有机溶剂溶解度判断
常见有机溶剂的溶解性汇总

常用溶剂的沸点、溶解性和毒性溶剂名称沸点(101.3kPa)溶解性毒性液氨-33.35℃特殊溶解性:能溶解碱金属和碱土金属剧毒性、腐蚀性液态二氧化硫-10.08 溶解胺、醚、醇苯酚、有机酸、芳香烃、溴、二硫化碳,多数饱和烃不溶剧毒甲胺-6.3 是多数有机物和无机物的优良溶剂,液态甲胺与水、醚、苯、丙酮、低级醇混溶,其盐酸盐易溶于水,不溶于醇、醚、酮、氯仿、乙酸乙酯中等毒性,易燃二甲胺7.4 是有机物和无机物的优良溶剂,溶于水、低级醇、醚、低极性溶剂强烈刺激性石油醚不溶于水,与丙酮、*****、乙酸乙酯、苯、氯仿及甲醇以上高级醇混溶与低级烷相似***** 34.6 微溶于水,易溶与盐酸.与醇、醚、石油醚、苯、氯仿等多数有机溶剂混溶*****性戊烷36.1 与乙醇、*****等多数有机溶剂混溶低毒性员?婷疋0?二氯甲烷39.75 与醇、醚、氯仿、苯、二硫化碳等有机溶剂混溶低毒,*****性强二硫化碳46.23 微溶与水,与多种有机溶剂混溶*****性,强刺激性溶剂石油脑与乙醇、丙酮、戊醇混溶较其他石油系溶剂大丙酮56.12 与水、醇、醚、烃混溶低毒,类乙醇,但较大1,1-二氯乙烷57.28 与醇、醚等大多数有机溶剂混溶低毒、局部刺激性氯仿61.15 与乙醇、*****、石油醚、卤代烃、四氯化碳、二硫化碳等混溶中等毒性,强*****性甲醇64.5 与水、*****、醇、酯、卤代烃、苯、酮混溶中等毒性,*****性四氢呋喃66 优良溶剂,与水混溶,很好的溶解乙醇、*****、脂肪烃、芳香烃、氯化烃吸入微毒,经口低毒己烷68.7 甲醇部分溶解,比乙醇高的醇、醚丙酮、氯仿混溶低毒。
*****性,刺激性三氟代乙酸71.78 与水,乙醇,*****,丙酮,苯,四氯化碳,己烷混溶,溶解多种脂肪族,芳香族化合物1,1,1-三氯乙烷74.0 与丙酮、、甲醇、*****、苯、四氯化碳等有机溶剂混溶低毒类溶剂四氯化碳76.75 与醇、醚、石油醚、石油脑、冰醋酸、二硫化碳、氯代烃混溶氯代甲烷中,毒性最强乙酸乙酯77.112 与醇、醚、氯仿、丙酮、苯等大多数有机溶剂溶解,能溶解某些金属盐低毒,*****性乙醇78.3 与水、*****、氯仿、酯、烃类衍生物等有机溶剂混溶微毒类,*****性丁酮79.64 与丙酮相似,与醇、醚、苯等大多数有机溶剂混溶低毒,毒性强于丙酮苯80.10 难溶于水,与甘油、乙二醇、乙醇、氯仿、*****、、四氯化碳、二硫化碳、丙酮、甲苯、二甲苯、冰醋酸、脂肪烃等大多有机物混溶强烈毒性乙睛81.60 与水、甲醇、乙酸甲酯、乙酸乙酯、丙酮、醚、氯仿、四氯化碳、氯乙烯及各种不饱和烃混溶,但是不与饱和烃混溶中等毒性,大量吸入蒸气,引起急性中毒异丙醇82.40 与乙醇、*****、氯仿、水混溶微毒,类似乙醇1,2-二氯乙烷83.48 与乙醇、*****、氯仿、四氯化碳等多种有机溶剂混溶高毒性、致癌乙二醇二甲醚85.2 溶于水,与醇、醚、酮、酯、烃、氯代烃等多种有机溶剂混溶。
常用溶剂及塑料产品的溶解度参数

常用溶剂及塑料产品的溶解度参数溶剂在化学实验和工业生产中起到了非常重要的作用,它可以用来溶解和分离各种物质。
在塑料制品生产过程中,溶解度是一个重要的参数,可以帮助确定塑料与不同溶剂的相容性和可溶性。
