新人教版八年级数学上册《分式方程》学案
新人教版八年级数学上册15.3分式方程导学案

新人教版八年级数学上册15.3分式方程导学案
学习目标
1.理解分式方程的概念和分式方程产生无解的原因.
2.掌握分式方程的解法,会解可化为一元一次方程的分式方程.(体会化归思想)
3.体会数学学习带来的快乐.
学习重难点:解分式方程
心灵寄语:与其羡慕别人优秀,不如让自己比别人更优秀!
学习过程:
一、创设情境,导入新课
一艘轮船在静水中的最大航速为30 km/h,它沿江以最大航速顺流航行90 km 所用时间,与以最大航速逆流航行60 km 所用时间相等,江水的流速为多少?
二 合作交流,探究新知
1 分式方程的概念 分母中含有未知数的方程叫做分式方程.如: 对比:分母里不含有未知数的方程叫做整式方程.如:3x+1=0,2x-3y=1等。
2 概念应用
下列方程中,哪些是整式方程,哪些是分式方程?
例:解分式方程:
思考:分式方程无解的原因?
v
v -=+306030
90
v v -=+306030902110.x 5x 25=--
三、巩固提高:
1. 解分式方程:
2.的解是中考)分式方程金华12
-x 1(=⋅ 3.211(=-++⋅x
x x x 中考)解方程:嘉兴
四、小结与作业:
1、解分式方程的步骤:通过去分母把分式方程化为 然后再解这个整式方程?最后一定要记得检验,这个解是否是这个分式方程的解。
2、作业:练习册
五、教学反思:
1、本节课你有哪些收获?
2、预习时的疑难问题解决了吗?你还有哪些疑惑?
015)4(1412)3(13321)2(3
221)1(222=--+-=-++=++=x x x x x x x x x x x x。
人教版八年级数学上册《分式》导学案:分式方程(第四课时)

人教版八年级数学上册《分式》导学案分式方程(第四课时)【学习目标】1.经历将实际问题中的等量关系用分式方程表示的过程;2.会列出分式方程解决简单的应用题;并掌握列分式方程解应用题的一般步骤.【知识梳理】1.解下列方程: (1)1326-+=-x x x (2)91831332-=+--x x x2.列分式方程解应用题的一般步骤:(1) (2) (3) (4) (5)【典型例题】知识点一 列分式方程解决实际问题1.一艘轮船顺水中航行40千米所用的时间与逆水航行30千米所用的时间相等,已知水流速度为3千米/时,求轮船在静水中的速度.(1)你能找出这一情境中的等量关系吗?(2)顺水速= 逆水速=(3)填表:设船在静水中的速度为x 千米/时.(4)列分式方程解答:2.某中学到离学校15千米的某地旅游,先遣队和大队同时出发,行进速度是大队的1.2倍,以便提前半小时到达目的地做准备工作.求先遣队和大队的速度各是多少?【巩固训练】1.轮船在顺水中航行30千米的时间与在逆水中航行20千米所用的时间相等,已知水流速度为2千米/时,求船在静水中的速度.2.符号“”称为二阶行列式,规定它的运算法则为:,请你根据上述规定求出等式中x 的值.3.甲、乙两人分别从距目的6千米和10千米的两地同时出发,甲、乙两人的速度比是3:4,结果甲比乙提前20分钟到达目的地,求甲、乙的速度.4.“汉十”高速铁路襄阳段正在建设中,甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的,这时乙队加入,两队还需同时施工15天,才能完成该项工程.(1)若乙队单独施工,需要多少天才能完成该项工程?(2)若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?5.节能又环保的油电混合动力汽车,既可以用油做动力行驶,也可以用电做动力行驶,某品牌油电混合动力汽车从甲地行驶到乙地,若完全用油做动力行驶,则费用为80元;若完全用电做动力行驶,则费用为30元,已知汽车行驶中每千米用油费用比用电费用多0.5元.(1)求:汽车行驶中每千米用电费用是多少元?甲、乙两地的距离是多少千米?(2)若汽车从甲地到乙地采用油电混合动力行驶,且所需费用不超过50元,则至少需要用电行驶多少千米?a bc d a bad bc c d =-2111111x x =--。
八年级数学上册 15.3《分式方程》导学案3(新版)新人教版

