黄土的结构强度与湿陷性之间的关系

合集下载

湿陷性黄土地基湿陷的原理和处理方法分析

湿陷性黄土地基湿陷的原理和处理方法分析

湿陷性黄土地基湿陷的原理和处理方法分析湿陷性黄土地基是一种特殊的土壤类型,具有较高的含水量和较弱的结构强度,常导致地基的湿陷变形。

湿陷是指由于土壤中的吸水胀缩、土壤结构破坏等因素导致地基沉降和变形的现象。

本文将从湿陷性黄土地基湿陷的原理和处理方法两个方面进行分析。

1.土壤吸水胀缩:湿陷性黄土具有较高的含水量,土壤颗粒与水分分子之间存在相互作用力,当土壤吸湿时,水分分子与颗粒表面发生吸附作用,土壤颗粒间的吸引力增加,土壤体积增加,土壤胀缩而引起沉降。

2.土壤结构破坏:湿陷性黄土由于水分作用,土壤颗粒之间的黏结力减弱,土壤结构易于破坏,引起土壤的流动性增加,从而引起地基的沉降和面积扩大。

3.内禀液化:湿陷性黄土地基中存在多孔水分,当地震或振动作用于土壤时,土壤内的水分受到振动影响增加了孔隙水压力,从而引发黏土颗粒之间的摩擦减小,土体流动性增加,导致土壤液化,加剧地基的沉降和变形。

