2020-2021成都市盐道街中学高中必修二数学下期末一模试卷带答案

合集下载

2020-2021成都市实验中学高中必修二数学下期末一模试卷(附答案)

2020-2021成都市实验中学高中必修二数学下期末一模试卷(附答案)

2020-2021成都市实验中学高中必修二数学下期末一模试卷(附答案)一、选择题1.执行右面的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =( )A .203B .72C .165D .1582.已知扇形的周长是12,面积是8,则扇形的中心角的弧度数是( ) A .1B .4C .1或4D .2或43.设m ,n 为两条不同的直线,α,β为两个不同的平面,则( ) A .若//m α,//n α,则//m n B .若//m α,//m β,则//αβ C .若//m n ,n α⊥,则m α⊥D .若//m α,αβ⊥,则m β⊥4.已知集合{}{}2|320,,|05,A x x x x R B x x x N =-+=∈=<<∈,则满足条件A CB ⊆⊆的集合C 的个数为( )A .1B .2C .3D .45.已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B I 中元素的个数为( ) A .3B .2C .1D .06.已知ABC ∆是边长为4的等边三角形,P 为平面ABC 内一点,则•()PA PB PC +u u u v u u u v u u u v的最小值是() A .6-B .3-C .4-D .2-7.已知函数y=f (x )定义域是[-2,3],则y=f (2x-1)的定义域是( ) A .50,2⎡⎤⎢⎥⎣⎦B .[]1,4-C .1,22⎡⎤-⎢⎥⎣⎦D .[]5,5-8.(2015新课标全国I 理科)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有A .14斛B .22斛C .36斛D .66斛9.已知不等式220ax bx ++>的解集为{}12x x -<<,则不等式220x bx a ++<的解集为( ) A .112x x ⎧⎫-<<⎨⎬⎩⎭B .112x x x ⎧⎫<->⎨⎬⎩⎭或 C .{}21x x -<<D .{}21x x x <->或10.若,αβ均为锐角,5sin 5α=,()3sin 5αβ+=,则cos β=A 25B .2525 C 25或2525D .525-11.当x ∈R 时,不等式210kx kx -+>恒成立,则k 的取值范围是( ) A .(0,)+∞B .[)0,+∞C .[)0,4D .(0,4)12.已知01a b <<<,则下列不等式不成立...的是 A .11()()22ab>B .ln ln a b >C .11a b> D .11ln ln a b> 二、填空题13.在ABC ∆中,若3B π=,3AC =2AB BC +的最大值为__________.14.底面直径和高都是4cm 的圆柱的侧面积为___cm 2. 15.已知0,0,2a b a b >>+=,则14y a b=+的最小值是__________. 16.若(2,1)x ∃∈--,使不等式()24210x xm m -++>成立,则实数m 的取值范围为________.17.如图是抛物线形拱桥,当水面在l 时,拱顶离水面2米,水面宽4米,水位下降1米后,水面宽 米.18.函数()12x f x -的定义域是__________.19.在四面体ABCD 中,=2,60,90AB AD BAD BCD =∠=︒∠=︒,二面角A BD C --的大小为150︒,则四面体ABCD 外接球的半径为__________.20.设a ,b 是非零实数,且满足sincos1077tan 21cos sin 77a b a b πππππ+=-,则b a =_______.三、解答题21.在ABC ∆中,a 、b 、c 分别是角A 、B 、C 的对边,且()()3a b c a b c ab +++-=. (1)求角C 的值;(2)若2c =,且ABC ∆为锐角三角形,求+a b 的取值范围.22.从甲、乙两名学生中选拔一人参加射箭比赛,为此需要对他们的射箭水平进行测试.现这两名学生在相同条件下各射箭10次,命中的环数如下: 甲 8 9 7 9 7 6 10 10 8 6 乙10986879788(1)计算甲、乙两人射箭命中环数的平均数和标准差; (2)比较两个人的成绩,然后决定选择哪名学生参加射箭比赛. 23.已知数列{}n a 的前n 和为n S ,若0n a >,21n n a S =. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)若3nn n a b =,求数列{}n b 的前n 项和n T . 24.已知以点C 2(,)t t(t ∈R ,t ≠0)为圆心的圆与x 轴交于点O 和点A ,与y 轴交于点O 和点B ,其中O 为原点. (1)求证:△OAB 的面积为定值;(2)设直线y =-2x +4与圆C 交于点M ,N ,若OM =ON ,求圆C 的方程. 25.已知数列{a n }满足a 1=1,1114n na a +=-,其中n ∈N *. (1)设221n n b a =-,求证:数列{b n }是等差数列,并求出{a n }的通项公式.(2)设41n nacn=+,数列{c n c n+2}的前n项和为T n,是否存在正整数m,使得11nm mTc c+<对于n∈N*,恒成立?若存在,求出m的最小值;若不存在,请说明.26.