以下是一些常用溶剂及塑料产品的溶解度参数:1.溶剂的常用分类常见的溶剂可以分为有机溶剂和无机溶剂两大类。
有机溶剂主要由碳和氢构成,如醇类(如乙醇、丙醇)、醚类(如乙醚、二甘醇二乙醚)、酮类(如丙酮、戊酮)、酯类(如丁酸乙酯、乙酸乙酯)和芳烃类(如苯、甲苯)。
无机溶剂主要包括各种水溶液(如盐酸、硫酸)、氨水溶液、氯化镁溶液、氨溶液等。
(1)聚乙烯(PE):聚乙烯是一种非极性塑料,常用溶剂中只有少数可以溶解聚乙烯,如氯仿、二甲基甲酰胺(DMF)和强氧化剂(如浓硫酸)。
(2)聚丙烯(PP):聚丙烯是一种相对较难溶解的塑料,只有少数有机溶剂可以溶解聚丙烯,如苯、二氯甲烷和四氢呋喃。
(3)聚氯乙烯(PVC):聚氯乙烯是一种相对容易溶解的塑料,常用的溶剂有二甲基甲酰胺、甲基乙酮、苯和二氯甲烷。
(4)聚苯乙烯(PS):聚苯乙烯是一种相对容易溶解的塑料,常用的溶剂有乙酸乙酯、甲苯和二氯甲烷。
(5)聚酯类塑料(如聚酯纤维、PET):聚酯类塑料的溶解度较高,常用的溶剂有二氯甲烷、甲醇和苯。
(6)聚碳酸酯(PC):聚碳酸酯是一种相对难溶解的塑料,常用的溶剂有二甲基甲酰胺、四氢呋喃、氯化甲烷和苯。
(7)聚氨酯(PU):聚氨酯是一种相对难溶解的塑料,常用的溶剂有二甲基甲酰胺、甲基乙酮和二氯甲烷。
(8)聚甲基丙烯腈(PMMA):聚甲基丙烯腈是一种相对容易溶解的塑料,常用的溶剂有二甲基甲酰胺、甲基乙酮和二氯甲烷。
(9)聚丙烯酸甲酯(PMMA):聚丙烯酸甲酯是一种相对难溶解的塑料,常用的溶剂有乙腈、二氯甲烷和四氢呋喃。
以上只是一部分常用塑料和溶剂的溶解度参数,实际上还存在各种其他塑料和溶剂,其溶解度参数可以通过实验或参考相关文献获得。
有机溶剂的极性与溶解度的计算

有机溶剂的极性与溶解度的计算在化学领域中,溶解度是指在一定温度和压力下溶液中最大能溶解的物质量,常用质量分数或摩尔分数来表示。
溶解度的计算对于化学实验、工业生产以及药物研发具有重要意义。
本文将探讨有机溶剂的极性与溶解度之间的关系,并介绍一些计算溶解度的方法。
有机溶剂的极性是指溶剂分子中极性键的数量和强度。
极性键是由原子间的电荷差异引起的化学键,如两个原子间的电负性差异较大。
一般来说,带有电子云分布不均匀的分子更加极性。
极性溶剂可以与带电离子或者带电部分形成静电相互作用,从而溶解离子化合物或极性化合物。
相反,非极性溶剂则倾向于溶解非极性或者低极性的物质。
当我们需要计算有机溶剂的溶解度时,可以考虑以下几个因素:1. 溶剂极性与溶质极性的匹配:通常来说,极性溶剂更适合溶解极性溶质,而非极性溶剂更适合溶解非极性溶质。
这是因为溶剂和溶质之间极性相近时,静电相互作用更强,有利于溶解。
2. 溶剂分子的结构:溶剂分子的结构也会影响其溶解能力。
在一般情况下,较大的溶剂分子对溶解性的提高有利,因为它们具有更多的接触面积,可以与更多的溶质分子发生相互作用。
3. 温度和压力:温度和压力是影响溶解度的重要因素。
温度升高会增加溶质的动力学能量,有利于其在溶剂中溶解。
而压力的增加可以促进溶质与溶剂间的相互作用,从而提高溶解度。
在计算有机溶剂的溶解度时,可以使用一些常见的方法:1. 溶解度参数法:溶解度参数法是一种基于物质属性的经验方法,通过实验数据拟合得到溶剂和溶质的参数,从而预测溶解度。
