大学物理实验实验42静态拉伸法测材料的弹性模量
拉伸法测弹性模量实验报告

拉伸法测弹性模量实验报告一、实验目的1、掌握拉伸法测量金属丝弹性模量的基本原理和方法。
2、学会使用光杠杆法测量微小长度变化。
3、学会使用游标卡尺、螺旋测微器等测量工具,提高实验操作技能。
4、学习数据处理和误差分析的方法,培养科学严谨的实验态度。
二、实验原理弹性模量是描述材料抵抗弹性变形能力的物理量。
对于一根长度为$L$、横截面积为$S$ 的金属丝,在受到沿其长度方向的拉力$F$ 作用时,金属丝会伸长$\Delta L$。
根据胡克定律,在弹性限度内,应力与应变成正比,即$F/S = E \cdot \Delta L/L$,其中$E$ 为弹性模量。
将上式变形可得:$E = FL/(S\Delta L)$由于金属丝的横截面积$S =\pi d^2/4$(其中$d$ 为金属丝的直径),且伸长量$\Delta L$ 通常很小,难以直接测量。
本实验采用光杠杆法来测量微小伸长量$\Delta L$。
光杠杆原理:光杠杆是一个带有三个尖足的平面镜,前两尖足放在平台的固定槽内,后尖足置于圆柱体小砝码上。
当金属丝伸长时,光杠杆后尖足随之下降,从而带动平面镜转动一个微小角度$\theta$。
通过望远镜和标尺,可以测量出平面镜转动前后标尺的读数变化$\Delta n$。
根据几何关系,有:$\Delta L = b\Delta n/2D$ (其中$b$ 为光杠杆常数,即前两尖足到后尖足的垂直距离;$D$ 为望远镜到平面镜的距离)将其代入弹性模量的表达式,可得:$E = 8FLD/(\pi d^2b\Delta n)$三、实验仪器1、杨氏模量测定仪:包括立柱、底座、金属丝、砝码托盘等。
2、光杠杆及望远镜尺组:用于测量微小长度变化。
3、游标卡尺:测量金属丝的长度。
4、螺旋测微器:测量金属丝的直径。
5、砝码若干:提供拉力。
四、实验步骤1、调节仪器调节杨氏模量测定仪的底座水平,使立柱垂直于底座。
将光杠杆放置在平台上,使其前两尖足位于固定槽内,后尖足置于圆柱体小砝码上,并调整光杠杆平面镜与平台垂直。
大学物理实验用拉伸法测金属丝的杨氏弹性模量

⼤学物理实验⽤拉伸法测⾦属丝的杨⽒弹性模量⼤学物理实验⽤拉伸法测⾦属丝的杨⽒弹性模量 Prepared on 22 November 2020⽤拉伸法测⾦属丝的杨⽒弹性模量⼀、实验⽬的1.学会⽤光杠杆法测量杨⽒弹性模量;2.掌握光杠杆法测量微⼩伸长量的原理;3.学会⽤逐差法处理实验数据;4.学会不确定的计算⽅法,结果的正确表达;5.学会实验报告的正确书写。
⼆、实验仪器杨⽒弹性模量测量仪(型号见仪器上)(包括望远镜、测量架、光杠杆、标尺、砝码)、钢卷尺(0-200cm , 、游标卡尺(0-150mm,、螺旋测微器(0-150mm, 三、实验原理在外⼒作⽤下,固体所发⽣的形状变化成为形变。
它可分为弹性形变和塑性形变两种。
本实验中,只研究⾦属丝弹性形变,为此,应当控制外⼒的⼤⼩,以保证外⼒去掉后,物体能恢复原状。
最简单的形变是⾦属丝受到外⼒后的伸长和缩短。
⾦属丝长L ,截⾯积为S ,沿长度⽅向施⼒F 后,物体的伸长L ?,则在⾦属丝的弹性限度内,有:我们把E 称为杨⽒弹性模量。
如上图:=?≈=?ααα2D n tg xL n D x L ??=2 (02n n n -=?)四、实验内容 <⼀> 仪器调整1. 杨⽒弹性模量测定仪底座调节⽔平;2. 平⾯镜镜⾯放置与测定仪平⾯垂直;3. 将望远镜放置在平⾯镜正前⽅-2.0m 左右位置上;4. 粗调望远镜:将镜⾯中⼼、标尺零点、望远镜调节到等⾼,望远镜上的缺⼝、准星对准平⾯镜中⼼,并能在望远镜上⽅看到尺⼦的像;5. 细调望远镜:调节⽬镜焦距能清晰的看到叉丝,并先调节物镜焦距找到平⾯镜,然后继续调节物镜焦距并能看到尺⼦清晰的像;6. 0n ⼀般要求调节到零刻度。