以原点为圆心,半径为r的圆O222:()0O x y r r+=>与直线380x y--=相切.(1)直线l过点(2,6)-且l截圆O所得弦长为43求直线l l的方程;(2)设圆O与x轴的正半轴的交点为M,过点M作两条斜率分别为12,k k12,k k的直线交圆O于,A B两点,且123k k⋅=-,证明:直线AB恒过一个定点,并求出该定点坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】【详解】试题分析:根据题意由13≤成立,则循环,即1331,2,,2222M a b n=+====;又由23≤成立,则循环,即28382,,,33323M a b n=+====;又由33≤成立,则循环,即3315815,,,428838M a b n=+====;又由43≤不成立,则出循环,输出158M=.考点:算法的循环结构2.C解析:C【解析】设扇形的半径为r ,弧长为 l ,则121282l r S lr +===,, ∴解得28r l ==, 或44r l ==,41lrα==或, 故选C .3.C解析:C 【解析】 【分析】根据空间线面关系、面面关系及其平行、垂直的性质定理进行判断. 【详解】对于A 选项,若//m α,//n α,则m 与n 平行、相交、异面都可以,位置关系不确定; 对于B 选项,若l αβ=I ,且//m l ,m α⊄,m β⊄,根据直线与平面平行的判定定理知,//m α,//m β,但α与β不平行;对于C 选项,若//m n ,n α⊥,在平面α内可找到两条相交直线a 、b 使得n a ⊥,n b ⊥,于是可得出m a ⊥,m b ⊥,根据直线与平面垂直的判定定理可得m α⊥; 对于D 选项,若αβ⊥,在平面α内可找到一条直线a 与两平面的交线垂直,根据平面与平面垂直的性质定理得知a β⊥,只有当//m a 时,m 才与平面β垂直. 故选C . 【点睛】本题考查空间线面关系以及面面关系有关命题的判断,判断时要根据空间线面、面面平行与垂直的判定与性质定理来进行,考查逻辑推理能力,属于中等题.4.D解析:D 【解析】 【分析】 【详解】求解一元二次方程,得{}()(){}2|320,|120,A x x x x x x x x =-+=∈=--=∈R R {}1,2=,易知{}{}|05,1,2,3,4B x x x =<<∈=N .因为A C B ⊆⊆,所以根据子集的定义, 集合C 必须含有元素1,2,且可能含有元素3,4, 原题即求集合{}3,4的子集个数,即有224=个,故选D. 【点评】本题考查子集的概念,不等式,解一元二次方程.本题在求集合个数时,也可采用列举法.列出集合C 的所有可能情况,再数个数即可.来年要注意集合的交集运算,考查频度极高.5.B解析:B 【解析】试题分析:集合中的元素为点集,由题意,可知集合A 表示以()0,0为圆心,1为半径的单位圆上所有点组成的集合,集合B 表示直线y x =上所有的点组成的集合,又圆221x y +=与直线y x =相交于两点22,22⎛⎫ ⎪ ⎪⎝⎭,22,22⎛⎫-- ⎪ ⎪⎝⎭,则A B I 中有2个元素.故选B.【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.6.A解析:A 【解析】 【分析】建立平面直角坐标系,表示出点的坐标,利用向量坐标运算和平面向量的数量积的运算,求得最小值,即可求解. 【详解】由题意,以BC 中点为坐标原点,建立如图所示的坐标系, 则(0,23),(2,0),(2,0)A B C -,设(,)P x y ,则(,23),(2,),(2,)PA x y PB x y PC x y =--=---=--u u u r u u u r u u u r,所以22()(2)(23)(2)2432PA PB PC x x y y x y y •+=-⋅-+-⋅-=-+u u u r u u u r u u u r222[(3)3]x y =+--,所以当0,3x y ==时,()PA PB PC •+u u u r u u u r u u u r取得最小值为2(3)6⨯-=-,故选A.【点睛】本题主要考查了平面向量数量积的应用问题,根据条件建立坐标系,利用坐标法是解答的关键,着重考查了推理与运算能力,属于基础题.7.C解析:C 【解析】∵函数y =f (x )定义域是[−2,3], ∴由−2⩽2x −1⩽3, 解得−12⩽x ⩽2, 即函数的定义域为1,22⎡⎤-⎢⎥⎣⎦,本题选择C 选项.8.B解析:B 【解析】试题分析:设圆锥底面半径为r ,则12384r ⨯⨯=,所以163r =,所以米堆的体积为211163()5433⨯⨯⨯⨯=3209,故堆放的米约为3209÷1.62≈22,故选B. 考点:圆锥的性质与圆锥的体积公式9.A解析:A 【解析】 【分析】根据一元二次不等式的解集与一元二次方程根的关系,结合韦达定理可构造方程求得,a b ;利用一元二次不等式的解法可求得结果.【详解】220ax bx ++>Q 的解集为{}12x x -<<1∴-和2是方程220ax bx ++=的两根,且0a <1212122ba a⎧-=-+=⎪⎪∴⎨⎪=-⨯=-⎪⎩,解得:11a b =-⎧⎨=⎩ 222210x bx a x x ∴++=+-< 解得:112x -<<,即不等式220x bx a ++<的解集为112x x ⎧⎫-<<⎨⎬⎩⎭故选:A 【点睛】本题考查一元二次不等式的解法、一元二次不等式的解集与一元二次方程根的关系等知识的应用;关键是能够通过一元二次不等式的解集确定一元二次方程的根,进而利用韦达定理构造方程求得变量.10.B解析:B 【解析】利用角的等量代换,β=α+β-α,只要求出α的余弦,α+β的余弦,利用复合角余弦公式展开求之. 