非等差等比数列前n项和计算方法

合集下载

数列求和各种方法总结归纳汇总

数列求和各种方法总结归纳汇总

3.错位相减法
如果一个数列的各项是由一个等差数列和一个等比数列的对应 项之积构成的,那么这个数列的前n项和即可用此法来求.
【错位相减法】设 {an}的前n项和为Sn,an=n·2n,则Sn=
解析:∵Sn=1·21+2·22+3·23+…
+n·2n

∴2Sn=
1·22+2·23+3·24+…+(n-1)·2n+n·2n-21n
B.n2+2-21n
C.n2+1-2n1-1
D.n2+2-2n1-1
解析:因为an=2n-1+21n, 则Sn=1+22n-1n+1211--1221n=n2+1-21n.
2.(2011·北京东城二模)已知{an}是首项为19,公差为-2的等差 数列,Sn为{an}的前n项和.
数列求和的方法
(1)一般的数列求和,应从通项入手,若无通项,先求通 项,然后通过对通项变形,转化为与特殊数列有关或具备 某种方法适用特点的形式,从而选择合适的方法求和.
(2)解决非等差、等比数列的求和,主要有两种思路: ①转化的思想,即将一般数列设法转化为等差或等比 数列,这一思想方法往往通过通项分解或错位相减来 完成. ②不能转化为等差或等比数列的数列,往往通过裂项 相消法、错位相减法、倒序相加法等来求和.
如果一个数列{an},首末两端等“距离”的两项的和相等 或等于同一常数,那么求这个数列的前n项和即可用倒 序相加法,如等差数列的前n项和即是用此法推导的.
2.分组求和法 若一个数列的通项公式是由若干个等差数列或等比数列 或可求和的数列组成,则求和时可用分组转化法,分别 求和而后相加减.
【分组求和法】数列{(-1)n·n}的前n项和Sn=?
一、公式法
1.如果一个数列是等差数列或等比数列,则求和时直接利用等