<⼆>测量7. 计下⽆挂物时刻度尺的读数0n ;8. 依次挂上kg 1的砝码,七次,计下7654321,,,,,,n n n n n n n ; 9. 依次取下kg 1的砝码,七次,计下'7'65'4'3'2'1,,,,,,'n n n n n n n ;10. ⽤⽶尺测量出⾦属丝的长度L (两卡⼝之间的⾦属丝)、镜⾯到尺⼦的距离D ;11. ⽤游标卡尺测量出光杠杆x 、⽤螺旋测微器测量出⾦属丝直径d 。
大学物理-拉伸法测弹性模量 实验报告

大连理工大学大 学 物 理 实 验 报 告院(系) 材料学院 专业 班级 姓 名 学号 实验台号 实验时间 年 月 日,第 周,星期 第 节实验名称 拉伸法测弹性模量教师评语实验目的与要求:1. 用拉伸法测定金属丝的弹性模量。
2. 掌握光杠杆镜尺法测定长度微小变化的原理和方法。
3. 学会处理实验数据的最小二乘法。
主要仪器设备:弹性模量拉伸仪(包括钢丝和平面镜、直尺和望远镜所组成的光杠杆装置), 米尺, 螺旋测微器实验原理和内容: 1. 弹性模量一粗细均匀的金属丝, 长度为l , 截面积为S , 一端固定后竖直悬挂, 下端挂以质量为m 的砝码; 则金属丝在外力F=mg 的作用下伸长Δl 。
单位截面积上所受的作用力F/S 称为应力, 单位长度的伸长量 Δl/l 称为应变。
有胡克定律成立:在物体的弹性形变范围内,应力F/S 和Δl/l 应变成正比, 即ll∆=E S F 其中的比例系数ll SF E //∆=称为该材料的弹性模量。
性质: 弹性模量E 与外力F 、物体的长度l 以及截面积S 无关, 只决定于金属丝的材料。
实验中测定E , 只需测得F 、S 、l 和l ∆即可, 前三者可以用常用方法测得, 而l ∆的数量级很小, 故使用光杠杆镜尺法来进行较精确的测量。
2. 光杠杆原理光杠杆的工作原理如下: 初始状态下, 平面镜为竖直状态, 此时标尺读数为n 0。
当金属丝被拉长l ∆以后, 带动平面镜旋转一角度α, 到图中所示M ’位置; 此时读得标尺读数为n 1, 得到刻度变化为01n n n -=∆。
Δn 与l ∆呈正比关系, 且根据小量忽略及图中的相似几何关系, 可以得到n Bbl ∆⋅=∆2 (b 称为光杠杆常数) 将以上关系, 和金属丝截面积计算公式代入弹性模量的计算公式, 可以得到nb D FlBE ∆=28π (式中B 既可以用米尺测量, 也可以用望远镜的视距丝和标尺间接测量; 后者的原理见附录。
大学物理实验《用拉伸法测金属丝的杨氏弹性模量》

大学物理实验《用拉伸法测金属丝的杨氏弹性模量》篇一:大学物理设计性实验用拉伸法测定金属丝的杨氏弹性模量用拉伸法测定金属丝的杨氏弹性模量误差分析一、引入杨氏弹性是描述固体材料抵抗形变的能力的物理量,它与固体材料的几何尺寸无关,与外力大小无关,只决定于金属材料的性质,它的国际单位为:牛/米2(N/m2),它是表征固体材料性质的重要物理量,是选择固体材料的依据之一,是工程技术中常用的参数。
杨氏弹性模量测量的常用方法:2、静态拉伸法(本实验采用此法),它适用于有较大形变的固体和常温下的测量,它的缺点是:①因为载荷大,加载速度慢,含有驰豫过程。
所以它不能很真实地反映出材料内部结构的变化。
②对脆性材料不能用拉伸法测量;③不能测量材料在不同温度下的杨氏弹性模量。
3、动态悬挂法:将试样(圆棒或矩形棒)用两根线悬挂起来并激发它作横向振动。
在一定条件下,试样振动的固有频率取决于它的几何形状、尺寸、质量以及它的杨氏弹性模量,如果我们在实验中测出了试样在不同温度下的固有频率,就可以算出试样在不同温度下的杨氏弹性模量。
此法克服了静态拉伸法的缺点,具有实用价值,是国家标准规定的一种测量方法。
二、实验原理1、弹性形变:物理在外力作用下都要或多或少地发生形变。
当形变不超过某一限度时,撤走外力之后,形变能随之消失。
这种形变称为弹性形变。
2、弹性形变类型:对固体来说,弹性形变可分为四种:①伸长或压缩的形变(应变);②切向形变(切变);③扭转形变(扭变);④弯曲形变。