【详解】∵α为锐角,sin 2α= s ,∴α>45°且cos α= ,∵()3sin 5αβ+=,且1325< ,2παβπ∴+<<,∴45cosαβ+=-() , 则cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα43555525=-⨯+⨯= 故选B. 【点睛】本题考查两角和与差的正弦、余弦函数公式,以及同角三角函数间的基本关系,熟练掌握公式是解本题的关键.11.C解析:C 【解析】当0k =时,不等式210kx kx -+>可化为10>,显然恒成立;当0k ≠时,若不等式210kx kx -+>恒成立,则对应函数的图象开口朝上且与x 轴无交点,则240k k k >⎧⎨=-<⎩V 解得:04k <<,综上k 的取值范围是[)0,4,故选C. 12.B解析:B 【解析】 【分析】根据指数函数、对数函数的单调性,以及不等式的性质,对选项逐一分析,由此得出不等式不成立的选项. 【详解】依题意01a b <<<,由于12xy ⎛⎫= ⎪⎝⎭为定义域上的减函数,故11()()22a b >,故A 选项不等式成立.由于ln y x =为定义域上的增函数,故ln ln 0a b <<,则11ln ln a b>,所以B 选项不等式不成立,D 选项不等式成立.由于01a b <<<,故11a b>,所以C 选项不等式成立.综上所述,本小题选B.本小题主要考查指数函数和对数函数的单调性,考查不等式的性质,属于基础题.二、填空题13.【解析】【分析】【详解】设最大值为考点:解三角形与三角函数化简点评:借助于正弦定理三角形内角和将边长用一内角表示转化为三角函数求最值只需将三角函数化简为的形式 解析:27【解析】 【分析】 【详解】 设322sin 3sin 3AB BC A θθπθ====⎛⎫- ⎪⎝⎭Q22sin ,3AB πθ⎛⎫∴=- ⎪⎝⎭2sin BC θ=()222sin 4sin 27sin 3AB BC πθθθϕ⎛⎫∴+=-+=+ ⎪⎝⎭,最大值为27考点:解三角形与三角函数化简点评:借助于正弦定理,三角形内角和将边长用一内角表示,转化为三角函数求最值,只需将三角函数化简为()22sin cos sin a b a b θθθϕ+=++的形式14.【解析】【分析】【详解】圆柱的侧面积为 解析:【解析】 【分析】 【详解】圆柱的侧面积为22416ππ⨯⨯=15.【解析】分析:利用题设中的等式把的表达式转化成展开后利用基本不等式求得y 的最小值详解:因为所以所以(当且仅当时等号成立)则的最小值是总上所述答案为点睛:该题考查的是有关两个正数的整式形式和为定值的情解析:92【解析】 分析:利用题设中的等式,把y 的表达式转化成14()()2a b a b++,展开后,利用基本不等式求得y 的最小值. 详解:因为2a b +=,所以12a b+=,所以14145259()()222222a b b a y a b a b a b +=+=+=++≥+=(当且仅当2b a =时等号成立),则14y a b =+的最小值是92,总上所述,答案为92. 点睛:该题考查的是有关两个正数的整式形式和为定值的情况下求其分式形式和的最值的问题,在求解的过程中,注意相乘,之后应用基本不等式求最值即可,在做乘积运算的时候要注意乘1是不变的,如果不是1,要做除法运算.16.【解析】【分析】令将问题转化为二次函数在区间上恒成立问题即可求得参数范围【详解】令由可得则问题等价于存在分离参数可得若满足题意则只需令令则容易知则只需整理得解得故答案为:【点睛】本题考查由存在性问题 解析:()4,5-【解析】 【分析】令2x t =,将问题转化为二次函数在区间上恒成立问题,即可求得参数范围. 【详解】令2x t =,由(2,1)x ∃∈--可得11,42t ⎛⎫∈⎪⎝⎭,()24210x x m m -++> 则问题等价于存在11,42t ⎛⎫∈ ⎪⎝⎭,()2210m m t t -++>, 分离参数可得221t m m t+->-若满足题意,则只需221mint m m t +⎛⎫->-⎪⎝⎭, 令()22111t h x t t t +⎛⎫=-=-- ⎪⎝⎭,令1m t =,()2,4m ∈则()2,2,4y m m m =--∈,容易知41620min y =--=-,则只需220m m ->-,整理得2200m m --<, 解得m ∈()4,5-. 故答案为:()4,5-. 【点睛】本题考查由存在性问题求参数值,属中档题.17.2米【解析】【分析】【详解】如图建立直角坐标系设抛物线方程为将A (2-2)代入得m=-2∴代入B 得故水面宽为米故答案为米考点:抛物线的应用解析:米 【解析】 【分析】 【详解】如图建立直角坐标系,设抛物线方程为2x my =, 将A (2,-2)代入2x my =, 得m=-2,∴22x y =-,代入B ()0,3x -得06x =故水面宽为266 考点:抛物线的应用18.【解析】由得所以所以原函数定义域为故答案为 解析:(],0-∞【解析】由120x -≥,得21x ≤,所以0x ≤,所以原函数定义域为(],0-∞,故答案为(],0-∞.19.【解析】画出图象如下图所示其中为等边三角形边的中点为等边三角形的中心(等边三角形四心合一);球心在点的正上方也在点的正上方依题意知在中所以外接圆半径 21【解析】画出图象如下图所示,其中E 为等边三角形BD 边的中点,1O 为等边三角形的中心(等边三角形四心合一);球心O 在E 点的正上方,也在1O 点的正上方.