等比数列的前n项和数列总结

等比数列的前n项和数列总结

等比数列的前n 项和 一、等比数列的前n 项和公式 1.乘法运算公式法∵S n =a 1+a 2+a 3+…+a n =a 1+a 1q +a 1q 2+…+a 1q n -1=a 1(1+q +q 2+…+q n -1)=a 1·1-q 1+q +q 2+…+q n -11-q =a 11-q n1-q, ∴S n =a 11-q n1-q. 2.方程法 ∵S n =a 1+a 1q +a 1q 2+…+a 1q n -1=a 1+q (a 1+a 1q +…+a 1q n -2)=a 1+q (a 1+a 1q +…+a 1q n -1-a 1q n -1)=a 1+q (S n -a 1q n -1),∴(1-q )S n =a 1-a 1q n .∴S n =a 11-q n1-q. 3.等比性质法∵{a n }是等比数列,∴a 2a 1=a 3a 2=a 4a 3=…=a n a n -1=q . ∴a 2+a 3+…+a n a 1+a 2+…+a n -1=q , 即S n -a 1S n -a n =q 于是S n =a 1-a n q 1-q =a 11-q n1-q. 二、等比数列前n 项和公式的理解(1)在等比数列的通项公式及前n 项和公式中共有a 1,a n ,n ,q ,S n 五个量,知道其中任意三个量,都可求出其余两个量.(2)当公比q ≠1时,等比数列的前n 项和公式是S n =a 11-q n 1-q ,它可以变形为S n =-a 11-q ·q n +a 11-q ,设A =a 11-q,上式可写成S n =-Aq n +A .由此可见,非常数列的等比数列的前n 项和S n 是由关于n 的一个指数式与一个常数的和构成的,而指数式的系数与常数项互为相反数.当公比q =1时,因为a 1≠0,所以S n =na 1是n 的正比例函数(常数项为0的一次函数).等比数列前n 项和性质(1)在等比数列{a n }中,连续相同项数和也成等比数列,即:S k ,S 2k -S k ,S 3k -S 2k ,…仍成等比数列.(2)当n 为偶数时,偶数项之和与奇数项之和的比等于等比数列的公比,即S 偶S 奇=q . (3)若一个非常数列{a n }的前n 项和S n =-Aq n +A (A ≠0,q ≠0,n ∈N *),则数列{a n }为等比数列,即S n =-Aq n +A ⇔数列{a n }为等比数列.题型一 等比数列前n 项和公式的基本运算(在等比数列{a n }的五个量a 1,q ,a n ,n ,S n 中,a 1与q 是最基本的元素,当条件与结论间的联系不明显时,均可以用a 1和q 表示a n 与S n ,从而列方程组求解,在解方程组时经常用到两式相除达到整体消元的目的,这是方程思想与整体思想在数列中的具体应用;在解决与前n 项和有关的问题时,首先要对公比q=1或q≠1进行判断,若两种情况都有可能,则要分类讨论.)1、在等比数列{a n}中,(1)若S n=189,q=2,a n=96,求a1和n;(2)若q=2,S4=1,求S8.2、设等比数列{a n}的前n项和为S n,若S3+S6=2S9,求数列的公比q.题型二等比数列前n项和性质的应用3、一个等比数列的首项为1,项数是偶数,其奇数项的和为85,偶数项和为170,求出数列的公比和项数.4、等比数列{a n}中,若S2=7,S6=91,求S4.题型三等比数列前n项和的实际应用5、借贷10 000元,以月利率为1%,每月以复利计息借贷,王老师从借贷后第二个月开始等额还贷,分6个月付清,试问每月应支付多少元?(1.016≈1.061,1.015≈1.051)[规范解答] 方法一设每个月还贷a元,第1个月后欠款为a0元,以后第n个月还贷a元后,还剩下欠款a n元(1≤n≤6),则a0=10 000,a1=1.01a0-a,a2=1.01a1-a=1.012a0-(1+1.01)a,……a6=1.01a5-a=……=1.016a0-[1+1.01+…+1.015]a.由题意,可知a6=0,即1.016a0-[1+1.01+…+1.015]a=0,a=1.016×1021.016-1.因为1.016=1.061,所以a=1.061×1021.061-1≈1 739.故每月应支付1 739元.方法二一方面,借款10 000元,将此借款以相同的条件存储6个月,则它的本利和为S1=104(1+0.01)6=104×(1.01)6(元).另一方面,设每个月还贷a元,分6个月还清,到贷款还清时,其本利和为S2=a(1+0.01)5+a(1+0.01)4+…+a=a[1+0.016-1]1.01-1=a[1.016-1]×102(元).由S1=S2,得a=1.016×1021.016-1. 以下解法同法一,得a≈1 739.故每月应支付1 739元.方法技巧错位相减法求数列的和若数列{a n}为等差数列,数列{b n}为等比数列,由这两个数列的对应项乘积组成的新数列为{a n b n},当求该数列的前n项的和时,常常采用将{a n b n}的各项乘以公比q,并向后错位一项与{a n b n}的同次项对应相减,即可转化为特殊数列的求和,所以这种数列求和的方法称为错位相减法.6、已知等差数列{a n}的前3项和为6,前8项和为-4.(1)求数列{a n}的通项公式;(2)设b n =(4-a n )q n -1(q ≠0,n ∈N *),求数列{b n }的前n 项和S n .数列归纳整合一、数列的概念及表示方法(1)定义:按照一定顺序排列着的一列数.(2)表示方法:列表法、图象法、通项公式法和递推公式法.(3)分类:按项数有限还是无限分为有穷数列和无穷数列;按项与项之间的大小关系可分为递增数列、递减数列、摆动数列和常数列.(4)a n 与S n 的关系:a n =⎩⎪⎨⎪⎧ S 1n =1,S n -S n -1n ≥2. 