3、基本原理(胡克定律):一根粗细均匀的金属丝,长度为L,截面积为S,将其上端固定,下端悬挂砝码,于是,金属丝受外力F作用而发生形变,伸长了L,比值F/S是金属丝单位面积上的作用力,称为胁强(正应力);比值L/L是金属丝的相对伸长,称为胁变(线应变)。
根据虎克定律,金属丝在弹性限度内,它的胁强与胁变成正比,即FLFL4FLE 即E2SLSLDL式中比例系数E就是杨氏弹性模量,D为钢丝直径。
静态拉伸法测弹性模量实验报告

静态拉伸法测弹性模量实验报告弹性模量(亦称杨氏模量)是固体材料的一个重要物理参数,它标志着材料对于拉伸或压缩形变的抵抗能力。
作为测定金属材料弹性模量的一个传统方法,静态拉伸法在一起合理配置、误差分析和长度的放大测量等方面有着普遍意义,但这种方法拉伸试验荷载大,加载速度慢,存在弛豫过程,对于脆性材料和不同温度条件下的测量难以实现。
实验原理及仪器胡克定律指出,对于有拉伸压缩形变的弹性形体,在弹性范围内,应力F 与应变L∆成正比,即式中比例系数E 称为材料的弹性模量,它是描写材料自身弹性的物理量.改写上式则有、(1)可见,只要测量外力F 、材料(本实验用金属丝)的长度L 和截面积S ,以及金属丝的长度变化量L ∆,就可以计算出弹性模量E 。
其中,F 、S 和L 都是比较容易测得的,唯有L ∆很小,用一般的量具不易准确测量。
本实验采用光杠杆镜尺组进行长度微小变化量的测量,这是一种非接触式的长度放大测量的方法。
本实验采用的主要实验仪器有: 弹性模量仪(如图1)、光杠杆镜尺组(如图2)、螺旋测微器、米尺、砝码等。
图1 弹性模量测量装置图2 光杠杆 图3 光杠杆放大原理仪器调节好后,金属丝未伸长前,在望远镜中可看到由平面镜反射的标尺的像,将望远镜的细叉丝对准标尺的刻度,读出读数为R 0;将砝码加在砝码托上后,金属丝被拉长,光杠杆镜面向后倾斜了α角.根据光的反射定律可知,此时在望远镜中细叉丝对准的是镜面反射后的标尺上的刻度R 1,其对应的入射光和反射光的夹角为2α。
设N=R 1-R 2,K 为光杠杆的前后足之间的垂直距离,D 为光杠杆镜面到标尺之间的距离,考虑到,角很小,所以有可得∆ (2)将式(2)代入式(1)即得拉伸法测定金属丝弹性模量的计算公式E (3)式中d 为金属丝的直径.实验步骤1.1 调整弹性模量仪① 调节三脚底座上的调节螺丝,使立柱铅直。
② 将光杠杆放在平台上,两前足放在平台前面的横槽内,后足放在夹子B 上,注意后足不要与金属丝相碰。
静态拉伸法测材料的弹性模量实验报告

静态拉伸法测材料的弹性模量实验报告
静态拉伸法测材料的弹性模量实验报告实验日期:2012年12月1日—4日,2012年11月24日9点20分
试样编号:12实验者姓名:胡超祥所在班级:08机电2班实验目的:1.学习与掌握静态拉伸法测定钢材弹性模量;2.了解钢材弹性模量的实际意义。
3.巩固理论知识。
实验原理:静态拉伸法测定钢材的弹性模量是将被测试样放入试样夹中并施以拉伸负荷后,通过测定试样开始破坏前单位面积上的变形来确定试样的弹性模量,即为弹性模量。
一般钢铁材料具有良好的塑性和韧性,其弹性模量比较大,因此可采用这种方法测得它们的弹性模量。
主要仪器:1、金属丝线材。
- 1 -。
大学物理实验实验42静态拉伸法测材料的弹性模量

数据处理
EXCEL作钢丝伸长与外力的关系 曲线
钢丝伸长与外力的关系曲线
y = 2.0021x + 0.2575
8
7
6
x/cm
5 4
Δ
3
2
1
0
0
0.5
1
1.5
2
2.5
3
3.5
4
M/kg
实验内容
1. 使用EXCEL给出? X-m直线并求出直线斜 率b以及斜率的不确定度Ub。
2. 计算弹性模量E。 3. 计算弹性模量E的相对不确定度,并给出E
± UE。
实验分析
1. 实验数据处理过程中,如果发现数据点距 离拟合直线比较远分析一下原因。
2. 实验中为什么可以使用Excel或者最小二乘 法进行直线拟合。
实验结论
注意事项