依题意知11132360,OEO O E O A ∠===o 在1Rt OO E ∆中11tan 601OO O E ==o,所以外接圆半径221142113r OA OO O A ==+=+=20.【解析】【分析】先把已知条件转化为利用正切函数的周期性求出即可求得结论【详解】因为(tanθ)∴∴tanθ=tan (kπ)∴故答案为【点睛】本题主要考查三角函数中的恒等变换应用考查了两角和的正切公式 3【解析】 【分析】先把已知条件转化为10721717btana tan tanb tan a πππθπ+⎛⎫==+ ⎪⎝⎭-.利用正切函数的周期性求出3k πθπ=+,即可求得结论.【详解】因为10721717btana tan tanb tan a πππθπ+⎛⎫==+ ⎪⎝⎭-,(tanθb a =) ∴10721k ππθπ+=+ ∴3k πθπ=+.tanθ=tan (k π3π+)3=∴3ba=3.【点睛】本题主要考查三角函数中的恒等变换应用,考查了两角和的正切公式,属于中档题.三、解答题21.(1) 3C π=.(2) .【解析】 【分析】(1)根据题意,由余弦定理求得1cos 2C =,即可求解C 角的值; (2)由正弦定理和三角恒等变换的公式,化简得到4sin 6a b A π⎛⎫+=+ ⎪⎝⎭,再根据ABC ∆为锐角三角形,求得62A ππ<<,利用三角函数的图象与性质,即可求解.【详解】(1)由题意知()()3a b c a b c ab +++-=,∴222a b c ab +-=,由余弦定理可知,222cos 122a b c C ab +-==,又∵(0,)C π∈,∴3C π=.(2)由正弦定理可知,2sin sin sin 3a b A Bπ===,即,a A b B ==∴sin )a b A B +=+2sin sin 3A A π⎤⎛⎫=+- ⎪⎥⎝⎭⎦2cos A A =+4sin 6A π⎛⎫=+ ⎪⎝⎭,又∵ABC ∆为锐角三角形,∴022032A B A πππ⎧<<⎪⎪⎨⎪<=-<⎪⎩,即,则2363A πππ<+<,所以4sin 46A π⎛⎫<+≤ ⎪⎝⎭,综上+a b的取值范围为. 【点睛】本题主要考查了利用正弦定理和三角函数的恒等变换求解三角形问题,对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值. 利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.22.(1)的平均数为8,标准差为2,乙的平均数为8,标准差为305;(2)乙 【解析】 【分析】 【详解】(1)根据题中所给数据,则甲的平均数为,乙的平均数为,甲的标准差为,乙的标准差为,故甲的平均数为8,标准差为2,乙的平均数为8,标准差为305; (2),且,乙的成绩较为稳定, 故选择乙参加射箭比赛. 考点:平均数与方差23.(Ⅰ)21n a n =-;(Ⅱ)113n n n T +=-. 【解析】试题分析:(Ⅰ)由条件得()241n n S a =+,由1n =得1a ,当2n ≥时,()21141n n S a --=+,两式作差得2211422n n n n n a a a a a --=+--,整理得12n n a a --=,由等差数列公式求通项即可; (Ⅱ)由()1213n nb n =-⋅,利用错位相减即可得解. 试题解析:(Ⅰ) 21n n a S =Q , ()241n n S a ∴=+. 当1n =时,()21141S a =+,得11a =. 当2n ≥时,()21141n n S a --=+,()()()2211411n n n n S S a a --∴-=+-+,2211422n n n n n a a a a a --∴=+--,即()()()1112n n n n n n a a a a a a ---+-=+,0,n a >Q 12n n a a -∴-=.∴数列{}n a 是等差数列,且首项为11a =,公差为2,()12121n a n n ∴=+-=-.(Ⅱ)由(Ⅰ)可知,()1213n n b n =-⋅, ()231111135213333n n T n ∴=⨯+⨯+⨯+⋅⋅⋅+-⋅,——①()()23111111132********n n n T n n +=⨯+⨯+⋅⋅⋅+-⋅+-⋅,——② ①–②得()231211111221333333n n n T n +⎛⎫=+++⋅⋅⋅+--⋅ ⎪⎝⎭()21111113322113313n n n ++-=+⨯--⋅-, 化简得113n n n T +=-.解法二:(Ⅰ)同解法一.(Ⅱ)由(Ⅰ)可知,()1213n n b n =-⋅,设()()()()111112112323333n n n n nb n An B A n B An A B -⎡⎤=-⋅=+⋅--+⋅=-+-⋅⎣⎦, 22,321,A A B -=⎧∴⎨-=-⎩解得1,1.A B =-⎧⎨=-⎩()()()()1111111211133333n n n n n n b n n n n n --∴=-⋅=--⋅--⋅=⋅-+⋅,∴()120112111111111223113333333n n n n nn T b b b n n -+⎛⎫⎛⎫⎡⎤=++⋅⋅⋅+=⨯-⨯+⨯-⨯++⋅-+⋅=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦L .24.(1)证明见解析(2)圆C 的方程为(x -2)2+(y -1)2=5 【解析】 【分析】(1)先求出圆C 的方程(x -t )2+22)y t-(=t 2+24t,再求出|OA|,|0B|的长,即得△OAB 的面积为定值;(2)根据212t =t 得到t =2或t =-2,再对t 分类讨论得到圆C 的方程. 