等差数列 等比数列性质 ①设{a n }是等差数列,若s +t =m +n ,则a s+a t =a m +a n ;②从等差数列中抽取等距离的项组成的数列是一个等差数列;③等差数列中连续m 项的和组成的新数列是等差数列,即:S m ,S 2m -S m ,S 3m -S 2m ,…是等差数列 ①设{a n }是等比数列,若s +t =m +n ,则a s ·a t =a m ·a n ; ②从等比数列中抽取等距离的项组成的数列是一个等比数列; ③等比数列中连续m 项的和组成的新数列是等比数列,即:S m ,S 2m -S m ,S 3m -S 2m ,…是等比数列(注意:当q =-1且m 为偶数时,不是等比数列)函数特性 ①等差数列{an}的通项公式是n 的一次函数,即an =an +b(a≠0,a =d ,b =a1-d); ②等差数列{an}的前n 项和公式是一个不含常数项的n 的二次函数,即Sn =an2+bn(d≠0) ①等比数列{an}的通项公式是n 的指数型函数,即an =c·qn ,其中c≠0,c =a1q ; ②等比数列{an}的前n 项和公式是一个关于n 的指数型函数,即Sn =aqn -a(a≠0,q≠0,q≠1)三、等差数列、等比数列的判断方法(1)定义法:a n +1-a n =d (常数)⇔{a n }是等差数列;a n +1a n=q (q 为常数,q ≠0)⇔{a n }是等比数列. (2)中项公式法:2a n +1=a n +a n +2⇔{a n }是等差数列;a n +12=a n ·a n +2(a n ≠0)⇔{a n }是等比数列.(3)通项公式法:a n =an +b (a ,b 是常数)⇔{a n }是等差数列;a n =c ·q n (c ,q 为非零常数)⇔{a n }是等比数列.(4)前n 项和公式法:S n =an 2+bn (a ,b 为常数,n ∈N *)⇔{a n }是等差数列;S n =aq n -a (a ,q 为常数,且a ≠0,q ≠0,q ≠1,n ∈N *)⇔{a n }是等比数列.专题一 数列通项公式的求法数列的通项公式是数列的核心之一,它如同函数中的解析式一样,有解析式便可研究函数的性质,而有了数列的通项公式,便可求出数列中的任何一项及前n 项和.常见的数列通项公式的求法有以下几种:(1)观察归纳法求数列的通项公式就是观察数列的特征,横向看各项之间的关系结构,纵向看各项与序号n 的内在联系,结合常见数列的通项公式,归纳出所求数列的通项公式.(2)利用公式法求数列的通项公式数列符合等差数列或等比数列的定义,求通项时,只需求出a 1与d 或a 1与q ,再代入公式a n =a 1+(n -1)d 或a n =a 1q n -1中即可.(3)利用a n 与S n 的关系求数列的通项公式如果给出的条件是a n 与S n 的关系式,可利用a n =⎩⎪⎨⎪⎧ S 1n =1,S n -S n -1n ≥2,先求出a 1=S 1,再通过计算求出a n (n ≥2)的关系式,检验当n =1时,a 1是否满足该式,若不满足该式,则a n 要分段表示.(4)利用累加法、累乘法求数列的通项公式形如:已知a 1,且a n +1-a n =f (n )(f (n )是可求和数列)的形式均可用累加法;形如:已知a 1,且a n +1a n=f (n )(f (n )是可求积数列)的形式均可用累乘法. (5)构造法(利用数列的递推公式研究数列的通项公式)若由已知条件直接求a n 较难,可以通过整理变形等,从中构造出一个等差数列或等比数列,从而求出通项公式.1、已知数列{a n }满足a n +1=a n +3n +2且a 1=2,求a n .2、数列{a n }中,若a 1=1,a n +1=n +1n +2a n (n ∈N *),求通项公式a n . 3、已知数列{a n }满足a n +1=3a n +2(n ∈N *),a 1=1,求通项公式.4、设S n 为数列{a n }的前n 项的和,且S n =32(a n -1)(n ∈N *),求数列{a n }的通项公式. 专题二 数列求和求数列的前n 项和S n 通常要掌握以下方法:1、公式法:直接由等差、等比数列的求和公式求和,注意对等比数列q ≠1的讨论.2、错位相减法:主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广.3、分组转化法:把数列的每一项分成两项,使其转化为几个等差、等比数列再求和.4、裂项相消法:把数列的通项拆成两项之差求和,正负相消剩下首尾若干项.5、倒序相加法:把数列正着写和倒着写再相加(即等差数列求和公式的推导过程的推广).1、求数列214,418,6116,…,2n +12n +1的前n 项和S n . 2、在数列{a n }中,a n =1n +1+2n +1+…+n n +1,又b n =2a n ·a n +1,求数列{b n }的前n 项的和. 3、求和S n =x +2x 2+3x 3+…+nx n .专题三 数列的交汇问题数列是高中代数的重点内容之一,也是高考的必考内容及重点考查的范围,它始终处在知识的交汇点上,如数列与函数、方程、不等式等其他知识交汇进行命题.1、已知单调递增的等比数列{a n }满足a 2+a 3+a 4=28,且 a 3+2是a 2,a 4的等差中项.(1)求数列{a n }的通项公式;(2)若b n =a n log 12a n ,S n =b 1+b 2+…+b n ,对任意正整数n ,S n +(n +m )a n +1<0恒成立,试求m 的取值范围. 2、数列{a n }的前n 项和S n =2n 2+2n ,数列{b n }的前n 项和T n =2-b n .(1)求数列{a n }与{b n }的通项公式;(2)设c n =a n 2·b n ,证明:当且仅当n ≥3时,c n +1<c n .。