八年级数学上册 15.3《分式方程》导学案3(新版)新人教版(一)教学知识点1、解分式方程的一般步骤,解分式方程验根的必要性、2、用分式方程的数学模型反映现实情境中的实际问题,用分式方程来解决现实情境中的问题、(二)能力训练要求1、通过具体例子,让学生独立探索方程的解法,经历和体会解分式方程的必要步骤、2、使学生进一步了解数学思想中的"转化"思想,认识到能将分式方程转化为整式方程,从而找到解分式方程的途径、3、经历运用分式方程解决实际问题的过程,发展抽象概括、分析问题和解决问题的能力、学习重点1、解分式方程的一般步骤,熟练掌握分式方程的解决、2、明确解分式方程验根的必要性、3、审明题意,寻找等量关系,将实际问题转化成分式方程的数学模型、学习难点1、明确分式方程验根的必要性、2、寻求实际问题中的等量关系,寻求不同的解决问题的方法、学习过程:一、知识梳理、分式方程:分母里含有未知数的方程叫分式方程。
注:分母中是否含有未知数是分式方程与整式方程的根本区别,分母中含未知数就是分式方程,否则就为整式方程。
2、解分式方程的一般步骤:(1)方程两边都乘以最简公分母,约去分母,化为整式方程。
(2)列整式方程,求得整式方程的根。
(3)验根:把求得的整式方程的根代入A,使最简公分母等于0的根是增根,否则是原方程的根。
(4)确定原分式方程解的情况,即有解或无解。
3、增根的概念:在分式方程去分母转化为整式方程的过程中,可能会增加使原分式方程中分式的分母为零的根,这个根叫原方程的增根,因此列分式方程一定要验根。
注:增根不是解题错误造成的。
4、列方程解应用题步骤:审、设、列、解、验、答。
二、基础知识练习解下列分式方程1、2、5、要使的值相等,则x=__________。
6、若关于x的分式方程无解,则m的值为__________。
7、A、B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程-------------8、A、B两地相距50千米,甲骑自行车,乙骑摩托车,都从A地到B地,甲先出发1小时30分,乙的速度是甲的2、5倍,结果乙先到1小时,求甲、乙两人的速度。
八年级数学上册 15.3分式方程学案(新人教版)

八年级数学上册 15.3分式方程学案(新人教版)
一、学习目标:
1、进一步了解分式方程的概念, 和产生增根的原因、
2、掌握分式方程的解法,会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的根、
二、学习重点:会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的根、
三、学习难点:会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的根、
四、知识回顾:
1、前面我们已经学习了哪些方程
2、整式方程与分式方程的区别在哪里?
______________________________________________________、3、解分式方程的步骤是什么?
(1)____________________;(2)_____________________(3)______ ____________________________、4、解分式方程⑴ ⑵
五、例题讲解:
1、解方程
2、
[分析]找对最简公分母,去分母时别忘漏乘1
2、当= 时代数式与的值互为倒数。
六、随堂练习:
1、
2、
3、
4、5 、
6、七、自我检测:
1、方程的解是,
2、若=2是关于的分式方程的解,则的值为
3、下列分式方程中,一定有解的是()A、
B、
C、
D、4、解方程① ②③ ④。
新人教版八年级数学上册《分式方程》导学案

《分式方程》导学案学习目标:1.使学生理解分式方程的意义.2.使学生掌握可化为一元一次方程的分式方程的一般解法.3.了解解分式方程解的检验方法.学习重点:(1)可化为一元一次方程的分式方程的解法.(2)分式方程转化为整式方程的方法及其中的转化思想学习难点:检验分式方程解的原因学习过程:一、自主学习:1.概念:分式方程:分母中含有 的方程叫分式方程。
2.练习:判断下列各式哪个是分式方程.(1)5x y += (2)2253x y z +-= (3)1x (4)05y x =+ 3. 看课本例题回答问题:轮船顺流航行的速度为 千米/时;逆流航行的速度为 千米/时,顺流航行 100千米所用的时间为 小时,逆流航行 60 千米所用的时间为 小时。
由两次航行所用时间相等,可列方程100602020v v =+- 二、合作探究1、观察课本生解题过程,思考:方程100602020v v=+-和()()100206020v v -=+中 V 的取值范围相同吗?所以对上题中的解 v=5 必须检验。
检验:将 v=5 代入原方程中,左边= 4,右边=4 ,左边 =右边,因此 v=5 是原方程的解。
