砂质黄土的结构性与增湿变形特性研究
洛川剖面黄土的结构性及其力学特征研究

洛川剖面黄土的结构性及其力学特征研究一、研究背景黄土这种自然界的伟大创造,自古以来就以其独特的魅力和神奇的力量,让人们为之倾倒。
它既是大自然的馈赠,也是人类文明的摇篮。
然而随着社会的发展和人口的增长,黄土的生态环境正在遭受严重的破坏。
为了保护这片神奇的土地,我们有必要深入研究其结构性和力学特征,以便更好地利用和保护这一宝贵的资源。
洛川剖面位于陕西省洛川县境内,是黄土高原的一个重要剖面。
这里地势平坦,地貌类型丰富多样,黄土层厚薄不一,结构复杂多变。
因此对于洛川剖面黄土的结构性和力学特征的研究,具有很高的科学价值和实际意义。
在过去的几十年里,我国的黄土研究取得了显著的成果,为我们提供了丰富的理论依据和实践经验。
然而由于各种原因,我们在黄土领域的研究仍然存在一些不足之处。
例如对于黄土的微观结构和力学特性的研究还不够深入,对于黄土在不同环境条件下的变形规律和稳定性分析还有待完善。
因此开展洛川剖面黄土的结构性及其力学特征研究,对于提高我国黄土研究的水平,促进黄土资源的可持续利用具有重要的现实意义。
1. 黄土在人类历史和现代社会中的重要性;黄土这种看似普通却又无比重要的自然物质,自古以来就在人类的生活中扮演着重要角色。
它不仅是我们祖先生活的基础,也是我们现代社会的重要资源。
黄土的广泛分布和丰富储量,使其在农业、建筑、环保等领域都有着不可替代的作用。
然而黄土的特殊结构性和力学特征,使得它在人类历史和现代社会中的重要性更加凸显。
黄土不仅承载着我们的记忆,更是塑造了我们的文明。
从古代的长城、秦始皇兵马俑,到现代的高速公路、高楼大厦,黄土都在其中扮演着关键的角色。
每一块砖石、每一粒沙砾,都是黄土的结晶,都是历史的见证。
黄土的存在,让我们有了生活的依托,也让我们有了追求进步的动力。
黄土的力学特征也是其独特魅力的一部分,它的强度和稳定性,使得它能够在各种恶劣环境中屹立不倒。
无论是风吹雨打,还是地震洪水,黄土都能坚守自己的岗位,保护着我们的家园。
黄土的物理力学性质

黄土的物理力学性质§2-1 黄土的物理性质试验用黄土采用甘肃兰(州)海(石湾)高速公路工程现场扰动土,其物理性质主要由它的物理性质指标来体现,其物理性质指标主要有:孔隙率、天然含水量、容重和液塑限等。
由于黄土的生成与存在条件比较特殊,它的孔隙率比普通土的孔隙率要大。
一般黄土中存在肉眼易见的孔隙,这些孔隙多为铅直圆孔,这类孔隙通称为大孔隙。
大孔隙比例的多少在一定程度上决定了黄土湿陷性的大小,大孔隙多的黄土湿陷程度大;反之则小。
试验所用黄土的天然含水量很低,一般在10%以下。
含水量在剖面上的变化与黄土层的厚度和埋藏深度没有直接关系。
黄土的容重、比重取决于黄土的矿物成分、结构和含水量,而黄土的颗粒分散度、矿物成分、形状和弹性在一定程度上决定了黄土的液塑性。
黄土的物理性质随成岩时代、成岩地区的不同而表现出一定的差异。
为了得到该黄土的物理性质,我们根据《公路土工试验规程》(JTJ 051-93)的要求,分别采用联合液塑限仪、烘箱和重型击实等方法进行了有关指标的测定,测定结果如表2-1所示。
一.主要成分分析组成黄土的矿物约有60种,其中轻矿物(d﹤0.005mm)含量占粗矿物(d ﹥0.005mm)总量的90%以上。
黄土中粘土矿物(d﹤0.005mm)以不同的方式同水和孔隙中的水溶液相互作用,显示出不同的亲水性,故粘土矿物的成分和比例,在某种程度上体现了黄土的湿陷性。
水溶盐的种类和含量与黄土的湿化、收缩和透水性关系密切,直接影响着黄土的工程性质。
水溶盐包括易溶盐、中溶盐和难溶盐三种。
易溶盐(氧化物,硫酸镁和碳酸钠)极易溶于水或与水发生作用。
它的含量直接影响到黄土的湿陷性。
中溶盐(石膏为主)的存在状态决定其与水的作用情况。
以固体结晶形态存在时,溶解性小,但当以次生结晶细粒分布于孔隙中时,易溶解,在这种情况下,会对黄土的湿陷性有一定的影响。