求数列前n项和8种的方法(史上最全)

求数列前n项和8种的方法(史上最全)

求数列前n 项和8种的方法一.公式法(定义法): 1.等差数列求和公式:11()(1)22n n n a a n n S na d ++==+特别地,当前n 项的个数为奇数时,211(21)k k S k a ++=+,即前n 项和为中间项乘以项数。

这个公式在很多时候可以简化运算; 2.等比数列求和公式: (1)1q =时,1n S na =; (2)()1111nn a q q S q-≠=-,,特别要注意对公比的讨论;3.可转化为等差、等比数列的数列;4.常用公式:(1)1nk k ==∑12123(1)n n n ++++=+;(2)21nk k ==∑222216123(1)(21)n n n n ++++=++;(3)31nk k ==∑33332(1)2123[]n n n +++++=;(4)1(21)n k k =-=∑2n 1)-(2n ...531=++++.例1 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++n x x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 n n x x x x S +⋅⋅⋅+++=32=xx x n--1)1(=211)211(21--n =1-n 21例2 设123n s n =++++,*n N ∈,求1)32()(++=n nS n S n f 的最大值.解:易知 )1(21+=n n S n , )2)(1(211++=+n n S n∴ 1)32()(++=n nS n S n f =64342++n n n=n n 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f .二.倒序相加法:如果一个数列{a n },与首末两端等“距离”的两项的和相等或等于同一常数,那么求这个数列的前n 项和即可用倒序相加法。

求前N项和方法技巧及公式

求前N项和方法技巧及公式

求前N项和方法技巧及公式前N项和是指将一个数列的前N项相加得到的和。

计算前N项和可以使用不同的方法和技巧,包括数学公式、推导公式和逐项相加等。

一、数学公式法对于一些特定的数列,存在求前N项和的数学公式,可以直接使用这些公式计算前N项和,而无需逐项相加。

1.等差数列的前N项和公式对于等差数列,其通项公式为an = a1 + (n-1)d,其中a1为首项,d为公差。

前N项和公式如下:Sn = (a1 + an) * N / 2 = N * (a1 + a1 + (N-1)d) / 2 = N *(2a1 + (N-1)d) / 22.等比数列的前N项和公式对于等比数列,其通项公式为an = a1 * r^(n-1),其中a1为首项,r为公比。

前N项和公式如下:Sn=a1*(1-r^N)/(1-r)3.平方数序列的前N项和公式对于平方数序列,其通项公式为an = n^2,其中n为正整数。

前N项和公式如下:Sn=n*(n+1)*(2n+1)/6二、推导公式法对于一些特殊的数列,我们可以通过推导得到求前N项和的公式。

推导过程中可以使用数学归纳法、代数运算等方法。

1.等差数列的前N项和公式的推导设等差数列的首项为a,公差为d,第N项为an,则有:an = a + (N-1)dSn=a+(a+d)+(a+2d)+...+(a+(N-1)d)根据等差数列的性质,可以将Sn分为两部分:Sn=(a+(N-1)d)+(a+(N-2)d)+...+(a+d)+a将两式相加,可得:2Sn=(N*a)+(N*a+(N-1)*d)+...+((N-1)d+a)+(Nd)化简后得到等差数列的前N项和公式。

2.等比数列的前N项和公式的推导设等比数列的首项为a,公比为r,第N项为an,则有:an = a * r^(N-1)Sn=a+a*r+a*r^2+...+a*r^(N-1)Sn*r=a*r+a*r^2+...+a*r^N将两式相减Sn*(1-r)=a*(1-r^N)化简后得到等比数列的前N项和公式。

非等差等比数列

非等差等比数列

2.(2016·西安模拟)设等比数列{an}的前 n 项和为 Sn,已知 a1=2 016,且 an+2an+1+an+2=0(n∈N*),则 S2 016 等于( )
A.0
B.2 016
C.2 015
D.2 014
3.等差数列{an}的通项公式为 an=2n+1,其前 n 项和为 Sn,则数列Snn的前 10 项的和为(
(2)设 bn= 2an +(-1)nan,求数列{bn}的前 2n 项和.
专注于中小学文化课辅导,为学生创造美好未来!
引申探究 本例(2)中,求数列{bn}的前 n 项和 Tn.
思维升华 分组转化法求和的常见类型 (1)若 an=bn±cn,且{bn},{cn}为等差或等比数列,可采用分组求和法求{an}的前 n 项和. (2)通项公式为 an=bcnn,,nn为为偶奇数数, 的数列,其中数列{bn},{cn}是等比数列或等差数列,可采用分组求和法 求和. 提醒:某些数列的求和是将数列转化为若干个可求和的新数列的和或差,从而求得原数列的和,注意在含有字 母的数列中对字母的讨论.
教学内容与过程
1、非等差、等比数列通项公式的求法
类型Ⅰ 观察法:已知数列前若干项,求该数列的通项时,一般对所给的项观察分析,寻找规律,从而
根据规律写出此数列的一个通项。
类型Ⅱ 公式法:若已知数列的前 n 项和 Sn 与 an 的关系,求数列an 的通项 an 可用公式
an

