针在亚临近雷诺数范围内对二维圆柱尾流的速度测量2. 了解二维圆柱尾流的速度分布情况以及圆柱所受阻力3. 学习使用Origin 处理数据4. 学会利用实验数据对实验结果的讨论分析以及相关研究二、实验设备及器材1. 直流式低速风洞实验室2. 直径20d mm ≈左右的圆柱3. 眼镜蛇探针、坐标架、电脑等三、实验参数实验在小风洞内进行,小风洞试验段截面450mm 450mm ⨯,长1m 。

风速范围3-42m/s ,自由来流湍流度约0.6%。

实验中采用一根直径d 20mm ≈左右的圆柱,贯穿整个试验段,在试验段内形成近似二维圆柱尾流。

在圆柱中心下游约x = 10d 的位置上,沿y 方向进行测量。

为减小测量工作量,眼镜蛇探针的测量可仅在y ≥ 0的范围内进行。

y 轴向测点坐标,可视时均速度梯度的大小确定,即速度变化快的区域测点可适当加密、速度较均匀的区域,测点可稀疏一些。

在y ≥ 0范围内确保15左右测点即可。

实验中来流风速分为15m/s ,眼镜蛇探针采用频率为2KHz ,每个点上的采样时间为15s 。

实验原理 阻力系数212D F C U d-=,其中F 为阻力:()()221F U U U u v dy ∞-∞⎡⎤=-+-⎢⎥⎣⎦⎰ 可得22121112d 2d D U U U y v u y C U U d U d ∞∞-∞-∞⎛⎫⎛⎫--⎛⎫⎛⎫=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎰⎰,其中1U 为初始风速,U 为每个测点的平均风速,u 和v 为纵向和横向脉动风速,d 为圆柱直径。

四、实验步骤1. 检查实验设备:实验开始前应当检查实验设备是否齐全,是否能够正常使用,如发现有缺陷或者损坏,应当进行检修或者调换;2. 安装实验装置:①将坐标架安装在小风洞扩散段上端适宜位置;②小心将眼镜蛇探针各部位连接好,并将探头接在坐标架上,调整探头的方向,使之正对着来流风向,并可以通过坐标架上下调节探头位置;③将准备好的实验圆柱横向安装在风洞试验段的正中间,保证圆柱与试验段上下板平行,并垂直于左右板,最后要将圆柱两端与左右板的连接处做牢固处理,防止圆柱在风吹过程中出现松动;3. 启动装置,测量数据①开启风动电机,将风速调制15m/s ,待风速稳定后,调整坐标架,使探头大致在距离圆柱中心d/2处,并与圆柱保持适当距离,测量此处的风速分布;②使用相关软件采集数据并记录,调整坐标架,每次1mm ,记录该点的风速,依此循环测量直至风速稳定,在稳定后可选取每2mm ,5mm 测量;③存储好记录的数据,以便后续处理;4. 关闭风机电源,拆卸实验装置,并放回原处,实验结束。