难溶盐(碳酸钙为主)在黄土中既起骨架作用,又起胶结作用,这取决于其赋存的状态。
黄土压缩特性试验分析

黄土压缩特性试验分析摘要:基于非饱和土力学理论,并考虑黄土结构性的影响,本文通过三轴剪切试验取得了原状黄土的压缩性随含水量的增加而增加的结论,确定了土体割线模量与含水量之间的定量关系。
关键词:非饱和土;湿陷性黄土;三轴剪切试验;割线模量;含水量中图分类号:c33 文献标识码:a 文章编号:1引言黄土属于粘性土类,但又与一般的粘性土有所不同。
黄土的变形是力与水对上共同作用的结果,其大小与应力状态和含水量密切相关。
本章对陕西西安原状黄土进行了增湿情况下的三轴压缩试验,通过对试验结果进行对比分析,总结出了黄土增湿过程中压缩性,也就是含水量与土体压缩模量之间的关系。
2试验用土的基本性质试验用的黄土,取自陕西西安市区,属于典型的q3黄土。
取土深度为1.5m~5.0 m,土体呈褐黄色,可塑状态,天然含水量为13.6% ~30.5%,天然密度为1.38~1.76g/cm3天然孔隙比为0.91~1.28,针状孔隙及大孔隙发育,含白色钙质条纹及个别小姜石。
27%<wl<34.7%, wp =18.2%,在天然含水量下,试验用土的孔隙比e>1.0。
3试验内容本章对几组不同含水量的土样进行了固结压缩试验,对试验的结果进行了分析对比。
试验仪器:应变控制式三轴仪。
试样尺寸:三轴试样为直径39.1mm,高度为80mm。
试验准备阶段:选择合适量程的测力计;保证孔隙水压力测量系统内部的气泡完全排出;检查管路,保证无漏水、漏气现象发生;保证橡皮膜弹性状态完好,且并无破损。
4 试验成果分析4.1不同含水量下的压缩模量比较土的压缩模量是体现土体压缩特性的量化指标,它的定义是“土体在完全侧限条件下的竖向附加应力与相应的应变增量之比”。
但是,想要得到压缩试验结果的方法只有通过曲线或者曲线才行,而这两种方法均要受到土体初始孔隙比的影响。
因此,本文参考刘保健和张军丽通过对大量对比试验资料的分析,提出的割线模量es0的概念,并对其进行量化分析。
黄土的工程特性

黄土的酸碱特征
• 黄土的酸碱特征以水土比为1:5的悬液PH值表示, PH值取决于粘粒所吸附的离子类型和黄土所含的 可溶盐成分。黄土的PH值在6.0-9.2之间,平均7.8, 大多数在7.5以下,一般干旱地区PH值大,湿润地 区PH值小。 PH值高的湿陷性强。
离子交换
黏土矿物和有机质是黄土中胶体颗粒的组成部分, 胶体物质都有离子交换的特征,胶体表面吸附着一 定量的阳离子,由于胶粒表面电荷不平衡便引起交 换现象。 黄土中的阳离子交换量随矿物类型、含量和有机 物含量不同而不同,交换量定义为介质PH值等于7 时,每100g土样中所吸附阳离子的当量数。黄土的 阳离子交换量为8.1-27.61毫克当量每100g土,主要 矿物为伊利石。
有机质
黄土中有机质含量在0.02-2%之间,平均0.64%, 在各级粒组中的含量随粒径减小而增多。有机物持 水性强,表面能大,常能于二价钙离子结合而产生 凝聚现象,多凝聚在大孔壁上,也有分散于粘粒中, 当呈分散分布时,则成为土中的胶结成分,受水浸 湿时会吸收大量水分而崩解。
黄土的力学性质
• 湿陷性黄土的力学性质包括: 压缩性 湿陷性 抗剪强度 透水性
s
非湿陷性黄土
轻微湿陷性黄土 中等湿陷性黄土
强湿陷性黄土
• 黄土的性质 物理性质
化学性质
力学性质
黄土由固、液、气三相组成,由以下指表示黄土的物理性质: 颗粒组成,土粒比重,含水量,重度,孔隙比,饱和度,液限, 塑性指数 1、颗粒组成:以粉粒为主,细粉粒(0.005~0.01mm)占7~9%, 粗粉粒(0.01~0.05mm)占45~65%。 2、土的比重和天然重度
黄土 的工程特性
(特殊性土的工程地质特征) 基础工程
摘要
• • • • • 一、黄土的概念 二、黄土的特性 三、黄土的成因及分类 四、黄土的湿陷性判别 五、湿陷性黄土的性质 物理性质 化学性质 力学性质
黄土结构强度与湿陷变形的各向异性研究