这些参数包括极性参数、氢键参数和键键参数等。
2. 分子力场模拟:分子力场模拟是使用计算机模拟方法研究溶质和溶剂之间相互作用的方法。
通过构建溶质和溶剂分子的三维结构,并根据它们之间的相互作用力场进行计算,可以预测溶解度。
3. 溶解度预测软件:目前,有一些商业软件可以根据分子结构,使用量化构效关系(QSAR)的方法预测化合物的溶解度。
这些软件使用了大量的实验数据和统计学算法,提供了便捷且准确的溶解度预测。
常见有机溶剂的溶解性汇总

也有一定的刺激性。不同有机溶剂其作用的主要靶*****和作用的强弱也不同,这决定于每一种有机溶剂 的化学结构、溶解度、接触浓度和时间,以及机体的敏感性。 毒性 ①神经毒性。以脂肪烃(正己烷、戊烷、汽油)、芳香烃(苯、苯乙烯、丁基甲苯、乙烯基甲苯)、氯化烃(三 氯乙烯、二氯甲烷),以及二硫化碳、磷酸三邻甲酚等脂溶性较强的溶剂为多见。有机溶剂对神经系统的损 害大致有三种类型:第一种为中毒性神经衰弱和植物神经功能紊乱。病人可有头晕、头痛、失眠、多梦、 嗜睡、无力、记忆力减退、食欲不振、消瘦,以及多汗、情绪不稳定,心跳加速或减慢、血压波动、皮肤 温度下降或双侧肢体温度不对称等表现;第二种为中毒性末梢神经炎。大部分表现为感觉型,其次为混合 型。可有肢端麻木、感觉减退、刺痛、四肢无力、肌肉萎缩等表现;第三种为中毒性脑病,比较少见,见 于二硫化碳、苯、汽油等有机溶剂的严重急、慢性中毒。 ②血液毒性。以芳香烃,特别是苯最常见。苯达到一定剂量即可抑制骨髓造血功能,往往先有白细胞减少, 以后血小板减少,最后红细胞减少,成为全血细胞减少。个别接触苯的敏感者,可发生白血病。 ③肝肾毒性。多见于氯代烃类有机溶剂,如氯仿、四氯化碳、三氯乙烯、四氯乙烯、三氯丙烷、二氯乙烷 等中毒。中毒性肝炎的病理改变主要是脂肪肝和肝细胞坏死。临床上可有肝区痛、食欲不振、无力、消瘦、 肝脾肿大、肝功能异常等表现。有机溶剂引起的肾损害多见为肾小管型,产生蛋白尿,肾功能呈进行性减 退。 ④皮肤粘膜刺激。多数有机溶剂均有程度不等的皮肤粘膜刺激作用,但以酮类和酯类为主。可引起呼吸道 炎症、支气管哮喘、接触性和过敏性皮炎、湿疹、结膜炎等。 防治 生产和使用有机溶剂时,要加强密闭和通风,减少有机溶剂的逸散和蒸发。采用自动化和机械化操 作,以减少操作人员直接接触的机会。应使用个人防护用品,如防毒口罩或防护手套。皮肤粘膜受污染时, 应及时冲洗干净。勿用污染的手进食或吸烟。勤洗手、洗澡与更衣。应定期进行健康检查,及早发现中毒 征象时,进行相应的治疗和严密的动态观察。
有机化学基础知识点有机物的溶解性和溶解度

有机化学基础知识点有机物的溶解性和溶解度有机化学基础知识点:有机物的溶解性和溶解度有机化学是研究含有碳元素的化合物的科学,是化学中的重要分支之一。
在有机化学中,有机物的溶解性和溶解度是两个重要的概念。
本文将介绍有机物的溶解性和溶解度的定义、影响因素以及实际应用。
一、有机物的溶解性有机物的溶解性是指有机物能否溶解于某一给定溶剂中的性质。
溶解性的大小取决于溶剂和溶质之间的相互作用力。
如果有机物和溶剂之间的相互作用力较强,溶解性就较大;相反,如果相互作用力较弱,溶解性就较小。