风工程研究报告

风工程研究报告

风工程研究报告摘要:本研究报告深入探讨了风工程的概念、研究内容、研究方法、应用领域、重要成果以及面临的挑战和未来发展趋势。

通过对风工程相关理论和实际应用的综合分析,阐述了风工程在现代工程领域中的关键作用和重要意义。

一、引言风作为一种自然现象,对人类的生产生活和各类工程结构产生着显著的影响。

风工程作为一门交叉学科,旨在研究风与工程结构的相互作用,为工程设计和建设提供科学依据,以确保结构在风荷载作用下的安全性和可靠性。

二、风工程的概念与研究内容(一)概念风工程是研究风的特性、风对工程结构的作用以及工程结构在风荷载下的响应和性能的学科。

(二)研究内容1.风的特性包括风速、风向、风谱、湍流强度等的测量、分析和模拟。

2.风荷载计算确定工程结构所承受的风压力、风吸力等荷载的大小和分布。

3.结构风响应研究结构在风荷载作用下的振动、位移、应力等响应。

4.风致灾害评估预测和评估风灾对建筑物、桥梁、塔架等结构的破坏程度。

5.防风减灾措施研发和应用有效的防风、抗风设计方法和加固措施。

三、风工程的研究方法(一)风洞试验在风洞中模拟实际风场,对缩尺模型进行测试,获取风荷载和结构响应数据。

(二)数值模拟利用计算流体动力学(CFD)等方法,对风场和结构的相互作用进行数值计算和分析。

(三)现场实测在实际工程结构上安装监测设备,直接测量风荷载和结构响应。

(四)理论分析基于力学原理和数学模型,推导风荷载和结构响应的计算公式和理论。

四、风工程的应用领域(一)建筑结构确保高层建筑、大跨度屋盖结构等在风荷载下的安全性和舒适性。

(二)桥梁工程设计抗风性能良好的桥梁,避免风致振动和破坏。

(三)能源领域优化风力发电设备的设计,提高风能利用效率。

(四)航空航天研究飞行器在大气中的飞行特性和稳定性,保障飞行安全。

(五)体育场馆设计通风良好、无明显风干扰的体育场馆,提高运动员和观众的体验。

(六)城市规划考虑风环境对城市布局、建筑物密度和高度分布的影响。

风洞实验报告

风洞实验报告

风洞实验报告引言:风洞实验作为现代科技研究的重要手段之一,广泛应用于航空航天、汽车工程、建筑结构等领域。

本报告将围绕风洞实验的原理、应用以及相关技术展开探讨,旨在加深对风洞实验的理解和应用。

一、风洞实验的原理风洞实验是通过利用风洞设备产生流速、温度和压力等环境条件,对模型进行真实环境仿真试验的一种方法。

其基本原理是利用气体流动力学的规律,使得实验模型暴露在所需风速的气流中,从而通过测量模型上的各种力和参数来分析其气动性能。

二、风洞实验的应用领域1.航空航天领域风洞实验在航空航天领域有着广泛的应用。

通过风洞实验,可以模拟不同飞行状态下的风载荷,评估飞机、火箭等载体的稳定性和安全性,在设计和改进新型飞行器时提供可靠的数据支撑。

2.汽车工程领域风洞实验在汽车工程领域同样具有重要意义。

通过对汽车模型在高速风场中的测试,可以优化车身外形设计,降低气动阻力,提高燃油效率。

此外,风洞实验还可用于汽车内部气流研究,如车内空调流场、风挡玻璃除雾等。

3.建筑工程领域在建筑工程领域,风洞实验可以帮助研究风荷载对建筑物结构产生的影响,以提高建筑物的抗风性能。

通过模拟真实的气流环境,可以评估建筑物在不同风速下的应力、应变分布情况,为工程设计和结构优化提供依据。

三、风洞实验技术1.气流控制技术气流控制技术是风洞实验中必备的关键技术之一。

通过对风洞内流场进行合理设计和调整,可以实现不同速度、湍流强度和均匀度的气流条件,以保证实验的准确性和可重复性。

2.试验模型制作技术试验模型制作技术对于风洞实验的结果具有重要影响。

模型的准确度和还原程度直接关系到实验数据的可靠性。

现如今,各类先进材料和加工技术的应用,使得模型制作更加精准和高效。

3.数据采集和分析技术风洞实验所得数据的采集和分析是判断实验成果的关键环节。

当前,数字化技术的快速发展为数据采集和分析提供了强有力的支持。

传感器、图像处理等先进技术的应用,使得实验数据获取更为精确和全面。

风洞实验报告

风洞实验报告

风洞实验报告
实验目的:
本次实验的主要目的是探究风洞内气流与实际情况的关系,通过对比不同种类的物体在风洞中所受到的气流影响,分析气流力与物体形状、风速等参数的关系,进一步探究气动力学知识。

实验仪器:
本次实验采用的是风洞设备,主要包括:风机、热线安放器、压力传感器、激光测量仪及流场可视化实验装置。

实验流程:
1. 首先将实验物体放入风洞内,开启风机,控制风速,并调整风洞内气流状态。

2. 利用热线安放器对实验物体表面局部速度的测量。

3. 利用压力传感器对实验物体表面气压及气液动力的测量。

4. 通过激光测量仪及流场可视化实验装置对实验物体周围气流情况进行记录并进行分析。

实验结果:
本次实验中,我们选取了不同的实验物体,进行了相应的实验操作。

其中,以典型机翼作为实验目标,分别在不同风速及不同攻角下进行实验测量。

根据实验结果,我们发现在相同的风速条件下,攻角越大,物体所受到的气流力越大。

同时,不同物体的形状、尺寸也对其所受到的气流力产生一定的影响。

此外,通过流场可视化实验装置的实验结果,我们也可以清晰地看到实验物体周围气流的流动情况,这一结果进一步验证了实验数据的准确性。

结论:
通过本次实验,我们深入了解了风洞实验的意义以及其在气动力学领域中的应用。

同时,我们也对气流力、攻角和物体形状等
参数的关系进行了深入探究,展示了其重要性和实用性。

基于本次实验的实验结果,我们也可以为工程设计、气动力学等领域提供一定的理论基础支持。

风洞实验报告

风洞实验报告

风洞实验报告风洞实验报告一、引言风洞实验是一种重要的工程实验方法,可以模拟大气中的空气流动情况,用于测试和研究各种物体在气流中的性能和特性。

本文将介绍一次针对某飞行器模型的风洞实验,包括实验目的、实验过程、实验结果和结论。

二、实验目的本次实验的目的是通过风洞实验,对某飞行器模型在不同风速下的气动特性进行测试和分析,为飞行器的设计和改进提供参考依据。

具体目标如下:1. 测试飞行器在不同风速下的升力和阻力变化情况,了解其气动性能;2. 研究飞行器在不同风速下的稳定性和操纵性,评估其适航性;3. 分析飞行器在不同风速下的气动力分布,寻找潜在的改进方向。