目录目录1绪论 (1)1.1研究背景 (1)1.2国内外研究现状 (2)1.2.1黄土的各向异性研究现状 (2)1.2.2黄土的结构性研究现状 (4)1.2.3黄土的湿陷性研究现状 (5)1.3本文研究的意义及主要内容 (5)1.3.1本文研究的意义 (5)1.3.2本文研究的主要内容 (6)2试验方案 (7)2.1概述 (7)2.2试验黄土的基本物理性质 (7)2.3试样的制备 (8)2.3.1原状样的制备 (8)2.3.1重塑样的制备 (9)2.4无侧限抗压强度试验 (10)2.4.1仪器介绍 (10)2.4.2试验方案及步骤 (11)2.5湿陷试验 (12)2.5.1仪器介绍 (12)2.5.2试验方案及步骤 (12)3原状黄土强度及结构各向异性研究 (14)3.1概述 (14)3.2原状黄土的试验结果 (14)3.2.1不同含水率下原状黄土的应力-应变关系曲线 (14)3.2.2原状黄土的应力-应变各向异性分析 (16)3.3破坏面与沉积面/压实面的关系 (17)3.4重塑黄土的试验结果 (18)3.4.1不同含水率下重塑黄土的应力-应变关系曲线 (18)3.4.2重塑黄土的应力-应变关系曲线的各向异性分析 (20)3.5不同取样角度下黄土结构强度分析 (21)3.6黄土结构强度的各向异性分析 (23)3.6.1结构性参数的分析 (23)I西安理工大学硕士学位论文II 3.6.2不同取样角度θ下扰动及浸水结构性分析 (24)3.7本章小结 (27)4原状黄土变形各向异性研究 (28)4.1概述 (28)4.2压缩应力-应变的各向异性分析 (28)4.2.1应力-应变关系曲线 (28)4.2.2应变各向异性分析 (30)4.3压缩模量Es各向异性分析 (30)4.3.1初始压缩模量各向异性分析 (30)4.3.2最后一级荷载时压缩模量的各向异性分析 (33)4.3.3竖向固结压力对压缩模量的各向异性的影响 (35)4.3.4压缩系数a1-2的各向异性分析 (35)4.3.5压缩系数a2-3的各向异性分析 (37)4.4原状黄土湿陷变形的各向异性分析 (38)4.4.1不同含水率及取样角度下湿陷系数与压力关系 (38)4.4.2自重湿陷系数的各向异性分析 (43)4.4.3固结压力为200kPa时湿陷系数的各向异性分析 (45)4.4.4固结压力为300kPa时湿陷系数的各向异性分析 (47)4.5本章小结 (48)5复合幂指数模型在各向异性中的应用 (50)5.1概述 (50)5.2复合幂指数模型 (50)5.2.1复合幂指数模型的提出 (50)5.2.2复合幂指数模型参数的确定 (50)5.3模型分析 (53)5.3.1三轴试验结果的模型分析 (53)5.4本章小结 (57)6结论与展望 (59)6.1结论 (59)6.1.1黄土强度及结构性的各向异性规律 (59)6.1.2原状黄土变形的各向异性规律 (59)6.1.3复合幂指数模型在各向异性上的规律 (60)6.2展望 (60)致谢 (61)参考文献 (62)1绪论1绪论1.1研究背景黄土是在特殊的干旱半干旱条件下形成的第四纪松散堆积物,因其特殊的形成条件使其具有特殊的物理力学性质,在工程建设中占有重要的地位。
黄土的结构性试验研究

41 .
下面 对试 验结果 进行分 析 : ( ) 1 2分别 是在 围压 为 1 0 P 1图 、 0 k a时不 同含水 量 下的原 状 土 、 重塑 土的应 力 ~应 变关 系 曲线 。
① 图 1 以看 出 : 状 土 在 围 压为 1 0 P 可 原 0 k a下 ,
原状 土样 、 塑 土样 的三 轴 排 水 固结抗 剪 强度 重
试 验结果 如 图 1 ~3所示 :
度 和含 水量 的条件 下 , 过 三 轴 仪 上 配套 的击 实 器 通 分 层击 实制备 。
表 1 试 验 黄 土 物 理 力学 指 标 天 然含水量天 然干重度 液 限 塑 限 粘聚力 内摩擦角 湿陷系数
塑土样 和浸水 饱和 土样在剪 切过 程 中的 主应力 差 。 2 1三轴试 验结 果分析 .