1.地基改良:通过对湿陷性黄土进行地基改良,提高其工程性质,减少地基湿陷。

常用的地基改良方法包括加固、加密、加固加密等。

例如可以采用灌浆、土石槽加厚等方式,提高土壤的密实度和强度,减少土壤的湿陷性。

2.排水处理:湿陷性黄土具有较高的含水量,通过适当的排水处理,可以减少地基的湿陷。

可以采用井点排水、地下水泵抽水、横向排水等方式,将地下水位降低,减少土壤中的水分含量。

3.增加地基承载力:湿陷性黄土的强度较弱,通过增加地基的承载力,减少地基的沉陷。

可以采用加密填筑等方式,将土壤的结构改造为坚实的基岩,提高土壤的承载力,减少地基的沉陷。

4.选择合适的建筑设计方案:在湿陷性黄土地基上进行建筑设计时,应遵循合适的建筑设计方案,采取适当的措施来减少地基的湿陷。

例如可以采用浅基础、增加地基宽度等方式,减少地基的沉陷。

总结:湿陷性黄土地基的湿陷主要是由于土壤吸水胀缩、土壤结构破坏等因素引起的。

对于湿陷性黄土地基的处理,可以采取地基改良、排水处理、增加地基承载力和选择合适的建筑设计方案等方法,有效减少地基湿陷的程度,提高地基的稳定性。

湿陷性黄土的性质

湿陷性黄土的性质

1.粒度成分上,以粉粒为主,粉粒含量超过50%以上,砂粒、粘粒含量较少。

2.密度⼩,孔隙率⼤,⼤孔性明显。

在其它条件相同时,孔隙⽐越⼤,湿陷性越强烈。

3.天然含⽔量较少时,结构强度⾼,湿陷性强烈;随含⽔量增⼤,结构强度降低,湿陷性降低。

4.塑性较弱,塑性指数在8~13之间。

当湿陷性黄⼟的液限⼩于30%时,湿陷性较强;当液限⼤于30%以后,湿陷性减弱。

5.湿陷性黄⼟的压缩性与天然含⽔量和地质年代有关,天然状态下,压缩性中等,抗剪强度较⼤。

随含⽔量增加,黄⼟的压缩性急剧增⼤,抗剪强度显著降低。

新近沉积黄⼟,⼟质松软,强度低,压缩性⾼。

6.抗⽔性弱,遇⽔强烈崩解,膨胀量⼩,但失⽔收缩较明显,遇⽔湿陷性较强。

湿陷性及湿陷性黄土概念及特征介绍

湿陷性及湿陷性黄土概念及特征介绍

湿陷性及湿陷性黄土概念及特征介绍因浸水后土的结或者在自重应力和附加应力共同作用下,在上覆土层自重应力作用下,广有些杂填土也具有湿陷性。

构破坏而发生显著附加变形的土称为湿陷性土,属于特殊土。

(这里所说的黄土泛指泛分布于我国东北、西北、华中和华东部分地区的黄土多具湿陷性。

也有的老黄土不湿陷性黄土又分为自重湿陷性黄土和非自重湿陷性黄土,黄土和黄土状土。

具湿陷性)一、可能造成的危害在湿陷性黄土地基上进行工程建设时,必须考虑因地基湿陷引起附加沉降对工程可能选择适宜的地基处理方法,避免或消除地基的湿陷或因少量湿陷所造成的危害。

造成的危害,二、湿陷性黄土的工程特性在未受水浸湿结构疏松、孔隙发育。

湿陷性黄土是一种特殊性质的土,其土质较均匀、时,一般强度较高,压缩性较小。

当在一定压力下受水浸湿,土结构会迅速破坏,产生较大地基强度迅速降低。

故在湿陷性黄土场地上进行建设,应根据建筑物的重要性、附加下沉,采取以地基处理为主的受水浸湿可能性的大小和在使用期间对不均匀沉降限制的严格程度,综合措施,防止地基湿陷对建筑产生危害。

三、湿陷性黄土的颗粒组成,而粉土颗粒中又以~70%我国湿陷性黄土的颗粒主要为粉土颗粒,占总重量约50的粘土颗粒较少,.005mm,小于00.01mm的粗粉土颗粒为多,占总重约40.60%0.05~的25mm以内,基本上无大于0.,大于0.1mm的细砂颗粒占总重在5%占总重约14.28% 可见,湿润陷性黄土的颗粒从西北向东南有逐渐变细的规律。

中砂颗粒。

从以下表1专业文档供参考,如有帮助请下载。

.中土孔隙土中水分不断蒸发,黄土是干旱或半干旱气候条件下的沉积物,在生成初期,的毛细作用,使水分逐渐集聚到较粗颗粒的接触点处。

同时,细粉粒、粘粒和一些水溶盐类也不同程度的集聚到粗颗粒的接触点形成胶结。

由于在湿陷性黄土中砂粒含量试验研究表明,粗粉粒和砂粒在黄土结构中起骨架作用,细粉粒通常依附在较大而且大部分砂粒不能直接接触,能直接接触的大多为粗粉粒。

湿陷性黄土地基处理方案

湿陷性黄土地基处理方案

1、概述湿陷性黄土地基解决重要取决于湿陷性黄土的特殊性质,湿陷性黄土地基的变形涉及压缩和湿陷性两种,当基底压力不超过地基土的允许承载力时,地基的压缩变形很小,大都在其上部结构的允许变形值范围以内,不会影响建筑物的安全和正常使用。

湿陷变形是由于地基被水浸湿引起的一种附加变形,往往是局部和忽然发生,且不均匀,对建筑物破坏性大,危害严重,因此对湿陷性黄土地区的建筑物不管地基承载力是否达成允许承载力,都应对地基进行解决,前者以消除湿陷为目的,后者以提高承载力为主,同时应消除黄土的湿陷性。

我国湿陷性黄土分布很广,各地区黄土的差别很大,地基解决时应区别对待,并结合以下特点:1)湿陷性黄土的地区差别,如湿陷性和湿陷敏感性的强弱,承载能力及压缩性的大小和不均匀性的限度等;2)建筑物的使用特点,如用水量大小,地基浸水的也许性;3)建筑物的重要性和其使用上对限制不均匀下沉的严格限度,结构对不均匀下沉的适应性;4)材料及施工条件,以及本地的施工经验。

湿陷性黄土的地基解决措施是采用机械手段对基础的湿陷性黄土进行加固解决,或更换另一种材料改变其物理性质,达成消除湿陷性、减少压缩和提高承载能力的目的,其中大多以第一个目的即消除湿陷为主。