? 在镜尺系统调整符合要求后,整个实验过程中都要保证平面 支架前两足和望远镜、标尺的位置不应有任何变动。尤其在 加砝码和减砝码时,应轻放轻取,不应有撞击现象,不能让 砝码挂钩发生扭摆和震动。否则须重新调整。
S
? ? tg? ? ? L
θ
δ
l
ΔL l
θ θ
光杠杆 D
望远镜
S0 竖尺
实验内容
1. 调节镜系统 (1) 调整光杠杆和望远镜系统。要求放置平面镜支架的
平台水平,平面镜垂直于水平面,望远镜水平地对 准平面镜,标尺与望远镜垂直并与地面垂直。 (2) 调节等高。要求望远镜与平面镜在同一水平高度上。 另外,望远镜与标尺的零刻度线在同一水平高度上。 (3) 调节望远镜,使目镜内看到标尺成像清晰。
F可从钢丝下挂的砝码的重量得出,L可从米尺得出,钢丝截面积A可用 千分尺测算出钢丝直径后得出。钢丝伸长量采用光杠杆法来测量
拉伸法测弹性模量实验报告

2.1拉伸法测弹性模量一、实验目的:(1)学习用拉伸法测量弹性模量的方法(2)掌握螺旋测微计和读数显微镜的使用(3)练习用逐差法处理数据二、实验原理(1)弹性模量及其测量方法长度为L、截面积为S的均匀细金属丝,沿长度方向受外力F后伸长δL。
单位横截面积上的垂直作用力F/S称为正应力,金属丝的相对伸长δL/L称作线应变。
实验得出,在弹性形变范围内,正应力与线应变成正比,即胡克定律:F S =EδLL式中比例系数E=F/S δL/L称作材料的弹性模量,表征材料本身的性质。
弹性模量越大的材料,要使它发生一定的相对型变所需的单位横截面积上的作用力也越大。
E的单位是Pa。
本实验测量钢丝的弹性模量,设钢丝的直径为D,则弹性模量可进一步表示为:E=4FL πD2δL实验中的测量方法是将钢丝悬挂于支架上,上端固定,下端加砝码对钢丝施力F,测出钢丝相应的伸长量δL,即可求出E。
钢丝长度L用钢尺测量,钢丝直径用螺旋测微计测量,力F由砝码的重力F=mg求出。
δL一般很小,约0.1mm量级,本实验用读数显微镜测量(也可用光杠杆等其它方法测量)。
通过多次测量并用逐差法处理数据达到减少随机误差的目的。
(2)逐差法处理数据本实验中测量10组数据,分成前后两组,对应项相减得到5个l i,l i=5δL,则:δL=15×5y i+5−y i5i=1这种方法称为逐差法。
其优点是充分利用了所测数据,可以减少测量的随机误差,也可以减少测量仪器带来的误差。
三、实验仪器支架:用以悬挂被测钢丝;读数显微镜:用以较准确的测量微小位移。
由物镜和测微目镜构成。
测微目镜鼓轮上有100分格,鼓轮转动一圈,叉丝移动1mm。
故分度值为0.01mm;底座:用以调节钢丝铅直;钢尺、螺旋测微计:测量钢丝的长度和直径。
四、实验步骤(1)调整钢丝竖直:钢丝下夹具上应先挂砝码钩,用以拉直钢丝。
调节底座螺钉使夹具不与周围支架碰蹭。
(2)调节读数显微镜:粗调显微镜高度,使之与钢丝下夹具的标记线同高,再细调读数显微镜。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0.0004cm(Ud); ④ 用游标卡尺(米尺达不到精确度)测量光杠杆
臂长l ,误差为0.02cm(Ul),(将平面镜支架 的三个足尖按在一张平的纸上,留下三个点的 印记,用铅笔从后足尖点到前两足间的连线作 一垂线,垂线长即为l)。
S
? ? tg? ? ? L
θ
δ
l
ΔL l
θ θ
光杠杆 D
望远镜
S0 竖尺
实验内容
1. 调节镜系统 (1) 调整光杠杆和望远镜系统。要求放置平面镜支架的
平台水平,平面镜垂直于水平面,望远镜水平地对 准平面镜,标尺与望远镜垂直并与地面垂直。 (2) 调节等高。要求望远镜与平面镜在同一水平高度上。 另外,望远镜与标尺的零刻度线在同一水平高度上。 (3) 调节望远镜,使目镜内看到标尺成像清晰。
实验内容
2. 观测伸长的变化
? 将8个砝码全部放在钩码上逐次减0.5 kg的砝码,然后从望 远镜中读出对应的标尺读数Si 共8次,然后逐次将砝码加 回并记下对应的读数Si' ,取正、反两次标尺读数的平均值
Si
?