样 和 重 塑 土 样 的 含 水 量 分 别 为 4 、 、 3 % 9 1 %、
1 、 9 , 状 土采 用 切 土器 削 样 制 作 的 方 法 , 6 1 原 制 样 时严 格控 制 土样 的尺 寸 , 塑 土 样 采用 制 备 原 状 重 土样后 所用 的扰 动土在 控制 和原 状土样 相 同的 干密
数 ma与影响 土结 构性 的 因素之 间的 变化规 律 , 为黄土 的 水量 ; 黄 含 围压 ; 构性 ;结 构性损 失 系数 结 中图分 类号 :U 1 . T 4 17 黄 土 的结 构性 是指 黄土 的骨 架颗粒 成份 、 态 、 形
轴剪 力仪 和三联 固结仪 , 做常 规三 轴试验 : 用三 轴仪 使原状 土样 和重 塑土样在 围压 为常 量 ( 6一常 量 ) 压
排 列方式 、 隙特 征 、 结 物种 类 以及 胶 结程 度 等 , 空 胶 黄 土的结 构性 和欠压 密性 是黄 土湿 陷性 的一个 基本 的原 因 , 也是黄 土一个 显著 的力 学 特性 。 ] [ 黄土 结 构 3 性 的不 同及其变 化 是其 发 生脆 性 破 坏 、 陷 的重 要 湿
黄土结构性研究的回顾2、基于综合结构势的研究3、黄土胶结强度与 ...

5
10
含水量 w=18%
15
20
ε 1(%)
围压50kPa 围压100kPa 围压200kPa 围压300kPa
5
10
15
20
ε 1(%)
2、基于综合结构势的研究
m fm w, 3c ,
2.4、引入结构性参数的应力应变曲线
已经确定的结构性参数考虑了含水量、初始固 结压力及剪切变形发展对于结构性变化的影响,将 其引入应力应变关系曲线,即将测试确定的不同应 变条件下的主应力差除以结构性参数,可以得到如 下的关系曲线。
15
20
ε 1(%)
围压50kPa 围压100kPa 围压200kPa 围压300kPa
15
20
ε 1(%)
2、基于综合结构势的研究
结 构 性 参 数 与 轴 向 应 变 的 关 系
mσ
mσ
60
40
20
0 0
60 40 20
0 0
含水量 w=15%
围压100kPa 围压200kPa 围压50kPa 围压300kPa
重塑土的三轴试验,以及不同固结围压的饱和原状土三
轴剪切试验。
2、基于综合结构势的研究
原 状 土 三 轴 剪 切 试 验 结 果
σ 1-σ 3(kPa)
σ 1-σ 3(kPa)
2000 1600 1200
800 400
0 0
1000 800 600 400 200 0 0
原状样w=2%
5
10
原状样 w=8.5%
10
12
14
16
ε 1(%)
2、基于综合结构势的研究
2.3、结构性参数的变化规律
黄土非饱和增湿变形特性研究

黄土非饱和增湿变形特性研究黄土非饱和增湿变形特性研究引言:黄土是一种常见的土壤类型,在土木工程中广泛应用。
然而,黄土是一种非饱和土,在存在水分变化时会表现出特殊的力学行为。
因此,研究黄土非饱和增湿变形特性对于土木工程设计和施工至关重要。
本文将重点探讨黄土非饱和状态下的增湿变形特性,为实际工程提供参考和指导。
一、黄土介绍黄土是一种以粘土矿物质为主要成分的沉积物,在地质历史漫长的过程中形成。
其颗粒较细,颜色多为黄色或棕色,黄土的物理特性和力学性质受到含水量的显著影响。
二、黄土非饱和状态下的力学行为1. 介观结构特征:黄土非饱和状态下,其微观结构会发生变化。
当水分含量低于饱和时,黄土中的粘土矿物质形成颗粒间的吸力作用,使其颗粒间距增大,导致土体稳定。
2. 薄弱面的生成:非饱和黄土中的水分含量变化会引起颗粒间接触力的变化,进而导致薄弱面的生成。
这些薄弱面在黄土工程实践中可能会导致土体的破坏和变形。
3. 液化变形风险:非饱和黄土在承受一定荷载时,由于水分变化可能会发生液化。
这种液化现象会导致土体的强度明显降低,从而对工程结构的安全性构成威胁。