溶解性常用溶解度来表示,即单位溶剂中能溶解单位溶质的物质的量。
溶解度的大小与溶剂和溶质的性质有关,通常采用摩尔溶解度(mol/L)或质量溶解度(g/L)来表示。
二、影响有机物溶解性的因素1. 分子极性:极性溶质通常易溶于极性溶剂,而非极性溶质倾向于溶解于非极性溶剂。
这是由于极性分子之间的吸引力较强,有利于溶解。
2. 温度:一般情况下,溶解度随温度的升高而增加。
这是因为温度升高会增加分子间的热运动,从而使溶质分子能够克服相互作用力更容易进入溶液。
3. 压力:对固体或气体溶质来说,压力对溶解度影响较大。
根据Henry定律,气体的溶解度随压力的增加而增加,固体溶质的溶解度一般不受压力的影响。
4. 溶剂的选择:不同的有机物需要选择适合其溶解的溶剂。
例如,极性有机物通常溶解于极性溶剂(如水、乙醇等),而非极性有机物溶解于非极性溶剂(如石油醚、甲醇等)。
三、有机物的溶解度有机物的溶解度是指在一定温度下,有机物在溶剂中能达到的最大溶解度。
溶解度可用实验测定或计算得出,通过溶解度可以了解有机物的溶解特性,预测其在溶液中的行为。
不同有机物的溶解度差异较大,主要与分子结构相关。
常用的溶解度规律包括:"相似溶剂溶解相似溶质"原则、"极性溶剂溶解极性溶质"原则以及"类似结构的有机物溶解性相似"原则。
有机溶剂溶解度相对理论

有机溶剂溶解度相对理论溶剂不仅用来溶解树脂、降低粘度以改善加工性能和施工性能,而且还影响涂料的粘结性、防腐性、户外耐久性及涂膜的表观性(起泡、流挂、流平等),因此,通过溶剂的选用可以改善涂料的某一或某几方面的性能。
第一节溶剂的类型按氢键强弱和形式,溶剂可分为三种类型:1)弱氢键溶剂:主要包括烃类和氯代烃类溶剂,烃类溶剂又分为脂肪烃芳香烃。
常用的有:石脑油、200#溶剂油、甲苯、二甲苯、三氯乙烷等。
2)氢键接受型溶剂:主要指酮类和酯类。
酮类比酯类便宜,但后者气味芳香。
常用的有:丁酮、丙酮、环己酮、甲苯异丁基酮、异佛尔酮、醋酸乙酯、醋酸丁酯、醋酸异丙酯、醋酸-2-丁氧基乙酯等。
第七章溶剂和溶解理论3)氢键授受型溶剂:主要为醇类溶剂。
常用的有:甲醇、乙醇、异丙醇、正丁醇、乙二醇、丙二醇、二甘醇单丁基醚等。
1,溶解理论:溶解力溶剂的溶解力是指溶剂溶解成膜物质而形成高分子聚合物的能力。
低分子化合物在溶剂中的溶解可用溶解度的概念来描述。
如蔗糖,食盐在水中的溶解,其机理是溶剂和溶质分子或离子间的吸引力,而使溶质分子逐渐离开其表面,并通过扩散作用均匀地分散到溶剂中去成为均匀溶液。
高分子化合物在溶剂中的溶解则大体上可分为溶胀阶段和全部溶剂化两个阶段。
接触溶剂表面的分子链最先溶剂化-------使高分子化合物内部溶剂化--------溶剂化程度逐渐增加---全部溶剂化。
2,溶剂和溶解理论可以看出,溶剂对高分子聚合物溶解力的大小,溶解速度的快慢,主要取决于溶剂分子和高聚合物分子的亲和力所决定的溶剂向高聚物分子间隙中扩散的难易程度。
二、极性相似原则3,溶剂和溶解理论(1)非极性分子四氯化碳没有电性的不对称、偶极矩为0 称为非极性物质。
(2)极性分子甲醇羟基显电负性而甲基显电正性,分子中电性分布不对称,偶极矩不为0 ,称为极性物质。
偶极矩数值越大,极性越大。