SS1n

, (n 1) Sn1, (n 2)
)
A.120
B.70
C.75
D.100
4.在数列{an}中,若 an+1+(-1)nan=2n-1,则数列{an}的前 12 项和等于( )

求数列前n项和的七种方法

求数列前n项和的七种方法

求数列前N 项和的七种方法1. 公式法等差数列前n 项和:特别的,当前n 项的个数为奇数时,211(21)k k S k a ++=+g ,即前n 项和为中间项乘以项数。

这个公式在很多时候可以简化运算。

等比数列前n 项和: q=1时,1n S na =()1111n n a q q S q-≠=-,,特别要注意对公比的讨论。

其他公式:1、)1(211+==∑=n n k S nk n 2、)12)(1(6112++==∑=n n n k S nk n3、213)]1(21[+==∑=n n k S n k n[例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++n x x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x 由等比数列求和公式得 n n x x x x S +⋅⋅⋅+++=32(利用常用公式)=xx x n--1)1(=211)211(21--n =1-n21 [例2] 设S n =1+2+3+…+n,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(211++=+n n S n (利用常用公式)∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f2. 错位相减法这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x }的通项之积设n n x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ②(设制错位)①-②得n n n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n xx x S x )12(1121)1(1----⋅+=--∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+ [例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232nn前n 项的和. 解:由题可知,{n n22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积 设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ……………………………② (设制错位)①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)∴ 1224-+-=n n n S 练习:求:S n =1+5x+9x 2+······+(4n -3)x n-1解:S n =1+5x+9x 2+······+(4n -3)x n-1 ①①两边同乘以x ,得x S n =x+5 x 2+9x 3+······+(4n -3)x n ② ①-②得,(1-x )S n =1+4(x+ x 2+x 3+······+ n x )-(4n-3)x n当x=1时,S n =1+5+9+······+(4n-3)=2n 2-n 当x ≠1时,S n = 1 1-x [ 4x(1-x n) 1-x +1-(4n-3)x n ]3. 反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +. [例5] 求οοοοο89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设οοοοο89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得οοοοο1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …② (反序)又因为 1cos sin ),90cos(sin 22=+-=x x x x ο ①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222οοοοοο++⋅⋅⋅++++=S =89∴ S =44.5 4. 分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例6] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,…解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n(分组)当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S n n -+--==2)13(11n n a a a n -+--- [例7] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1( ∴ ∑=++=nk n k k k S 1)12)(1(=)32(231k k k nk ++∑=将其每一项拆开再重新组合得3211123nnnn k k k S k k k====++∑∑∑(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++22(1)(1)(21)(1)222n n n n n n n ++++=++ (分组求和)=2)2()1(2++n n n练习:求数列•••+•••),21(,,813,412,211nn 的前n 项和。

求前n项和的几种方法

求前n项和的几种方法

求前n 项和的几种方法求数列前N 项和的方法1. 公式法(1)等差数列前n 项和:特别的,当前n 项的个数为奇数时,211(21)k k S k a ++=+,即前n 项和为中间项乘以项数。

这个公(2q=11q S ≠,(31、=S n 3、=S n [例1][例2]设2. 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{a n }、{b n }分别是等差数列和等比数列.[例3]求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①[例4]求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n 前n 项的和. 练习:求:S n =1+5x+9x 2+······+(4n -3)x n-1答案:当x=1时,S n =1+5+9+······+(4n-3)=2n 2-n当x ≠1时,S n =11-x [4x(1-x n )1-x +1-(4n-3)x n ]3. 倒序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把[例5]求4. [例6]5. (1(3(5))2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n (6)n n n n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 [例9]求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.[例10]在数列{a n }中,11211++⋅⋅⋅++++=n n n n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和.[例11]求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++ 解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S ∵ n n n n tan )1tan()1cos(cos 1sin -+=+(裂项) ∴ 89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和) =]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1 -+-+-+-∴6. [[例7. [例练习:求5,55,555,…,的前n 项和。