【详解】(1)证明:因为圆C 过原点O ,所以OC 2=t 2+24t . 设圆C 的方程是(x -t )2+22)y t-(=t 2+24t , 令x =0,得y 1=0,y 2=4t; 令y =0,得x 1=0,x 2=2t ,所以S △OAB =12OA ·OB =12×|2t |×|4t|=4, 即△OAB 的面积为定值.(2)因为OM =ON ,CM =CN ,所以OC 垂直平分线段MN . 因为k MN =-2,所以k OC =12. 所以212t =t ,解得t =2或t =-2.当t =2时,圆心C 的坐标为(2,1),OC此时,圆心C 到直线y =-2x +4的距离dC 与直线y =-2x +4相交于两点.符合题意,此时,圆的方程为(x -2)2+(y -1)2=5.当t =-2时,圆心C 的坐标为(-2,-1),OC C 到直线y =-2x +4的距离d>.圆C 与直线y =-2x +4不相交, 所以t =-2不符合题意,舍去.所以圆C 的方程为(x -2)2+(y -1)2=5. 【点睛】本题主要考查圆的方程的求法,考查直线和圆的位置关系的求法,意在考查学生对这些知识的理解掌握水平. 25.(1)12n n a n+=;(2)3 【解析】 试题分析:(1)结合递推关系可证得b n +1-b n =2,且b 1=2,即数列{b n }是首项为2,公差为2的等差数列,据此可得数列{}n a 的通项公式为12n n a n+=. (2)结合通项公式裂项有21122n n c c n n ,+⎛⎫=-⎪+⎝⎭求和有111213212n T n n ⎛⎫=+--< ⎪++⎝⎭.据此结合单调性讨论可得正整数m 的最小值为3. 试题解析: (1)证明:b n +1-b n 1222121n n a a +=---222112114n n a a =--⎛⎫-- ⎪⎝⎭ 4222121n n n a a a =-=--. 又由a 1=1,得b 1=2,所以数列{b n }是首项为2,公差为2的等差数列,所以b n =2+(n -1)×2=2n ,由221n n b a =-,得12n n a n+=. (2)解:2n c n =,()2411222n n c c n n n n +⎛⎫==- ⎪++⎝⎭所以111213212n T n n ⎛⎫=+--< ⎪++⎝⎭.依题意,要使11n m m T c c +<对于n ∈N *恒成立,只需()134m m +≥,解得m ≥3或m ≤-4.又m >0,所以m ≥3,所以正整数m 的最小值为3.26.(1)2x =-或20x +-=100x +-=;(2)(2,0). 【解析】分析:(1)先由直线和圆相切得到圆的方程,再由垂径定理列式,分直线斜率存在与不存在两种情况得到结果;(3)联立直线和圆,由韦达定理得到交点的坐标,由这两个点写出直线方程,进而得到直线过定点. 详解:(1)∵圆222:(0)O x y r r +=>与直线0x y -+=80x --=相切, ∴圆心O到直线的距离为4d ==,∴圆O 的方程为:2216x y +=若直线l 的斜率不存在,直线l 为2x =- 1x =, 此时直线l截圆所得弦长为若直线l 的斜率存在,设直线l为()2y k x =+()13y k x -=-,由题意知,圆心到直线的距离为1d == 2d =,解得:k = 此时直线l为100x +-=,则所求的直线l 为2x =-或20x +-=-100x += (2)由题意知,()4,0M ()2,0A -,设直线()1:4MA y k x =-,与圆方程联立得:()12224y k x x y ⎧=+⎨+=⎩ ()122416y k x x y ⎧=-⎨+=⎩, 消去y 得:()()222211114440k x k x k +++-= ()22221111816160k x k x k +-+-=,∴()21211611M A k x x k-=+∴()2121411Ak xk-=+,12181Ak yk -=+ 用13k -换掉1k 得到B 点坐标 ∴21213649B k x k -=+,121249B k y k =+ 12141Bk y k =+ ∴直线AB 的方程为21112221118444131k k k y x k k k ⎛⎫-+=- ⎪+-+⎝⎭整理得:()121423k y x k =-- 则直线AB 恒过定点为()2,0.点睛:本题主要考查直线与圆锥曲线位置关系,所使用方法为韦达定理法:因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用.。

2020-2021成都市高中必修二数学下期中第一次模拟试题及答案

2020-2021成都市高中必修二数学下期中第一次模拟试题及答案