(3)极性分子的缔合规律:非极性溶质溶于非极性或弱极性溶剂中,极性溶质溶于极性溶剂中,即“同类溶解同类”------这就是极性相似原则的核心。
溶解性的划分

溶解性的划分
1溶解性的划分
溶解性是指物质在溶剂中的溶解程度,某些物质可以完全溶解在溶剂中,而另一些则不能,但化学反应中并不能完全的溶解,我们通常将物质进行划分,如下:
1.1无溶解性
无溶解性是指物质在某种溶剂中不能溶解的物质,它们特别容易被滤掉。
例如玻璃,铁,木头等,它们并不能溶解在水中,也不能溶解在一般的有机溶剂中,他们都在水中悬浮,直至被滤清。
1.2有溶解性
有溶解性是指物质在某种溶剂中可以溶解的物质。
例如碱性和碱式盐,它们可以很容易的溶解在水中,同时也可以溶解在一定的有机溶剂中,而大部分的有机物也可以溶解在一定的有机溶剂中,但是其他无机物可能不能溶解在有机溶剂中。
1.3混溶性
混溶是指在某种溶剂中,既可以溶解,也可以不能完全溶解的物质,这些物质在溶剂中形成溶解度较低的混溶物,如大多数的水溶性的酸,它们可以溶解在一定程度的水中,但却不能完全溶解,而是形成溶解度较低的混溶物。
1.4部分溶解性
部分溶解性指的是某些特殊的物质可以部分溶解在溶剂中,例如某些硫化物,它们可以在某些溶剂中按照一定的溶解程度溶解,但在另一些溶剂中却不能溶解,而且不同溶剂中其溶解度也可能不同。
以上就是溶解性的划分,它可以帮助我们判断某种物质可以在不同的溶剂中变化多少,有效提高化学反应效率。
醋酸正丙酯 溶度参数

醋酸正丙酯溶度参数醋酸正丙酯是一种常见的有机溶剂,具有许多重要的应用领域。
本文将从溶解性、溶解度参数及其对溶液性质的影响等方面进行探讨。
一、醋酸正丙酯的溶解性醋酸正丙酯是一种无色液体,在常温下具有较低的挥发性。
它能够在水中溶解,但溶解度相对较低。
这是因为醋酸正丙酯的分子结构中含有较长的烷基链,使其极性较低,难以与水分子形成氢键。
因此,在水中的溶解度较小。
二、醋酸正丙酯的溶解度参数溶解度参数是描述溶质与溶剂之间相互作用力的物理量。
常用的溶解度参数包括极性参数(P)、极性-极性分散参数(δP)、极性-极性吸引参数(δH)等。
这些参数可以用来描述溶质与溶剂之间的相互作用,从而预测溶质在不同溶剂中的溶解度。
对于醋酸正丙酯来说,其溶解度参数为:P = 2.80、δP = 0.00、δH = 0.00。
其中,P表示溶质的极性,δP表示溶剂的极性-极性分散性,δH表示溶剂的极性-极性吸引性。
根据这些参数,可以判断醋酸正丙酯在不同溶剂中的溶解性。
三、醋酸正丙酯的溶解度参数对溶液性质的影响醋酸正丙酯的溶解度参数对溶液性质有着重要的影响。
首先,溶解度参数可以用来预测溶剂中溶质的溶解度。
通过比较溶剂和溶质的溶解度参数,可以估计溶液中溶质的溶解程度,从而选择合适的溶剂。
溶解度参数还可以用来研究溶液的物化性质。
比如,通过测定醋酸正丙酯在不同溶剂中的溶解度参数,可以推断溶质与溶剂之间的相互作用力强弱,进而了解溶质溶解过程中的热力学和动力学性质。
溶解度参数还可以用来优化溶解过程。
通过调节溶质和溶剂的溶解度参数,可以控制溶解过程的速率和效果,提高溶解度和溶液的稳定性。
四、总结醋酸正丙酯作为一种常用的有机溶剂,具有一定的溶解性,但溶解度较小。