注意:分式方程必须检验2、解方程:2110525x x =--小结:一般地,解分式方程时,去分母后所得整式方程的解有可能使原方程中分母为0,因此检验时常将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解,否则,这个解不是原分式方程的解,是原分式方程的增根三、学以致用1、解方程:(1)1223x x =+ (2)21133x x x x =+++(3)22411x x =-- (4)22510x x x x -=+-(5)572x x =- (6)11322xx x -=---四、能力提升:1、若关于 x 的分式方程1011m xx x --=--有增根, 则m 的取值是?点拨:把分式方程进行转化,然后找到有可能的增根,代入。
八年级数学上册15.3分式方程教案新人教版(new)

15.3分式方程(一)教学目标:1.了解分式方程的概念, 和产生增根的原因。
2.掌握分式方程的解法,会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根。
重点难点1.重点:会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根。
2.难点:会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根。
教学过程一、例、习题的意图分析1. P149思考提出问题,引发学生的思考,从而引出解分式方程的解法以及产生增根的原因.2.P149的归纳明确地总结了解分式方程的基本思路和做法。
3. P150思考提出问题,为什么有的分式方程去分母后得到的整式方程的解就是原方程的解,而有的分式方程去分母后得到的整式方程的解就不是原方程的解,引出分析产生增根的原因,及P151的归纳出检验增根的方法。
4. P150思考提出P33的归纳出检验增根的方法的理论根据是什么?5. 教材P154习题第2题是含有字母系数的分式方程,对于学有余力的学生,教师可以点拨一下解题的思路与解数字系数的方程相似,只是在系数化1时,要考虑字母系数不为0,才能除以这个系数. 这种方程的解必须验根。
二、课堂引入1.回忆一元一次方程的解法,并且解方程163242=--+x x 2.提出本章引言的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?分析:设江水的流速为v 千米/时,根据“两次航行所用时间相同”这一等量关系,得到方程v v -=+206020100。
像这样分母中含未知数的方程叫做分式方程.三、例题讲解(P151)例1.解方程[分析]找对最简公分母x(x —3),方程两边同乘x(x —3),把分式方程转化为整式方程,整式方程的解必须验根这道题还有解法二:利用比例的性质“内项积等于外项积”,这样做也比较简便。
(P151)例2。
用分式方程解决实际问题---利润问题 学案 -2024-2025学年人教版数学八年级上册
用分式方程解决实际问题---利润问题学习目标1.能让学生根据问题中的数量关系列出分式方程并解决问题。
2.再次感受列分式方程解决问题的一般步骤3.通过用分式方程解决实际问题来提高学生的分析、解决问题的能力。
重难点能让学生根据问题中的数量关系列出分式方程并解决问题。
学习过程典型例题:“母亲节”前夕,某商店根据市场调查,用3 000元购进第一批盒装花,上市后很快售完,接着又用5 000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花的盒数的2倍,且每盒花的进价比第一批的进价少5元.若两次售价相同,售价定为多少,才能保证两次利润不低于1900元?变式一:商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该铅笔,但这次每支的进价4倍,购进数量比第一次少了30支。
是第一次进价的5(1)求第一次每支铅笔的进价是多少元?(2)若要求这两次购进的铅笔按同一价格全部销售完毕后获利不低于420元,问每支铅笔售价至少为多少元?变式二:母亲节”前夕,某花店根据市场调查,用3 000元购进第一批鲜花,上市后很快售完,接着又用5 000元购进第二批这种鲜花.已知第二批所购花的数量是第一批所购花的数量的2倍,且每束花的进价比第一批的进价少5元.(1)两次购进鲜花一共购进多少支?(2)在这两次鲜花总数量正常损耗15%,其余全部售完的情况下,若俩次售价相同,售价至少定为多少,才能保证两次总利润不低于25.5%?变式三:“母亲节”前夕,某花店根据市场调查,用3 000元购进第一批鲜花,上市后很快售完,接着又用3 960元购进第二批这种鲜花.已知第二批所购花的数量是第一批所购花的数量的2倍还少200,且每束花的进价比第一批的进价提高10%.(1)第一批每束鲜花进价多少元?(2)老板以每束17元的价格销售第二批鲜花,售出80%后,为了尽快售完,决定打折促销,要使第二批鲜花销售利润不少于2140元,剩余鲜花每束售价至少打几折?