三、黄土非饱和状态下的增湿变形特性1. 吸力-含水量关系:黄土在非饱和状态下的吸力与含水量之间存在一定的关系。
随着含水量的增加,吸力逐渐降低。
了解这种关系有助于预测土体的力学性质和变形行为。
2. 含水量变化对变形的影响:黄土在增湿过程中会发生压缩变形。
随着含水量的增加,土体的压缩变形逐渐减小。
这种变形行为对工程设计中的沉降预测和变形控制具有重要意义。
3. 液化抗性:黄土在增湿过程中,由于吸力的降低,液化抗性也随之提高。
这意味着在适当增湿条件下,黄土的液化风险可以降低。
四、黄土非饱和增湿变形特性的实验研究1. 荷载-变形试验:通过对不同黄土样品进行荷载-变形试验,可以得到在非饱和状态下黄土的力学响应和变形特性。
这些试验结果有助于理解黄土非饱和状态下的工程行为。
2. 吸力-含水量试验:通过测量不同含水量条件下的吸力值,可以得到吸力-含水量关系曲线,以更好地了解吸力对黄土力学性质的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
砂质黄土的结构性与增湿变形特性研究
砂质黄土是一种常见的土壤类型,在地质工程和土力学领域有着重要的应用价值。
研究砂质黄土的结构性与增湿变形特性,可以更好地理解其力学行为和工程性质。
本文将从砂质黄土的结构性和增湿变形角度展开研究,以期对相关领域的读者有所帮助。
砂质黄土的结构性是指其微观结构组成及其对力学特性的影响。
砂质黄土中主要由石英砂粒、粘土矿物颗粒和孔隙组成。
石英砂颗粒是其主体,其之间由颗粒间空隙和粘土颗粒充填。
粘土颗粒起到颗粒间的胶结作用,增加整体的粘聚力。
孔隙是砂质黄土中颗粒间的空间,能够储存水分和气体。
其中,不排水孔隙和排水孔隙对砂质黄土的液态和固态性质有显著影响。
增湿变形特性是指当砂质黄土吸湿时,颗粒间的胶结作用以及孔隙中的水分填充所引起的砂质黄土体积变化。
当水分进入砂质黄土中时,颗粒之间的颗粒间胶结强度会发生改变。
湿润环境下,水分与粘土颗粒之间的物理吸附和化学吸附作用导致颗粒间连结紧密。
此外,水分的进入会改变砂质黄土的孔隙结构,使得孔隙变得更小而更均匀分布,其中大孔隙更多地被小孔隙填补。
因此,砂质黄土的体积水分含量增加,体积会发生相应的膨胀。
砂质黄土的结构性和增湿变形特性相互影响。
结构性对黄土的初次吸湿变形有重要影响。
以颗粒间隙空间密度为例,随着黄土膨胀过程的进行,黄土的孔隙结构会发生改变,从而使得颗粒间的空间密度减小。
而孔隙结构的变化也会影响到砂质黄土的增湿变形特性。
在吸湿过程中,孔隙结构的变化会导致黄土体积发生变化,主要表现为体积增加。
因此,研究砂质黄
土的结构性和增湿变形特性对于深入了解其力学行为具有重要意义。
需要注意的是,砂质黄土的结构性和增湿变形特性在不同地区和不同土层中可能存在差异。
文献中很多研究表明,不同地区和不同土层的砂质黄土具有不同的微观结构和增湿变形特性。
因此,在进行砂质黄土的结构性与增湿变形特性研究时,需要对具体的地质背景和土壤环境进行详细分析。
总之,砂质黄土的结构性和增湿变形特性对于理解其力学行为和工程性质具有重要意义。
研究表明,砂质黄土的结构性与增湿变形特性之间存在着相互影响关系。
通过深入研究砂质黄土的结构性和增湿变形特性,可以为土力学和地质工程领域的研究工作提供有价值的参考和指导。
然而,需要注意的是,不同地区和不同土层中砂质黄土的结构性与增湿变形特性可能存在差异,因此在进行具体研究时需要充分考虑地质背景和土壤环境的影响
综上所述,砂质黄土的结构性和增湿变形特性对于理解其力学行为和工程性质具有重要意义。
研究砂质黄土的结构性与增湿变形特性可以为土力学和地质工程领域的研究工作提供有价值的参考和指导。
然而,需要注意不同地区和不同土层中砂质黄土的特性可能存在差异,因此在具体研究时应综合考虑地质背景和土壤环境的影响。
这些研究成果对于工程设计和施工的可靠性和安全性具有重要意义。