其溶解度参数可以用来预测溶质在不同溶剂中的溶解度,研究溶液的物化性质,并优化溶解过程。
通过深入了解醋酸正丙酯的溶解性及其溶解度参数,可以更好地应用于相关领域,提高溶解效果和溶液的稳定性。
参考文献:1. 孙宝珍, 张子淇. 有机物理化学. 北京: 化学工业出版社, 2006.2. 刘世骏, 张晓梅. 有机化学实验. 北京: 化学工业出版社, 2010.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
溶剂互溶次序表类别次序AB1 盐水溶液AB1 无机酸水溶液AB1 水AB1 乙二醇AB2 甲酰胺AB2 乙酸及其同系物AB2 甲醇AB2 乙二醇甲醚AB2 乙醇AB2 丙醇AB2 丁醇AB2 戊醇AB2 酚B 苯胺B TBPB 丙酮B 二氧六环B THFB 吡啶B 硝基苯B 甲乙酮B 戊酮B 乙醚A 二氯甲烷A 四氯乙烷A 氯仿A 三氯乙烷A 二氯乙烷N 苯N 甲苯N 四氯化碳N CS2N 环已烷N 正已烷N 庚烷N 硅油N 石蜡油表中顺序,离的越近越易混溶,越远越难溶所以位于中间的THF,丙酮,二氧六环几乎和所有溶剂互溶!如附件图所示:AB1和A部分互溶AB2和N部分互溶AB1和N不溶溶度参数的定义溶度参数solubility parameter表征聚合物-溶剂相互作用的参数。
物质的内聚性质可由内聚能予以定量表征,单位体积的内聚能称为内聚物密度,其平方根称为溶度参数。
溶度参数可以作为衡量两种材料是否共容的一个较好的指标。
当两种材料的溶度参数相近时,它们可以互相共混且具有良好的共容性。
液体的溶度参数可从它们的蒸发热得到。
然而聚合物不能挥发,因而只能从交联聚合物溶胀实验或线聚合物稀溶液黏度测定来得到。
能使聚合物的溶胀度或特性黏数最大时的溶剂的溶度参数即为此聚合物的溶度参数。
溶度参数公式为编辑本段溶度参数的测定(1) 小分子溶剂的溶度参数由Clapeyron- Clausius公式计算(2)聚合物的溶度参数:A粘度法B.溶胀度法C.直接计算扩展阅读:一些溶剂的溶度参数[单位 (cal/cm3)1/2]溶剂溶度参数溶剂溶度参数季戊烷6.3甲乙酮9.2 异丁烯6.7氯仿9.3 环己烷7.2三氯乙烯9.3 正己烷7.3氯苯9.5 正庚烷7.4四氢萘9.5 二乙醚 7.4四氢呋喃9.5 正辛烷7.6醋酸甲酯9.6 甲基环己烷7.8卡必醇9.6 异丁酸乙酯7.9氯甲烷9.7 二异丙基甲酮8.0二氯甲烷9.7 戊基醋酸甲酯8.0丙酮9.8 松节油8.11,2-二氯乙烷9.8 环己烷8.2环己酮9.9 2,2-二氯丙烷8.2乙二醇单乙醚9.9 醋酸异丁酯 8.3二氧六环9.9 醋酸戊酯8.3二硫化碳10.0 醋酸异戊酯8.3正辛醇10.3 甲基异丁基甲酮8.4丁腈10.5 醋酸丁酯8.5正己醇10.7 二戊烯8.5异丁醇10.8 醋酸戊酯8.5吡啶10.9 甲基异丙基甲酮8.5二甲基乙酰胺11.1 四氯化碳8.6硝基乙烷11.1 哌啶8.7正丁醇 11.4 二甲苯8.8环己醇11.4 二甲醚8.8异丙醇11.5 甲苯8.9正丙醇11.9 乙二醇单丁醚8.9二甲基甲酰胺12.1 1,2二氯丙烷9.0乙酸12.6 异丙叉丙酮9.0硝基甲烷12.7 醋酸乙酯9.1二甲亚砜12.9 四氢呋喃9.2乙醇12.9 二丙酮醇 9.2甲酚13.3 苯9.2甲酸13.5 甲醇14.5苯酚14.5 乙二醇16.3甘油16.5 水23.4溶剂对聚合物溶解能力的判断(一)“极性相近”原则极性大的溶质溶于极性大的溶剂;极性小的溶质溶于极性小的溶剂,溶质和溶剂的极性越相近,二者越易溶。