Si
? Si? 2
(i ? 0, 1, 2, ? , 7)
实验内容
① 用卷尺测量平面镜到标尺之间的距离D ,误差 为1cm (UD);
方法。
实验仪器
? 测量杨氏模量专用装置一套, ? 卷尺(3m,0.5mm) ? 游标卡尺(13cm,0.02mm) ? 千分尺(25mm,0.004mm) ? 砝码(500g,8个) ? 钢丝
实验原理
? 测量原理 ? 在物体的弹性限度内,应力与应变成正比,其比例系数称为弹性模量
(杨氏模量)记为E。 F ? E ?L AL
? 在望远镜中读数时,要避免视差。当视线略作上下移动时, 所看到标尺上的刻度线和叉丝之间应没有相对的变动。如有 明显的视差,可调整目镜,同时眼睛不宜太靠近目镜,观测 时间不能太久。
? 注意保持钢丝的铅直状况,不能有弯曲;在增加砝码时钢丝 两固定端不应发生下滑伸长的现象,利用备用丝测量钢丝直 径。
± UE。
实验分析
1. 实验数据处理过程中,如果发现数据点距 离拟合直线比较远分析一下原因。
2. 实验中为什么可以使用Excel或者最小二乘 法进行直线拟合。
实验结论
注意事项
? 在镜尺系统调整符合要求后,整个实验过程中都要保证平面 支架前两足和望远镜、标尺的位置不应有任何变动。尤其在 加砝码和减砝码时,应轻放轻取,不应有撞击现象,不能让 砝码挂钩发生扭摆和震动。否则须重新调整。
F可从钢丝下挂的砝码的重量得出,L可从米尺得出,钢丝截面积A可用 千分尺测算出钢丝直径后得出。钢丝伸长量采用光杠杆法来测量
实验原理
? 光杠杆的原理见下图。增(减)砝码时,金属丝将伸长 (或缩短)? L ,光杠杆的后足尖也随着圆柱体C一道下降 (或上升)? L ,而前面两足保持不动,于是主杆转过一 角度? ,同时平面镜的法线也转过相同的角度? 。用望远 镜T和标尺N测得角? ,设光杠杆后足到前两足连线的距离 为l,可算出? L
数据处理
EXCEL作钢丝伸长与外力的关系 曲线
钢丝伸长与外力的关系曲线
y = 2.0021x + 0.2575
8
7
6
x/cm
5 4
Δ
3
2
1
0
0
0.5
1
1.5
2
2.5
3
3.5
4
M/kg
实验内容
1. 使用EXCEL给出? X-m直线并求出直线斜 率b以及斜率的不确定度Ub。
2. 计算弹性模量E。 3. 计算弹性模量E的相对不确定度,并给出E
引言
弹性模量是工程材料的一个重要物理参数,它标志 材料抵抗弹性形变的能力,在机械设计及材料的使 用和研究时,是一个必须考虑的重要参数。
本实验用静态拉伸法测量钢丝的弹性模量
实验目的
1. 学习用拉伸法测量材料的弹性模量。 2. 了解光杠杆的结构原理,掌握使用方法。 3. 学习用EXCEL中的最小二乘法处理数据的