三、实验过程1. 实验设备准备:在实验室中搭建风洞装置,包括风洞本体、风速控制系统、数据采集系统等。

确保设备正常运行和准确测量。

2. 实验样本制备:根据飞行器模型的设计要求,制作样本并进行必要的校正和调整,确保样本符合实验要求。

3. 实验参数设置:根据实验目的,确定实验参数,包括风速范围、采样频率、测量点位置等。

4. 实验数据采集:将样本放置在风洞中,通过数据采集系统记录风速、升力、阻力、气动力矩等数据,并实时监测飞行器的姿态。

5. 数据处理与分析:对采集到的数据进行处理和分析,得出实验结果,并与理论计算结果进行对比。

四、实验结果1. 升力和阻力变化曲线:通过实验数据的分析,得到了飞行器在不同风速下的升力和阻力变化曲线。

结果显示,在低速风洞实验中,飞行器的升力随着风速的增加而线性增加,而阻力则呈指数增加。

在高速风洞实验中,升力和阻力的增长趋势逐渐趋于平缓。

2. 稳定性和操纵性评估:通过实时监测飞行器的姿态,得到了飞行器在不同风速下的稳定性和操纵性评估结果。

结果显示,在较低风速下,飞行器的稳定性较好,操纵性较强;而在较高风速下,飞行器的稳定性和操纵性受到较大的挑战。

3. 气动力分布分析:通过实验数据的处理,得到了飞行器在不同风速下的气动力分布情况。

结果显示,在低速风洞实验中,飞行器的气动力主要集中在机翼和尾翼上,而在高速风洞实验中,气动力分布更加均匀。

哈工大土木工程研究生《结构风工程》实验指导书doc

哈工大土木工程研究生《结构风工程》实验指导书doc

研究生《结构风工程》风洞试验指导书哈尔滨工业大学土木工程学院二零一三年三月前言风洞试验是结构风工程重要研究手段,也是课程中一个不可缺少的重要教学环节。

风洞试验的教学目的是:1. 在风洞中观察不同粗糙布置条件下的流场现象,增强感性认识,巩固理论知识的学习。

2. 通过量测不同粗糙布置条件下试验段的风剖面使学生学会皮托管测风速的基本原理,提高理论分析的能力。

3. 学会量测风速和使用基本仪器的方法,掌握一定的试验技能,了解现代量测技术。

4. 培养分析试验数据、整理试验成果和编写试验报告的能力。

5. 培养严谨踏实的科学作风和融洽合作的共事态度以及爱护国家财产的良好风尚。

本指导书供土木学院学生使用。

试验类型一大气边界层流场测试试验一、试验目的:1、掌握皮托管的测速原理;2、考察不同的粗糙装置条件对流场的影响;3、获得试验段上风速剖面。

二、试验装置:本试验的装置如图1所示。

图1.皮托管测速示意图图2.皮托管结构图其中,皮托管的结构如图2所示。

为了测试试验段不同位置处流场速度,在试验段上分别截取三个截面进行测量,试验段照片及测试截面照片见图3。

图3.试验段照片三、试验原理:基于伯努力方程:22001122p U p U ρρ+=+ (1)可得风速:V = (2)式中0p p -为皮托管测得的压差,ρ为空气密度,可通过手持风速仪测得的风速反推。

四、试验方法与步骤:1. 布置好不同的粗糙装置,并确保在10m/s 风速下不被吹跑。

2. 连接好压差变送器管路,连接好皮托总压、静压,并打开电源,检查读数。

3. 打开风机电源开关,调节风机频率约为20Hz (接近8.5m/s ),可用手持风速仪在试验段进行测试以确认风速。

4. 待风速稳定后,通过夹具将皮托管固定在不同位置,注意必须保证皮托管与风向水平布置。

5.逐次改变测量位置,共完成I,II,III 截面、每个截面25个测点的测量,测量位置如下图所示。

6.把测量值记录在试验表格内,计算出不同截面的风速。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

研究生《结构风工程》风洞试验报告
——试验名称
年级: 2015级
姓名:
学院: 土木工程学院
专业: 土木工程
指导老师: 孙瑛
2016年1月12日制
研究生《结构风工程》风洞试验报告
——试验名称
一、试验目的
本节介绍试验目的(参见实验指导书,并结合本组具体试验内容)。

二、试验装置
本节应介绍试验装置及其测试原理。

图1 模型照片
三、工况设置
实验设置?组工况,具体细节如表1所示。

表1 实验工况设计
工况工况描述
1
2
3
4
具体模型布置如图2所示。

工况1 工况2
工况3 工况4
图2 具体工况下的模型布置图
四、试验数据(结果)
本节应结给出试验数据及结果,主要是试验照片。

图5 工况?实验结果
五、结果分析
本节应结合试验目的对数据及现象进行分析,总结相应的规律。

六、结论与讨论
本节应结合试验结果分析给出简要的总结,还可以对实验指导书中的思考题结合试验谈一谈自己的理解。

相关文档
最新文档