例如:未硫化的自然橡胶是非极性的,可溶于气油、苯、甲苯等非极性溶剂中;聚乙烯醇是极性的,可溶于水和乙醇中。
(二)“内聚能密度(CED)或溶度参数相近”原则δ越接近,溶解过程越轻易。
1、非极性的非晶态聚合物与非极性溶剂混合聚合物与溶剂的ε或δ相近,易相互溶解;2、非极性的结晶聚合物在非极性溶剂中的互溶性必须在接近Tm温度,才能使用溶度参数相近原则。
例如:聚苯乙烯δ=8.9,可溶于甲苯(δ=8.9)、苯(δ=9.2)、甲乙酮(δ=9.2)、乙酸乙酯(δ=9.2)、氯仿(δ=9.2)、四氢呋喃(δ=9.2)但不溶于乙醇(δ=12.92和甲醇(δ=14.5)中以及脂肪烃(溶度参数较低)。
混合溶剂的溶度参数δ的计算:δ混=δ1Φ1+δ2Φ2例如:丁苯橡胶(δ=8.10),戊烷(δ1=7.08)和乙酸乙酯(δ2=9.20)用49.5%所戊烷与50.5%的乙酸乙酯组成混合溶剂高聚物溶度参数的测定< 高聚物溶度参数的测定<br />高聚物的溶度参数常被用于判别聚合物与溶剂的互溶性,对于选择高聚物的溶剂或稀释剂有着重要的参考价值。
低分子化合物低溶度参数一般是从汽化热直接测得,高聚物由于其分子间的相互作用能很大,欲使其汽化较困难,往往未达汽化点已先裂解。
所以聚合物点溶度参数不能直接从汽化能测得,而是用间接方法测定。
<br />常用的有平衡溶胀法(测定交联聚合物)浊度法、粘度法等。
<br />现将浊度法及粘度法介绍如下:<br /><br />(一) 浊度滴定法<br /><br />在二元互溶体系中,只要某聚合物定溶度参数δp在两个互溶溶剂的δ值的范围内,我们便可能调节这两个互溶混合溶剂的溶度参数,使δsm值和δp很接近,这样,我们只要把两个互溶溶剂按照一定的百分比配制成混合溶剂,该混合溶剂的溶度参数δsm可近似地表示为:<br />δsm=Φ1δ1+Φ2δ2 ------------------------------------- (1)<br />式中:Φ1Φ2分别表示溶液中组分1和组分2的体积分数。
<br />浊度滴定法是将待测聚合物溶于某一溶剂中,然后用沉淀剂(能与该溶剂混溶)来滴定,直至溶液开始出现混浊为止。
这样,我们便得到在混浊点混合溶剂的溶度参数δsm值。
<br />聚合物溶于二元互溶溶剂的体系中,允许体系的溶度参数有一个范围。
本实验我们选用两种具有不同溶度参数的沉淀剂来滴定聚合物溶液,这样得到溶解该聚合物混合溶剂参数的上限和下限,然后取其平均值,即为聚合物的δp值。
<br /> ----------------------------- (2)<br />这里δmh和δml分别为高、低溶度参数的沉淀剂滴定聚合物溶液,在混浊点时混合溶剂的溶度参数。