湿陷性黄土的地基解决,在解决深度和解决范围上区分:1)浅解决,即消除建筑物地基的部分湿陷量;2)深基础解决,即消除建筑物地基的所有湿陷量,这种方法涉及采用桩基础或深基础穿透所有的湿陷性黄土层。

在湿陷性黄土地区设计措施,重要有地基解决措施、防水措施和结构措施三种。

地基解决的常用方法有垫层、重锤夯实、强夯、土(或灰土)桩挤密和深层孔内夯扩等,可以完全或部分消除地基的湿陷性,或采用桩基础或深基础穿透湿陷性黄土层,使建筑物基础坐落在密实的非湿性土层上,保证建筑物的安全和正常使用。

防水措施使用以防止大气降水、生产和生活用水以及浸入地基,其中涉及场地排水、地面的防水、排水沟和管道的排水、防水等,是湿陷性黄土地区建筑物设计中不可缺少的措施。

湿陷性黄土地基处理方法分析及在工程中的应用

湿陷性黄土地基处理方法分析及在工程中的应用

湿陷性黄土地基处理方法分析及在工程中的应用摘要:在经济建设不断取得新成果的今天,人们对基础设施的要求越来越高,无论是建筑工程还是公路工程乃至于一些特殊的水利水电工程等,都直接影响着人们的生活质量,因此必须考虑到各种特殊条件下的问题,保证这些工程设施的质量安全。

关键词:湿陷性黄土;地基处理方法;应用前言湿陷性黄土是一种比较常见的工程地质条件,黄土在遇水浸湿后,会出现增湿软化的情况,对于整体强度会造成一定的影响。

一旦出现附加压力,或者是土的自重压力作用,就会湿陷变形,不仅下沉量巨大,而且下沉速度极快。

湿陷性黄土本身具备湿陷的性质,如果在没有任何处理措施的地基上直接开始工程建设,就会导致建筑物出现不均匀沉降,产生严重的安全隐患。

一、湿陷性黄土的主要特征湿陷性黄土在颜色上主要呈现为黄褐、灰黄、棕黄、褐黄色,土壤当中的含盐量比较大,碳酸盐的含量尤其突出。

土壤当中的粉土颗粒含量较大,大孔性明显,整体呈现一种松散的结构状态,无层理,天然的剖面则表现为垂直节理,遇到水就会产生湿陷的现象。

在分布上,湿陷性黄土主要集中在我国的西北、华中以及华东地区,东北地区也有少量存在。

据相关研究数据显示,我国湿陷性黄土的容重为1.2~1.9g/cm3,天然含水量为7%~23%,孔隙比为0.78~1.50,液限为21.7%~32.5%,塑性指数为6.7~13.1。

2黄土湿陷的主要影响因素导致黄土湿陷的影响因素较多,主要的影响因素有黄土的形成时代、密度、粘粒(土壤粒径小于0.002mm或2μm之土粒者)含量、孔隙性、形成过程以及含水量等等。

(1)形成时代:一般来说,从黄土地层的整体剖面来看,地表由上到下,第一层是中等湿陷层,第二层是轻微湿陷层,第三层及以下的黄土没有湿陷层,三层的分布不均匀。

(2)密度:黄土的密度相对较小,密度越大的话,土壤的密实性就越强,孔隙减小,黄土的湿陷性也就随之变弱。

(3)粘粒含量:黄土中的粘粒含量越小,代表黄土的湿陷性越强,与此相反,湿陷性弱的黄土当中粘粒含量是比较多的。

湿陷性黄土

湿陷性黄土

一、概念黄土是在第四纪形成的一种特殊的陆相疏松堆积物,颗粒成分以粉粒为主,富含碳酸钙,多孔隙,颜色一般呈棕黄、黄色或黄褐色。

土中含易溶盐类,其中以碳酸盐含量最多,遇水易冲蚀、崩解、湿陷。

黄土按其湿陷特征可分为非湿陷性黄土、湿陷性黄土。

湿陷性黄土是一种非饱和的欠压密土,具有大孔和垂直节理,在天然湿度下,其压缩性较低,强度较高,但遇水浸湿时,土的强度显著降低,在附加压力与土的自重压力下引起的湿陷变形,是一种下沉量大、下沉速度快的失稳性变形,对建筑物的危害性大。