变式四:“母亲节”前夕,某商店根据市场调查,用3 000元购进第一批盒装花,上市后很快售完,接着又用5 000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花的盒数的2倍,且每盒花的进价比第一批的进价少5元.(1)第一批盒装花的进价是多少元?(2)如果用a元购进第一批盒装花,用b元购进第二批盒装花,且第二批所购花的盒数是第一批所购花的盒数的m倍,且每盒花的进价比第一批的进价少n元,则第二批盒装花的进价是多少?变式五:“母亲节”前夕,甲、乙商店根据市场调查,甲商店用3 000元购进一批盒装花,乙店用5 000元购进一批盒装花.已知乙店购买的盒装花的盒数是甲店购买的盒装花的盒数的2倍,且乙店购买的盒装花的进价比甲店购买的盒装花的进价少5元.(1)甲店购买的盒装花的进价是多少元?(2)上市后甲、乙两种商店都以售价为a 元销售,很快销售完,甲商店决定提价,第一次提价p%,第二次提价q%,乙商店第一、二次提价均为 ,其中p 、q 是不相等的正数,问:哪个商店提价多?%2p q课后作业1.商店销售某种商品,一月分销售了若干件,共获得利润30 000元,二月份把这种商品每件的利润降低1,但销售量比一月份增加5 000件,从而获得利润比5一月份多2 000元.调价前每件利润是多少元?2.利用分式方程解决下列问题:某商店销售一批服装,每件售价150元,可获利25%.求这种服装的成本价.3.某商场销售某种商品,此商品的进价是每件x元,第一个月将此商品的进价提高25%作为销售价,共获利6000元.第二个月商场搞促销活动,将此商品的进价提高10%作为销售价,第二个月的销售量比第一个月增加了80件,并且商场第二个月比第一个月多获利400元.问:(1)商场第一个月销售了此商品件(用含x的代数式表示);(2)商场第二个月共销售多少件?。
八年级数学上册 15.3 分式方程 第1课时 分式方程及其解法导学案 (新版)新人教版
第1课时 分式方程及其解法1.理解分式方程的意义.2.了解分式方程的基本思路和解法.3.理解分式方程可能无解的原因,并掌握解分式方程的验根的方法.自学指导:阅读教材P149-151,完成下列问题.1.填空:(1)分母中不含有未知数的方程叫做整式方程(2)分母中含有未知数的方程叫做分式方程.2.判断下列说法是否正确: ①232x +=5是分式方程;②4x -43=3x 4+是分式方程; ③x x 2=1是分式方程;④1x 1+=1-y 1是分式方程. 解:①不是分式方程,因为分母中不含有未知数.②是分式方程.因为分母中含有未知数.③是分式方程.因为分母中含有未知数.④是分式方程.因为分母中含有未知数.自学反馈1.下列方程中,哪些是分式方程?哪些是整式方程? ①22-x =3x ;②x 4+y 3=7; ③2-x 1=x 3;④x1)-x(x =-1; ⑤πx -3=2x ;⑥2x+51-x =10; ⑦x-x 1=2;⑧x 12x ++3x=1. 解:①⑤⑥是整式方程,因为分母中没有未知数.②③④⑦⑧是分式方程,因为分母中含有未知数.判断整式方程和分式方程的方法就是看分母中是否含有未知数.2.解分式方程的一般步骤是:(1)去分母;(2)解整式方程;(3)验根;(4)小结.活动1 小组讨论例1 解方程:3-x 2=x3. 解:方程两边乘x(x-3),得2x=3(x-3).解得x=9.检验:当x=9时,x(x-3)≠0.所以,原分式方程的解为x=9.例2 解方程:1-x x -1=2)1)(x -(x 3+. 解:方程两边乘(x-1)(x+2),得x(x+2)-(x-1)(x+2)=3.解得x=1.检验:当x=1时,(x-1)(x+2)=0.所以x=1不是原方程的解.所以,原方程无解.活动2 跟踪训练1.解方程: (1)2x 1=3x 2+; (2)1x x+=33x 2x++1; (3)1-x 2=1-x 42; (4)x x 52+-x -x 12=0.解:(1)方程两边乘2x(x+3),得x+3=4x.去分母:x+3=4x.化简得:3x=3.解得x=1. 检验:将x=1代入2x(x+3)≠0.所以x=1是方程的解.(2)方程两边乘3(x+1),得3x=2x+3x+3.解得x=23-.检验:将x=23-代入(3x+3)≠0.所以x=23-是方程的解.(3)方程两边乘x 2-1,得2(x+1)=4.解得x=1.检验:将x=1代入x 2-1=0,所以x=1不是方程的解.所以,原方程无解.(4)方程两边乘x(x+1)(x-1),得5(x-1)-(x+1)=0.解得x=23.检验:将x=23代入x(x+1)(x-1)≠0.所以x=23是原方程的解.