2020-2021成都市高中必修二数学下期中第一次模拟试题及答案一、选择题1.如图为某几何体的三视图,则该几何体的表面积为( )A .202π+B .203π+C .242π+D .243π+2.已知两点()A 3,4-,()B 3,2,过点()P 1,0的直线l 与线段AB 有公共点,则直线l 的斜率k 的取值范围是( ) A .()1,1- B .()(),11,∞∞--⋃+ C .[]1,1-D .][(),11,∞∞--⋃+3.设圆C :223x y +=,直线l :360x y +-=,点()00,P x y l ∈,若存在点Q C ∈,使得60OPQ ∠=︒(O 为坐标原点),则0x 的取值范围是( ) A .1,12⎡⎤-⎢⎥⎣⎦B .60,5⎡⎤⎢⎥⎣⎦C .[]0,1D .16,25⎡⎤-⎢⎥⎣⎦ 4.直线(2)4y k x =-+与曲线2320x y y ++-=有两个不同的交点,则实数k 的取值范围是( ) A .53(,]124B .51(,]122C .13(,]24D .1[,)2+∞5.直线20x y ++=截圆222210x y x y a ++-+-=所得弦的长度为4,则实数a 的值是( ) A .-3B .-4C .-6D .36-6.在我国古代数学名著 九章算术 中,将四个面都为直角三角形的四面体称为鳖臑,如图,在鳖臑ABCD 中, AB ⊥平面BCD ,且AB BC CD ==,则异面直线AC 与BD 所成角的余弦值为( )A .12B .12-C 3D .37.若直线20ax y +-=和直线()2140x a y +-+=平行,则a 的值为( ) A .1-或2 B .1- C .2 D .不存在 8.用一个平面去截正方体,则截面不可能是( )A .直角三角形B .等边三角形C .正方形D .正六边形9.若方程21424x kx k +-=-+ 有两个相异的实根,则实数k 的取值范围是( ) A .13,34⎛⎤ ⎥⎝⎦B .13,34⎛⎫⎪⎝⎭C .53,124⎛⎫⎪⎝⎭ D .53,124纟çúçú棼 10.如图1,ABC ∆是以B 为直角顶点的等腰直角三角形,T 为线段AC 的中点,G 是BC 的中点,ABE ∆与BCF ∆分别是以AB 、BC 为底边的等边三角形,现将ABE ∆与BCF ∆分别沿AB 与BC 向上折起(如图2),则在翻折的过程中下列结论可能正确的个数为( )图1 图2(1)直线AE ⊥直线BC ;(2)直线FC ⊥直线AE ; (3)平面//EAB 平面FGT ;(4)直线//BC 直线AE . A .1个 B .2个C .3个D .4个11.若圆锥的高等于底面直径,则它的底面积与侧面积之比为A .1∶2B .1∶3C .1∶5D .3∶212.如图,网格纸上小正方形的边长为1,粗实(虚)线画出的是某多面体的三视图,则该多面体的体积为( )A .64B .643C .16D .163二、填空题13.在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,()5,0B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=u u u v u u u v,则点A 的横坐标为________.14.正方体1111ABCD A B C D -的棱长为1,P 为1CC 上的动点,Q 为1BD 上的动点,则线段PQ 的长度的最小值为______.15.已知菱形ABCD 中,2AB =,120A ∠=o ,沿对角线BD 将ABD △折起,使二面角A BD C --为120o ,则点A 到BCD V 所在平面的距离等于 . 16.若圆的方程为2223()(1)124kx y k +++=-,则当圆的面积最大时,圆心坐标和半径分别为 、 .17.若直线()():1210l m x m y m -+--=与曲线()2:422C y x =--+有公共点,则直线l 的斜率的最小值是_________.18.直线10x y --=与直线20x ay --=互相垂直,则a =__________. 19.已知圆225x y +=和点()1,2A ,则过点A 的圆的切线方程为______20.已知球的表面积为20π,球面上有A 、B 、C 三点.如果2AB AC ==,22BC =,则球心到平面ABC 的距离为__________.三、解答题21.如图,四棱锥P -ABCD 的底面ABCD 是平行四边形,BA =BD =2,AD =2,PA =PD =5,E ,F 分别是棱AD ,PC 的中点.(1)证明:EF ∥平面PAB ; (2)若二面角P -AD -B 为60°. ①证明:平面PBC ⊥平面ABCD ; ②求直线EF 与平面PBC 所成角的正弦值.22.如图所示,四棱锥B AEDC -中,平面AEDC ⊥平面ABC ,F 为BC 的中点,P 为BD 的中点,且AE ∥DC ,90ACD BAC ∠=∠=︒,2DC AC AB AE ===.(Ⅰ)证明:平面BDE ⊥平面BCD ; (Ⅱ)若2DC =,求三棱锥E BDF -的体积.23.已知以点C (1,﹣2)为圆心的圆与直线x+y ﹣1=0相切. (1)求圆C 的标准方程;(2)求过圆内一点P (2,﹣)的最短弦所在直线的方程.24.(1)用符号表示下来语句,并画出同时满足这四个语句的一个几何图形: ①直线l 在平面α内; ②直线m 不在平面α内; ③直线m 与平面α交于点A ; ④直线l 不经过点A .(2)如图,在长方体1111ABCD A B C D -中,E 为棱1BB 的中点,F 为棱1CC 的三等分点,画出由1,,D E F 三点所确定的平面β与平面ABCD 的交线.(保留作图痕迹)25.如图,在直三棱柱111ABC A B C -中,90ABC ︒∠=,1AB AA =,,M N 分别为AC ,11B C 的中点.(1)求证://MN 平面11ABB A ; (2)求证:1AN A B ⊥.26.如图,四边形ABCD 为矩形,且2,1,AD AB PA ==⊥平面ABCD , 1PA =,E 为BC 的中点.(1)求证:PE DE ⊥; (2)求三棱锥C PDE -的体积;(3)探究在PA 上是否存在点G ,使得EG P 平面PCD ,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】该几何体是一个正方体与半圆柱的组合体,表面积为2215221122032S πππ=⨯+⨯⨯+⨯⨯=+,故选B .2.D解析:D 【解析】分析:根据两点间的斜率公式,利用数形结合即可求出直线斜率的取值范围. 