(湿陷性黄土又分为自重湿陷性黄土和非自重湿陷性黄土)。

我国湿陷性黄土的颗粒主要为粉土颗粒,占总重量约50~70%,而粉土颗粒中又以0.05~O .01ram 的粗粉土颗粒为多,占总重约40.60%,小于0.005ram 的粘土颗粒较少,占总重约14.28%,大于0.1rnm 的细砂颗粒占总重在5%以内,基本上无大于0.25mm 的中砂颗粒。

西宁地区的湿陷性黄土是粉质土,且低阶地一般为粉质亚粘土为主,高阶地以粉质亚砂土为主。

西宁市区内的湿陷性黄土进行湿陷类型、湿陷等级划分,河谷低阶地的湿陷性黄一般为I 一Ⅱ级非自重湿陷,高阶地多为Ⅱ级非自重湿陷,洪积裙多为I 一Ⅱ级自重湿陷,黄土丘陵边缘地带多为Ⅲ级自重湿陷。

1.黄土湿陷性判定通过室内压缩试验在一定压力下的湿陷程度。

湿陷性系数's ()/p p o h h h δ=-δs ≧0.15 湿陷性黄土δs<0.15 非湿陷性黄土2.湿陷类型判别1)自重湿陷性判别(在饱和自重压力下的湿陷程度)自重湿陷性系数δzsδzs ≧0.015 自重湿陷性黄土δzs<0.015 非自重湿陷性黄土2)场地湿陷类型(实测自重湿陷量或计算自重湿陷量Δzs )s si o i z z h βδ∆=∑Δzs ≧7cm 自重湿陷性黄土场地Δzs <7cm 非自重湿陷性黄土场地3.湿陷等级判别(总湿陷量s ∆、自重湿陷量Δzs )s si i h βδ∆=∑通常:s ∆≧50,Δzs ≧30可判定为Ⅲ级,30<s ∆<50,7<Δzs <30可判定为Ⅱ级二、工程特性1.湿陷性:在天然含水量时往往具有较高的强度和较小的压缩性,但在浸水后,在土的自重或外部荷载或二者的共同作用下,其结构很快破坏,发生剧烈变形,强度也随之迅速降低,亦即黄土的湿陷性。

黄土的湿陷性判定及地基处理措施

黄土的湿陷性判定及地基处理措施

黄土的湿陷性判定及地基处理措施摘要:在湿陷性黄土地区,准确评价场地黄土的湿陷性,将直接影响地基处理方案、工程周期长短及地基处理费用的高低等问题。

湿陷性黄土对工程建设影响较大,通过对黄土物理、力学特性指标的研究,揭示黄土的湿陷性就显得尤为重要。

在总结多年工程实践的基础上,结合现行工程建设规范、规程,把对湿陷性黄土评价和地基处理方法结合起来,从准确评价黄土湿陷性出发,分析如何选用适宜的地基处理方法。

关键词:黄土湿陷性湿陷性评价地基处理1引言黄土是第四纪干旱、半干旱气候条件下,陆相沉积的一种特殊土。

我国作为世界上黄土厚度最大、分布面积最广、地层层序最完整、成因类型最复杂的国家,黄土覆盖面积达6.40×105km2,主要分布在甘肃、陕西、山西三省,部分分布在青海、宁夏、河南,其他在河北、辽宁、黑龙江、山东、内蒙古和新疆等省(区)也有不连续或零星的分布。

其中湿陷性黄土的分布面积约为2.70×105km2,大部分分布在我国黄河中游地区。

随着中西部地区经济的快速发展以及国家西部大开发战略的实施,许多重大工程建设项目正在实施,不可避免地要遇到黄土湿陷性问题。

所以,研究黄土的湿陷性判定及地基处理措施显得尤为重要。

2.湿陷性黄土的主要工程特性湿陷性黄土的孔隙比一般较大,并常常具有肉眼可见的大孔隙,由于在颗粒间具有较高的结构强度,所以在天然干燥状态下,黄土仍然可以承受一定的荷重,并且变形量也较小。