非等差等比数列前n项和计算方法

非等差等比数列前n项和计算方法

第二章:数列11,(1),(2).n n n S n a S S n -=⎧=⎨-≥⎩注意通项能否合并。

2、等差数列:⑴定义:如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,即n a -1-n a =d ,(n ≥2,n ∈N +), 那么这个数列就叫做等差数列。

⑵等差中项:若三数a A b 、、成等差数列2a bA +⇔= ⑶通项公式:1(1)()nma a n d a n m d =+-=+- 或(na pn q p q =+、是常数).⑷前n 项和公式:()()11122n n n n n a a S na d -+=+=⑸常用性质:①若()+∈ +=+N q p n m q p n m ,,,,则qpnma a a a +=+;②下标为等差数列的项()Λ,,,2mk m k k a a a ++,仍组成等差数列;③数列{}b a n+λ(b ,λ为常数)仍为等差数列; ④若{}n a 、{}n b 是等差数列,则{}n ka 、{}n nka pb + (k 、p 是非零常数)、*{}(,)p nqa p q N +∈、,…也成等差数列。

⑤单调性:{}na 的公差为d ,则:ⅰ)⇔>0d {}n a 为递增数列; ⅱ)⇔<0d {}n a 为递减数列; ⅲ)⇔=0d {}na 为常数列;⑥数列{n a }为等差数列na pn q ⇔=+(p,q 是常数)⑦若等差数列{}n a 的前n 项和,则、kk S S -2、kk S S 23-… 是等差数列。

3、等比数列⑴定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。

⑵等比中项:若三数a b 、G 、成等比数列2,G ab ⇒=(ab 同号)。

反之不一定成立。

⑶通项公式:11n n mn ma a q a q --==⑷前n 项和公式:()11111n n na q a a q Sqq--==--⑸常用性质①若()+∈ +=+N q p n m q p n m ,,,,则mnpqa a a a ⋅=⋅;②Λ,,,2mk m k k a a a ++为等比数列,公比为kq (下标成等差数列,则对应的项成等比数列)③数列{}na λ(λ为不等于零的常数)仍是公比为q 的等比数列;正项等比数列{}na ;则{}lg na 是公差为lg q 的等差数列;④若{}na 是等比数列,则{}{}2n n ca a ,,1n a ⎧⎫⎨⎬⎩⎭,{}()r na r Z ∈是等比数列,公比依次是21.rq q q q,,, ⑤单调性:110,10,01a q a q >><<<或{}n a ⇒为递增数列;{}110,010,1na q a q a ><<<>⇒或为递减数列; {}1n q a =⇒为常数列; {}0nq a <⇒为摆动数列;⑥既是等差数列又是等比数列的数列是常数列。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章:数列 1、数列中与n 之间的关系:11,(1),(2).n nn S n a S S n -=⎧=⎨-≥⎩注意通项能否合并。

2、等差数列:⑴定义:如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,即n a -1-n a =d ,(n ≥2,n ∈N +),那么这个数列就叫做等差数列。

⑵等差中项:若三数a A b 、、成等差数列2a b A +⇔=⑶通项公式:1(1)()n m a a n d a n m d =+-=+-或(n a pn q p q =+、是常数). ⑷前n 项和公式: ()()11122n n n n n a a S na d -+=+= ⑸常用性质:①若()+∈ +=+N q p n m q p n m ,,,,则q p n m a a a a +=+;②下标为等差数列的项()Λ,,,2m k m k k a a a ++,仍组成等差数列;③数列{}b a n +λ(b ,λ为常数)仍为等差数列;④若{}n a 、{}n b 是等差数列,则{}n ka 、{}n n ka pb + (k 、p 是非零常数)、*{}(,)p nq a p q N +∈、,…也成等差数列。

⑤单调性:{}n a 的公差为d ,则:ⅰ)⇔>0d {}n a 为递增数列;ⅱ)⇔<0d {}n a 为递减数列;ⅲ)⇔=0d {}n a 为常数列;⑥数列{n a }为等差数列n a pn q ⇔=+(p,q 是常数)⑦若等差数列{}n a 的前n 项和n S ,则k S 、k k S S -2、k k S S 23-… 是等差数列。