详解:∵点A (﹣3,4),B (3,2),过点P (1,0)的直线L 与线段AB 有公共点, ∴直线l 的斜率k≥k PB 或k≤k PA ,∵PA 的斜率为4031--- =﹣1,PB 的斜率为2031--=1, ∴直线l 的斜率k≥1或k≤﹣1, 故选:D .点睛:本题主要考查直线的斜率的求法,利用数形结合是解决本题的关键,比较基础.直线的倾斜角和斜率的变化是紧密相联的,tana=k,一般在分析角的变化引起斜率变化的过程时,是要画出正切的函数图像,再分析.3.B解析:B 【解析】 【分析】圆O 外有一点P ,圆上有一动点Q ,OPQ ∠在PQ 与圆相切时取得最大值.如果OP 变长,那么OPQ ∠可以获得的最大值将变小.因为sin QOOPQ PO∠=,QO 为定值,即半径,PO 变大,则sin OPQ ∠变小,由于(0,)2OPQ π∠∈,所以OPQ ∠也随之变小.可以得知,当60OPQ ∠=︒,且PQ 与圆相切时,2PO =,而当2PO >时,Q 在圆上任意移动,60OPQ ∠<︒恒成立.因此,P 的取值范围就是2PO …,即满足2PO …,就能保证一定存在点Q ,使得60OPQ ∠=︒,否则,这样的点Q 是不存在的. 【详解】由分析可得:22200PO x y =+又因为P 在直线l 上,所以00(36)x y =--要使得圆C 上存在点Q ,使得60OPQ ∠=︒,则2PO …故2222000103634PO x y y y ==+-+… 解得0825y 剟,0605x 剟 即0x 的取值范围是6[0,]5, 故选:B . 【点睛】解题的关键是充分利用几何知识,判断出2PO …,从而得到不等式求出参数的取值范围.4.B解析:B 【解析】 【分析】利用数形结合,作出图象,计算得直线1l 与直线2l 的斜率,即可得到结论. 【详解】曲线可化简为()22(1)40x y x +-=≤,如图所示:直线()1:24l y k x =-+23221k k -=+,解得512k =, 直线()2:24l y k x =-+,此直线与曲线有两个交点,此时有12k =. 所以,过点()2,4的直线与该半圆有两个交点,数形结合,解得51122k <≤. 故选:B. 【点睛】本题考查了直线与圆相交的性质,涉及的知识有:恒过定点的直线方程,点到直线的距离公式,以及直线斜率的求法,利用了数形结合的思想,其中抓住两个关键点是解本题的关键.5.A解析:A 【解析】 【分析】求出圆心坐标和半径,根据圆的弦长公式,进行求解即可. 【详解】由题意,根据圆的方程222210x y x y a ++-+-=,即22(1)(1)2x y a ++-=-,则圆心坐标为(1,1)-,半径1r a =-, 又由圆心到直线的距离为11222d -++==,所以由圆的弦长公式可得222(1)(2)4a --=,解得3a =-,故选A. 【点睛】本题主要考查了直线与圆的位置关系的因公,以及弦长公式的应用,其中根据圆的方程,求得圆心坐标和半径,合理利用圆的弦长公式列出方程求解是解答的关键,着重考查了推理与运算能力.6.A解析:A 【解析】如图,分别取,,,BC CD AD BD 的中点,,,M N P Q ,连,,,MN NP PM PQ ,则,MN BD NP AC P P ,∴PNM ∠即为异面直线AC 和BD 所成的角(或其补角). 又由题意得PQ MQ ⊥,11,22PQ AB MQ CD ==. 设2AB BC CD ===,则2PM =又112,222MN BD NP AC ==== ∴PNM ∆为等边三角形, ∴60PNM =︒∠,∴异面直线AC 与BD 所成角为60︒,其余弦值为12.选A . 点睛:用几何法求空间角时遵循“一找、二证、三计算”的步骤,即首先根据题意作出所求的角,并给出证明,然后将所求的角转化为三角形的内角.解题时要注意空间角的范围,并结合解三角形的知识得到所求角的大小或其三角函数值.7.C解析:C 【解析】 【分析】直接根据直线平行公式得到答案.直线20ax y +-=和直线()2140x a y +-+=平行,则()12a a -=,解得2a =或1a =-.当1a =-时,两直线重合,排除. 故选:C . 【点睛】本题考查了根据直线平行求参数,意在考查学生的计算能力,多解是容易发生的错误.8.A解析:A 【解析】 【分析】 【详解】 画出截面图形如图 显然A 正三角形C 正方形: D 正六边形可以画出三角形但不是直角三角形; 故选A .用一个平面去截正方体,则截面的情况为:①截面为三角形时,可以是锐角三角形、等腰三角形、等边三角形,但不可能是钝角三角形、直角三角形;②截面为四边形时,可以是梯形(等腰梯形)、平行四边形、菱形、矩形,但不可能是直③截面为五边形时,不可能是正五边形; ④截面为六边形时,可以是正六边形. 故可选A .9.D解析:D 【解析】 【分析】由题意可得,曲线22(1)4(1)x y y +-=…与直线4(2)y k x -=-有2个交点,数形结合求得k 的范围. 【详解】如图所示,化简曲线得到22(1)4(1)x y y +-=…,表示以(0,1)为圆心,以2为半径的上半圆,直线化为4(2)y k x -=-,过定点(2,4)A ,设直线与半圆的切线为AD ,半圆的左端点为(2,1)B -,当AD AB k k k <…,直线与半圆有两个交点, AD 221k =+,解得512AD k =,4132(2)4AB k -==--,所以53,124k ⎛⎤∈ ⎥⎝⎦.