但在自重或一定荷载作用下,受水浸湿后,黄土结构就会迅速被破坏而发生显著的附加下沉。

2.1物理性质指标(1)我国湿陷性黄土的几个物理性质指标:容重:一般为1.33~1.81g/m3,多数为1.40~1.60 g/m3;天然含水量:一般为7%~23%,多数为12%~20%;孔隙比:一般为0.78~1.50,多数为0.8~1.2;液限:一般为21.7%~32.5%,多数为25%~31%;塑性指数:一般为6.7~13.1,多数为8~12。

浅谈太原东山地区湿陷性黄土结构及性质

浅谈太原东山地区湿陷性黄土结构及性质

浅谈太原东山地区湿陷性黄土结构及性质发布时间:2021-09-11T01:32:14.660Z 来源:《基层建设》2021年第17期作者:柳霞[导读]太原市兴华岩土工程勘察质量检测有限公司山西太原 030000关键词:湿陷性黄土;湿陷性黄土结构;压缩性 1.湿陷性黄土概述黄土在一定压力下受水浸湿,土的结构迅速破坏,并产生显著附加下沉的黄土称为湿陷性黄土。

在一定压力下受水浸湿,无显著下沉的黄土称为非湿陷性黄土。

从宏观来讲,并不是所有的黄土都具有湿陷性。

山西省地处黄土高原,黄土分布极为广泛。

黄土与第三纪三趾马红土、保德红土、静乐红土共同组成了一个较厚的堆积覆盖层。

黄土在吕梁山以西呈厚层连续分布,以东呈连续分布状态。

太原属新生代强烈构造活动形成的断陷盆地,其面积较大,大河、大沟较多,洪积特征显著,组成物为黄土状土。

太原市黄土主要分布在建设北路以东东山地区以及尖草坪区,2调查东山地区湿陷性黄土的结构特征和分布为了对太原市东山地区湿陷性黄土的结构和分布范围有更进一步的了解,为以后做参考,本次对太原东山一带地区的黄土进行浅谈,从黄陵到尖草坪区一带的黄土主要以新生界的黄土为主,属于第四系全新统和更新统的马兰组和离石组,新近系上新统的保德组。

经过统计研究和资料的查阅,全新统黄土0-10m主要以浅灰黄色、浅灰色砂质黏土,广泛分布于大沟谷底及河谷阶地,更新统马兰组0-20m主要以浅灰黄色砂质黏土、粉砂土、含钙质结核,局部含砾砂层,具垂直节理。

广泛分布于山前黄土中台塬和起伏黄土平原上,在山区分布在山梁上,构成黄土梁、垣地貌。

上新统的保德组,土层主要以深红色、浅棕红色为主,底部常见一层不稳定的中粗砂层,或砾石层,主要分布在山庄头—牛驼村—西岭村—窑头村一线西北部。

走访东山几个村子黄土地区调查、查阅资料发现,某1村的局部地段形成人工斜坡,黄土节理发育,土层破碎,土块松动,破坏了黄土本身的结构性,黄土的隔水性、饱水特征,在雨季尤为突出。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

黄土的结构强度与湿陷性之间的关系
摘要:中国湿陷性黄土的分布面积广泛,在湿陷性黄土地区由于黄土湿陷性而
造成的建筑破坏和工程事故有很多,由此造成的损失巨大。

黄土的湿陷性是黄土
在自重或者外荷作用下,浸水后结构迅速破坏发生突然沉陷的性质。

“湿陷性”一
词一方面反映了该现象的主要表现,另一方面又说明了这种沉陷与与其他沉陷的
不同之处——产生的原因是浸水。

从黄土的湿陷性的定义可以看出,黄土发生湿
陷是其结构突然被破坏,因而从结构层面上来研究黄土的湿陷性是十分必要的。

关键词:黄土;结构强度;湿陷性
引言
黄土显著的结构性是黄土特殊的物理力学性质的主要原因,也是黄土严重致灾性的重要
根源,如黄土滑坡、崩塌、湿陷性、地面塌陷、地裂和不稳定边坡等。