3、等比数列⑴定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。

⑵等比中项:若三数a b 、G 、成等比数列2,G ab ⇒=(ab 同号)。

反之不一定成立。

⑶通项公式:11n n m n m a a q a q --== ⑷前n 项和公式:()11111n n n a q a a q S q q --==-- ⑸常用性质①若()+∈ +=+N q p n m q p n m ,,,,则m n p q a a a a ⋅=⋅;②Λ,,,2m k m k k a a a ++为等比数列,公比为k q (下标成等差数列,则对应的项成等比数列) ③数列{}n a λ(λ为不等于零的常数)仍是公比为q 的等比数列;正项等比数列{}n a ;则{}lg n a 是公差为lg q 的等差数列;④若{}n a 是等比数列,则{}{}2n n ca a ,, 1n a ⎧⎫⎨⎬⎩⎭, {}()r n a r Z ∈是等比数列,公比依次是21.r q q q q,,, ⑤单调性:110,10,01a q a q >><<<或{}n a ⇒为递增数列;{}110,010,1n a q a q a ><<<>⇒或为递减数列;{}1n q a =⇒为常数列;{}0n q a <⇒为摆动数列;⑥既是等差数列又是等比数列的数列是常数列。

⑦若等比数列{}n a 的前n 项和n S ,则k S 、k k S S -2、k k S S 23-… 是等比数列.求该数列的通项时,一般对所给的项观察分析,公式法:若已知数列的前n 项和n S 与n a 的关系,求数列{}n a 的通项n a 可用公式 11,(1),(2)n nn S n a S S n -=⎧=⎨-≥⎩构造两式作差求解。

用此公式时要注意结论有两种可能,一种是“一分为二”,即分段式;另一种是“合二为一”,即1a 和n a 合为一个表达,(要先分1n =和2≥n 两种情况分别进行运算,然后验证能 累加法:形如(1n f a n n +=+型的递推数列(其中)(n f 是关于n 的函数)可构造:11221(1)(2)..(1.)n n n n a a f n a a f n a a f ----=⎧⎪⎪⎨--=--=⎪⎪⎩ 将上述1-n 个式子两边分别相加,可得:1(1)(2)...(2)(1),(2)n a f n f n f f a n =-+-+++≥①若()f n 是关于n 的一次函数,累加后可转化为等差数列求和;② 若()f n 是关于n 的指数函数,累加后可转化为等比数列求和;③若()f n 是关于n 的二次函数,累加后可分组求和;④若()f n 是关于n 的分式函数,累加后可裂项求和.累乘法: 形如1()n n a f n +=⋅1()n n a f n a +⎛⎫= 型的递推数列(其中)(n f 是关于n 的函数)可构造:11221(1)(.2)(1..)n n n n a f n a a f n a a f a ---=-=-⎧⎪⎪⎪⎪⎨=⎪⎪⎪⎪⎩ 将上述1-n 个式子两边分别相乘,可得:1(1)(2)...(2)(1),(2)n a f n f n f f a n =-⋅-⋅⋅≥有时若不能直接用,可变形成这种形式,然后用这种方法求解。