方程中分母是多项式,要先分解因式再找公分母.2.解分式方程:(1)1-x x =2-2x 3-2; (2)2-x 3-x +1=x -23; (3)1-2x 2x =1-2x 2+.解:(1)方程两边乘2x-2,得2x=3-2(2x-2).解得x=67.检验:当x=67时,2x-2≠0.所以x=67是原方程的解.(2)方程两边乘x-2,得x-3+x-2=-3.解得x=1.检验:当x=1时,x-2≠0.所以,x=1是原方程的解.(3)方程两边乘(2x-1)(x+2),得2x(x+2)=(2x-1)(x+2)-2(2x-1).解得x=0.检验:当x=0时,(2x-1)(x+2)≠0.所以,x=0是原方程的解.课堂小结解分式方程的思路是:教学至此,敬请使用学案当堂训练部分.。
人教版八年级数学上册15.3《分式方程》教案
一、教学内容
人教版八年级数学上册15.3《分式方程》教案:
1.理解分式方程的概念,掌握分式方程的解法。
2.学习如何将分式方程转化为整式方程,包括去分母、去括号、移项、合并同类项等操作。
3.掌握求解分式方程的步骤,并能解决实际问题。
4.本章内容主要包括以下例题和练习:
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“分式方程在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
e.实际问题:根据已知条件,求解涉及分式的实际应用问题。
二、核心素养目标
1.培养学生的逻辑推理能力,使其能够通过观察、分析、归纳,掌握分式方程的解法,提高解决问题的能力。
2.培养学生的数学抽象思维,通过分式方程的学习,理解数学知识在实际问题中的应用,增强数学建模能力。
3.培养学生的运算能力和数据分析能力,使其在解决分式方程问题时,能够熟练运用数学运算,准确判断数据的合理性和解的正确性。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解分式方程的基本概念。分式方程是含有分式的方程,其特点是方程中至少有一个未知数在分母中。分式方程在解决实际问题中有着广泛的应用,如比例计算、速率问题等。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了分式方程在解决实际问题时如何转化为数学模型,并通过求解方程得到答案。
4.培养学生的团队合作意识,通过小组讨论和交流,共同探讨分式方程的解题策略,提高沟通能力和协作能力。
人教版八年级数学上册《分式》导学案:分式方程(第三课时)
人教版八年级数学上册《分式》导学案分式方程(第三课时)【学习目标】1.经历将实际问题中的等量关系用分式方程表示的过程;2.会列出分式方程解决简单的应用题,并掌握列分式方程解应用题的一般步骤;3.发展分析问题和解决实际问题的能力,体会数学的应用价值.【知识梳理】1.列分式方程解应用题的关键是找出题目中的 .2.分式方程解应用题的一般步骤:(1)审:审清题意,找 . (2)设:设未知数.(3)列:根据,列分式方程. (4)解:解分式方程.(5)检:检验所求的解是否为分式方程的解,并检验分式方程的解是否符合 .(6)答:写出答案.【典型例题】知识点一列分式方程解决实际问题1.某单位将沿街的一部分房租出租,每间房屋的租金相同.已知每间房屋的租金第二年比第一年多500元,所有房屋出租的租金第一年为9.6万元,第二年为10.2万元.(1)你能找出这一情境中的等量关系吗?(2)填表:设第一年每间房屋的租金为x元.(3)你能利用方程求出这两年每间房屋的租金各是多少吗?2.某农场开挖一条长960米的渠道,开工后工作效率比计划提高50%,结果提前4天完成任务.原计划每天挖多少米?【巩固训练】1.某市在道路改造过程中,需要铺设一条长为m 千米的管道,为了尽量减少施工对交通造成的影响,实际施工时,工作效率比原计划提高了n %,结果提前了8天完成任务,设原计划每天铺设管道x 千米,根据题意,下列方程正确的是( ) A.8%m m x n x-= B.8(1%)m m x n x -=+ C.8(1%)m m n x x -=+ D.8(1%)m m n x x -=- 2.为了改善生态环境,防止水土流失,某村计划在荒坡上种480棵树,由于青年志愿者的支援,每日比原计划多种 31 ,结果提前 4天完成任务,原计划每天种多少棵树?3.为解决“最后一公里”的交通接驳问题,北京市投放了大量公租自行车供市民使用.到2023年底,全市已有公租自行车25000辆,租赁点600个,预计到2025年底,全市将有公租自行车50000辆,并且平均每个租赁点的公租自行车数量是2023年底平均每个租赁点的公租自行车数量的1.2倍.