岩土工程问题的研究
核心就是在复杂外界环境和力学扰动作用下土体的变形、强度和稳定性分析。

黄土边坡和设
施受到外界环境(包括地下和雨水入渗、温度等)的扰动作用导致黄土微结构联结和排列方
式的变化,改变了黄土物理性质,劣化了黄土结构强度。

笔者前期通过试验方法研究了增湿-
冻融作用对黄土结构强度劣化规律。

1黄土的结构性和结构强度
土的结构性是指构成土体骨架的颗粒及其集合体以及骨架颗粒之间孔隙的尺寸、形态、
排列方式及联结等的综合特点。

由此可以看出土的结构性包括土体骨架及其之间空间的几何
特征,及考虑到土力学角度的颗粒之间的联结特征。

孔隙也是反映颗粒排列的一个方面,土
的结构性包括土中颗粒的排列特征(几何特征)和联结特征(力学特征)两个方面的内容。

土体的宏观力学特性本质上来说都是取决于土的结构性。

2从结构方面出发解释黄土的湿陷性
黄土的结构是影响黄土湿陷性的最本质性的因素。

通过对黑方台黄土湿陷前后试样的细
观结构图像观察和孔隙统计分析得出,湿陷变形稳定后,随着含水率的提高,凝块状颗粒增多,百分数最大的孔径逐渐减小,微孔隙增多。

对黄土湿陷性贡献较大的主要是黄土中的大
孔隙和中孔隙。

对西安-禹门口高速公路富平试验路段的原状黄土以及浸水湿陷后黄土进行了
电镜扫描研究,通过分析得出,将土壤样品浸入水中后,主要位于点接触部位的矿物垃圾颗
粒或颗粒粘结剂软化溶解,同时颗粒间的连接也软化破坏,削弱了土壤颗粒的整体连接强度,分散了颗粒;颗粒表面的矿物成分由于水的作用而溶解或滑落到土壤中的大孔隙、中孔隙中,进一步降低了黄土的结构强度,导致土壤结构破坏,形成褶皱。

黄土湿陷性的发生过程本质
上是黄土结构强度快速下降的过程。

3黄土结构强度劣化表征
黄土结构强弱可用结构强度大小表示,结构强度尺寸是在土壤形成过程中形成的胶结结
构的结合强度,结合土壤结构的形成而形成,并随着土壤结构的破坏而消失。

微机械机构认为,其尺寸是由黄土颗粒之间的连接结构和摩擦结构的强度决定的。

黄土结构的强度可根据
侧向有限压缩试验中的压力p和孔隙率关系曲线e,即elgp曲线来确定。

笔者认为原状黄土
在侧限压缩试验加荷过程中,elgp压缩曲线可以表征黄土结构从平缓直线阶段的弹性变形到
由局部微观结构开始破坏而使线段曲率突增进入塑性变形,则定义曲率最大点处对应的压力
为试验原状黄土结构强度。

为了追究取样制样过程对原状黄土结构强度的影响,采用先期固
结压力所对应的点与该点处孔隙比对应饱和重塑黄土的压力差表示原状黄土结构强度更为合理,定义为原状黄土结构强度q0。

4试验用土
试验土壤分别取自陕西西安的2个不同区域,黄土①来自西安市长安空间城的某自然边坡,土壤选择深度为地面以下5-6m,为黄土Q3;②脚手架②取自西安市雁塔区尖阁村西安地铁5号线场地,取土深度为地面以下4-4.5m,为Q3黄土。

4.1测试仪器
试验仪器采用辽阳科教仪器公司和解放军后勤工程学院共同研制的FGJ-20型非饱和土固
结仪,与普通固结仪相比,增加了气压室,试验过程中可根据不同的试验条件对样品施加不
同的气压。