构造数列法:㈠形如q pa n n +=+1(其中,p 均为常数且p ≠)型的递推式:(1)若1p =时,数列{n a }为等差数列;(2)若0q =时,数列{n a }为等比数列;(3)若1p ≠且0≠q 时,数列{n a }为线性递推数列,其通项可通过待定系数法构造等比数列来求.方法有如下两种:法一:设1()n n a p a λλ++=+,展开移项整理得1(1)n n a pa p λ+=+-,与题设1n n a pa q +=+比较系数(待定系数法)得1,(0)()111n n q q q p a p a p p p λ+=≠⇒+=+---1()11n n q q a p a p p -⇒+=+--,即1n q a p ⎧⎫+⎨⎬-⎩⎭构成以11q a p +-为首项,以p 为公比的等比数列.再利用等比数列的通项公式求出1n q a p ⎧⎫+⎨⎬-⎩⎭的通项整理可得.n a 法二:由q pa a n n +=+1得1(2)n n a pa q n -=+≥两式相减并整理得11,n n n n a a p a a +--=-即{}1n n a a +-构成以21a a -为首项,以p 为公比的等比数列.求出{}1n n a a +-的通项再转化为类型Ⅲ(累加法)便可求出.n a㈡形如1()n n a pa f n +=+(1)p ≠型的递推式: ⑴当()f n 为一次函数类型(即等差数列)时:法一:设[]1(1)n n a An B p a A n B -++=+-+,通过待定系数法确定A B 、的值,转化成以1a A B ++为首项,以p 为公比的等比数列{}n a An B ++,再利用等比数列的通项公式求出{}n a An B ++的通项整理可得.n a法二:当()f n 的公差为d 时,由递推式得:1()n n a pa f n +=+,1(1)n n a pa f n -=+-两式相减得:11()n n n n a a p a a d +--=-+,令1n n n b a a +=-得:1n n b pb d -=+转化为类型Ⅴ㈠求出 n b ,再用类型Ⅲ(累加法)便可求出.n a法一:设[]1()(1)n n a f n p a f n λλ-+=+-,通过待定系数法确定λ的值,转化成以1(1)a f λ+为首项,以p 为公比的等比数列{}()n a f n λ+,再利用等比数列的通项公式求出{}()n a f n λ+的通项整理可得.n a法二:当()f n 的公比为q 时,由递推式得:1()n n a pa f n +=+——①,1(1)n n a pa f n -=+-,两边同时乘以q 得1(1)n n a q pqa qf n -=+-——②,由①②两式相减得11()n n n n a a q p a qa +--=-,即11n n n n a qa p a qa +--=-,在转化为类型Ⅴ㈠便可求出.n a 法三:递推公式为n n n q pa a +=+1(其中p ,q 均为常数)或1n n n a pa rq +=+(其中p ,q, r 均为常数)时,要先在原递推公式两边同时除以1+n q ,得:q q a q p q a n n n n 111+•=++,引入辅助数列{}n b (其中nn n q a b =),得:q b q p b n n 11+=+再应用类型Ⅴ㈠的方法解决。

⑶当()f n 为任意数列时,可用通法:在1()n n a pa f n +=+两边同时除以1n p +可得到111()n n n n n a a f n p p p +++=+,令n n na b p =,则11()n n n f n b b p++=+,在转化为类型Ⅲ(累加法),求出n b 之后得n n n a p b =.对数变换法:形如1(0,0)q n n pa p a +=>>型的递推式:在原递推式1q n a pa +=两边取对数得1lg lg lg n n a q a p +=+,令lg n n b a =得:1lg n n b qb p +=+,化归为q pa a n n +=+1型,求出n b 之后得10.n b n a =(注意:底数不一定要取10,可根据题意选择)。

倒数变换法: 形如11n n n n a pa a ---=(p 为常数且0p ≠)的递推式:两边同除于1n n a a -,转化为111n n p a a -=+形式,化归为q pa a n n +=+1型求出1na 的表达式,再求n a ; 还有形如1n n n ma a pa q +=+的递推式,也可采用取倒数方法转化成111n n m m a q a p+=+形式,化归为q pa a n n +=+1型求出1na 的表达式,再求n a .形如n n n qa pa +=++12型的递推式:用待定系数法,化为特殊数列}{1--n n a a 的形式求解。

方法为:设)(112n n n n ka a h ka a -=-+++,比较系数得q hk p k h =-=+,,可解得h k 、,于是1{}n n a ka +-是公比为h 的等比数列,这样就化归为q pa a n n +=+1型。

总之,求数列通项公式可根据数列特点采用以上不同方法求解,对不能转化为以上方法求解的数列,可用归纳、猜想、证明方法求出数列通项公式.n a5、非等差、等比数列前n 项和公式的求法①若数列{}n a 为等差数列,数列{}n b 为等比数列,则数列{}n n a b ⋅的求和就要采用此法. ②将数列{}n n a b ⋅的每一项分别乘以{}n b 的公比,然后在错位相减,进而可得到数列{}n n a b ⋅的前n 项和.n 项和公式时所用的方法.一般地,当数列的通项12()()n c a an b an b =++ 12(,,,a b b c 为常数)时,往往可将n a 变成两项的差,采用裂项相消法求和.可用待定系数法进行裂项: 设12n a an b an b λλ=-++,通分整理后与原式相比较,根据对应项系数相等得21c b b λ=-,从而可得 12211211=().()()()c c an b an b b b an b an b -++-++常见的拆项公式有:①111(1)1n n n n =-++; ②1111();(21)(21)22121n n n n =--+-+1a b =-④11;m m m n n n C C C -+=-⑤!(1)!!.n n n n ⋅=+-也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.一般分两步:①找通向项公式②由通项公式确定如何分组.如果一个数列{}n a ,与首末两项等距的两项之和等于首末两项之和,则可用把正着写与倒着写的两个和式相加,就得到了一个常数列的和,这种求和方法称为倒序相加法。

相关文档
最新文档