预计到2025年底,全市将有租赁点多少个?4.为应对新冠疫情,某药店到厂家选购A 、B 两种品牌的医用外科口罩,B 品牌口罩每个进价比A 品牌口罩每个进价多0.7元,若用7200元购进A 品牌数量是用5000元购进B 品牌数量的2倍.(1)求A 、B 两种品牌的口罩每个进价分别为多少元?(2)若A 品牌口罩每个售价为2元,B 品牌口罩每个售价为3元,药店老板决定一次性购进A 、B 两种品牌口罩共6000个,在这批口罩全部出售后所获利润不低于1800元.则最少购进B 品牌口罩多少个?5.某服装店购进一批甲、乙两种款型时尚T 恤衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.(1)甲、乙两种款型的T 恤衫各购进多少件?(2)商店进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批T 恤衫商店共获利多少元?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《分式方程》学案
学习目标:1.会分析题意找出等量关系.
2.会列出可化为一元一次方程的分式方程解决实际问题.
学习重点:利用分式方程组解决实际问题.
学习难点:列分式方程表示实际问题中的等量关系.
学习过程:
一、自主学习:
1、工程问题:工作量=工作效率×工作时间
工作效率= 工作时间=
例如:一项工程 , 甲单独做5小时完成, 乙单独做 6小时完成
工作总量是__________ 甲的工作效率_________乙的工作效率__________
二、合作探究:
1、两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的三分之一,这时增加了乙队,两队又共同工作了半个月,总工程全部完成,哪个队的施工速度快?
分析:本题是一道工程问题应用题,基本关系是:工作量=工作效率×工作时间.这题没有具体的工作量,工作量虚拟为1,工作的时间单位为“月”.
等量关系是:甲队单独做的工作量+两队共同做的工作量=1
解:设_________________________________________________根据题意得
2、某校招生录取时,为了防止数据输入出错,2640名学生的成绩数据分别由两位程序操作员各向计算机输入一遍,然后让计算机比较两人的输入是否一致.已知甲的输入速度是乙的2倍,结果甲比乙少用2小时输完.问这两个操作员每分钟各能输入多少名学生的成绩?
解:设_________________________________________________根据题意得
三、学以致用:
1、甲、乙两工程队各挖15千米水渠,甲队每天挖水渠是乙的1.2倍,甲队的完工时间比乙队少半天,问甲、乙两工程队每天各挖水渠多少千米?
解:设_________________________________________________根据题意得
2、甲做180个机器零件与乙做240个机器零件所用的时间相同,已知两人每小时共做70
个机器零件,两人每小时各做多少个?
解:设_________________________________________________根据题意得
四、能力提升:
1、学校要举行跳绳比赛,同学们都积极练习.甲同学跳180个所用的时间,乙同学可以跳240个;又已知甲每分钟比乙少跳5个,求每人每分钟各跳多少个.
解:设_________________________________________________根据题意得
2. 一项工程要在限期内完成.如果第一组单独做,恰好按规定日期完成;如果第二组单独做,需要超过规定日期4天才能完成,如果两组合作3天后,剩下的工程由第二组单独做,正好在规定日期内完成,问规定日期是多少天?
解:设_________________________________________________根据题意得
五、课堂小结
六、课后作业
答案:
二.合作探究
经检验x=660是原方程的解.
则甲每小时输1320名学生成绩;
答:甲每小时输1320名学生成绩,乙每小时输660名学生成绩.
三.学以致用
1.设甲每分钟跳x 个,得
180
210
20x x =+
解得:x=120,
经检验,x=120是方程的解且符合题意,
120+20=140(个)
答:甲每分钟跳120个,乙每分钟跳140个;
2. 解:设规定日期是x 天,则第一组单独完成用x 天,第二组单独完成用x+4天. 根据题意得:3×(1x +14x + )+3
4x x -+ =1.
解这个分式方程得:x=12.
经检验:x=12是原方程的解,并且符合题意.
答:规定日期是12天.。