<br /><br />1.仪器药品:<br /><br />10毫升自动滴定管两个(也可用普通滴定管代用),大试管(25×200毫米)4个,5毫升和10毫升移液管各一支,5毫升容量瓶一个,50毫升烧杯一个<br />粉末聚苯乙烯样品,氯仿,正戊烷、甲醇。
<br /><br />2.实验步骤<br /><br />(1)溶剂和沉淀剂的选择<br />首先确定聚合物样品溶度参数δp的范围。
取少量样品,在不同δ的溶剂中作溶解试验,在室温下如果不溶或溶解较慢,可以把聚合物和溶剂一起加热,并把热溶液冷却至室温,以不析出沉淀才认为是可溶的。
从中挑选合适的溶剂和沉淀剂。
<br />(2)根据选定的溶剂配制聚合物溶液<br />称取0.2克左右的聚合物样品(本实验采用聚苯乙烯)溶于25毫升的溶剂中(用氯仿作溶剂)。
用移液管吸取5毫升(或10毫升)溶液,置于一试管中,先用正戊烷滴定聚合物溶液,出现沉淀。
振荡试管,使沉淀溶解。
继续滴入正戊烷,沉淀逐渐难以振荡溶解。
滴定至出现的沉淀刚好无法溶解为止,记下用去的正戊烷体积。
再用甲醇滴定,操作同正戊烷,记下所用甲醇体积。
<br />(3)分别称取0.1克,0.05克左右的上述聚合物样品,溶于25毫升的溶剂中,同上操作进行滴定。
<br /><br />3.数据处理<br /><br />(1)根据式(1)计算混合溶剂的溶度参数δmh和δml。
<br />(2)由式(2)计算聚合物的溶度参数δp。
<br /><br />(二)粘度法<br /><br />在良溶剂中聚合物分子与溶剂分子的相互作用是相互促进,分子链得到伸展,产生一种类似于膨胀过程一样的回缩力,因此,膨胀度与特性粘度二者可用相同的参数与溶剂的溶解能力相关联,理论上认为膨胀度Q,特性粘度[η]皆是V1/2(δ-δp)的Gauss函数如:<br />[η]=[η]maxev(δ-δp)2<br />当[η]=[η]max时,δp=δ,即高聚物的溶度参数与绝对粘度最大值所对应的溶剂的溶度参数相等。
<br />高聚物内聚能密度为溶度参数当平方即δp2。
<br />选择不同δ值的可溶解该高聚物的溶剂,用粘度法测定高聚物在不同溶剂中形成的溶液的流出时间,求得[η],以[η]与相应的溶剂的溶度参数δ作图,得一曲线,其极值点[η]max对应得δ则可视为高聚物得溶解参数δp。
<br />有些高聚物往往找不到合适的纯溶剂,此时可使用混合溶剂进行测定,如前所述混合溶剂的溶度参数δsm近似表示为<br /> <br />式中:Φ1、Φ2分别表示混合液各组分的体积分数。
δ1、δ2分别为混合液中各组分的溶度参数。
<br />只要δp在各种互溶溶剂的δ值范围内,就可配制混合溶剂使δsm值与δp很接近。
根据此原理,我们选用两种互溶且混合时无体积效应的溶剂,其一δ值小于δp,另一δ值大于δp,按不同比例混合均匀,成一系列混合溶剂,再用这类混合溶剂配制一系列高聚物溶液,分别测其[η],进而求出δp。
<br /><br />1.仪器与药品<br /><br />仪器:<br />恒温装置1套 磨口三角瓶(50-100ml)6个<br />秒表 1只 容量瓶(25ml) 6个<br />橡皮吸球1个 移液管 1支<br />砂芯漏斗1个 粘度计 1支<br />药品:<br />甲苯,苯,丁酮,甲酸乙酯,丙酮(皆为C.P.),PVAc。