样品底座上装有高进气值粘土板(进气值约为1500kPa),可用轴平移法测量样
品基体的吸力。

通过施加垂直电压的垂直负载装置,可以控制电压状态对样品基质吸力的影

4.2试验方法
对2个不同场地的原状黄土和饱和黄土进行正常固结侧向压缩试验。

原状黄土的孔隙水
压力由安装在试样底座上的压力传感器测量,施加一定的孔隙压力,通过轴平移技术测量试
样基体吸力的变化。

首先在样品没有受到垂直应力时测量基质吸力,称之为初始基质吸力S0。

初始基质吸力稳定后,逐级施加垂直载荷,施加的载荷水平分别为50、100、200、400、800、1600、2400kPa。

压缩稳定后,根据外加压力与孔隙水压力的差值计算出试样基体在竖向荷
载作用下的吸力,试样压缩的稳定性标准为孔隙水压力在1h内的变化值小于0.5 kpa,而竖
向压缩变形值在1h内不大于0.005mm,对于黄土的饱和正固结,只需测量试样在竖向荷载
作用下的变形,竖向荷载的稳定性标准同样不大于0。

{ 1 } { 2 }
4.3测试结果及分析
显示原状黄土的初始基质吸力随含水量的增加而减小;当土壤样品含水量较低时,曲线
相对平滑,说明基质吸力对土壤样品含水量的变化非常敏感;当土壤样品含水量高时,曲线
比较陡,说明土壤样品含水量的变化对基质吸力的影响有限。

同时分别检查基质在不同湿度
和垂直净压力下的吸力变化。

根据试验结果,绘制了原状黄土压缩稳定后基质吸力与垂直净
压力的关系曲线。

原始黄土基质吸力随垂直净压力的增大,有先增大后减小的变化规律。


当含水量低时,基质吸力变化很大;随着含水量的增加,基质吸力的变化幅度逐渐减小。


在不同含水量条件下,曲线有一个峰值点,曲线峰值点时,样品基质吸力最大;至峰值点,
样品基质吸力随垂直净压力的增加而增加;峰值点后,样品基质吸力随着垂直净压力的增加
而减小。

4.4结论和思考
就影响黄土湿陷性的外部原因而言,黄土浸水后形成的湿陷性裕量大小与其承受的荷载
影响大小和含水率大小几乎成正比。

载荷大小决定了折叠储备的大小,初始含水率水平决定
了土体压缩产生的变形与仓库产生的变形之间的关系。

如果黄土岩石初始含水率接近或达到
饱和,黄土颗粒排列的变化随时间稳定,土壤孔隙的减小也基本完成,土粒以及各种胶结物
的破坏早已完成,各自的结构强度很小,同时黄土结构对水的敏感性较低,黄土湿陷性随含
水率变化不大。

什么时候开始
5结束语
对不同湿度黄土土壤的水、压缩屈服特性进行相应的试验研究,得到以下结论:(1)
黄土基质吸力随垂直净压力的增加而变化的趋势首先增大;基体存在峰值吸力,与其对应的
垂直净压力被定义为临界基体吸力压力,临界基体吸力压力随着含水量的增加而减小。

(2)根据原状黄土与正常固结黄土压缩曲线的相对位置,提出了一种确定原状黄土结构屈服压力
的新方法。

该方法具有精度高、绘图简便等优点。

参考文献
[1]陈宝,喻达,胡鑫,潘燕敏.三门峡黄土湿陷特性及其与结构强度的关系[J].长江科学
院院报,2018,35(11):149-153+158.
[2]苗贺朝.湿陷性黄土的增湿湿陷及渗透变形特性试验研究[D].西安理工大学,2018.
[3]鹿忠刚.西安Q_3黄土结构性及强度试验研究[D].西安理工大学,2018.
[4]赵鲁庆.冻融作用下黄土强度劣化的微观结构响应机理[D].西安科技大学,2018.
[5]宋玉品.黄土中结合水对其物理力学特性影响的研究[D].长安大学,2018.。

相关文档
最新文档