故选:D 【点睛】本题考查直线与圆的位置关系,属于中档题.10.C解析:C 【解析】 【分析】(1)翻折时使得平面ABE ⊥平面ABC ,由面面垂直的性质定理得出BC ⊥平面ABE ,从而使得(1)有可能;(2)翻折时使得点E 、F 两点重合,利用勾股定理可证得此时AE CE ⊥,即AE FC ⊥;(3)翻折时使得平面ABE 和平面BCF 同时与平面ABC 垂直,利用面面垂直的性质定理、直线与平面平行的判定定理以及面面平行的判定定理可证明出平面//EAB 平面FGT ;(4)利用反证法,可推出//BC AE 不成立. 【详解】(1)翻折时,若平面ABE ⊥平面ABC ,由于ABC ∆是以B 为直角顶点的等腰直角三角形,则BC AB ⊥,又Q 平面ABE I 平面ABC AB =,BC ⊂平面ABC ,BC ∴⊥平面ABE ,AE ⊂Q 平面ABC ,此时AE BC ⊥;(2)设AB BC a ==,则2AC a =,且有AE CF a ==,翻折时,若点E 、F 重合,则AE CE a ==,222AE CE AC ∴+=,此时,AE CE ⊥, 即AE FC ⊥;(3)如下图所示:翻折时,若平面ABE 和平面BCF 同时与平面ABC 垂直, 取AB 的中点D ,连接DE 、FG 、GT 、FT .ABE ∆Q 是等边三角形,且D 为AB 的中点,DE AB ⊥∴.Q 平面ABE ⊥平面ABC ,平面ABE I 平面ABC AB =,DE ⊂平面ABE .DE ∴⊥平面ABC ,同理可证FG ⊥平面ABC ,//DE FG ∴, DE ⊄Q 平面FGT ,FG ⊂平面FGT ,//DE ∴平面FGT .G Q 、T 分别为BC 、AC 的中点,//AB GT ∴,AB ⊄Q 平面FGT ,GT ⊂平面FGT ,//AB ∴平面FGT . DE AB D =Q I ,∴平面//EAB 平面FGT ;(4)假设AE 与BC 可能平行,BC AB ⊥Q ,则AE AB ⊥,事实上60BAE ∠=o , 即AE 与AB 不垂直,假设不成立,因此,AE 与BC 不可能平行. 因此,可能正确命题的个数为3. 故选:C. 【点睛】本题考查的是线面位置关系的判定,判断时要熟悉线面、面面平行与垂直的判定、性质定理,考查推理能力,属于中等题.11.C解析:C 【解析】 【分析】由已知,求出圆锥的母线长,进而求出圆锥的底面面积和侧面积,可得答案 【详解】设圆锥底面半径为r ,则高h =2r ,∴其母线长l =r .∴S 侧=πrl =πr 2,S 底=πr 故选C . 【点睛】本题考查的知识点是旋转体,圆锥的表面积公式,属于基础题.12.D解析:D 【解析】根据三视图知几何体是:三棱锥D ABC -为棱长为4的正方体一部分,直观图如图所示:B 是棱的中点,由正方体的性质得,CD ⊥平面,ABC ABC ∆的面积12442S =⨯⨯=,所以该多面体的体积1164433V =⨯⨯=,故选D.二、填空题13.3【解析】分析:先根据条件确定圆方程再利用方程组解出交点坐标最后根据平面向量的数量积求结果详解:设则由圆心为中点得易得与联立解得点的横坐标所以所以由得或因为所以点睛:以向量为载体求相关变量的取值或范解析:3 【解析】分析:先根据条件确定圆方程,再利用方程组解出交点坐标,最后根据平面向量的数量积求结果.详解:设(),2(0)A a a a >,则由圆心C 为AB 中点得5,,2a C a +⎛⎫⎪⎝⎭易得()()():520C x x a y y a --+-=e ,与2y x =联立解得点D 的横坐标1,D x =所以()1,2D .所以()55,2,1,22a AB a a CD a +⎛⎫=--=-- ⎪⎝⎭u u u v u u u v , 由0AB CD ⋅=u u u v u u u v得()()()2551220,230,32a a a a a a a +⎛⎫--+--=--== ⎪⎝⎭或1a =-, 因为0a >,所以 3.a =点睛:以向量为载体求相关变量的取值或范围,是向量与函数、不等式、三角函数、曲线方程等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解方程或解不等式或求函数值域,是解决这类问题的一般方法.14.【解析】【分析】首先根据数形结合分析可知线段的长度的最小值转化为在平面上投影线段的最小值然后转化为点到直线的距离的最小值【详解】当平面时线段与其在平面上投影相等当与平面不平行时是斜线段大于其在平面上 解析:22【解析】 【分析】首先根据数形结合分析可知线段PQ 的长度的最小值转化为PQ 在平面ABCD 上投影线段的最小值,然后转化为点到直线的距离的最小值. 【详解】当//PQ 平面ABCD 时,线段PQ 与其在平面ABCD 上投影相等,当PQ 与平面ABCD 不平行时,PQ 是斜线段,大于其在平面ABCD 上投影的长度,∴求线段PQ 的最小值就是求其在平面ABCD 上投影的最小值,点P 在平面ABCD 的投影是点C ,点Q 在平面ABCD 的投影在BD 上,∴求线段PQ 的最小值转化为点C 到BD 的距离的最小值,连接,AC BD ,交于点O ,AC BD ⊥,∴点C 到BD 的距离的最小值22CO =.故答案为:22【点睛】本题考查几何体中距离的最小值,意在考查空间想象能力和数形结合分析问题的能力,属于中档题型.15.【解析】【分析】【详解】设AC 与BD 交于点O 在三角形ABD 中因为∠A =120°AB =2可得AO =1过A 作面BCD 的垂线垂足E 则AE 即为所求由题得∠AOE =180°−∠AOC =180°−120°=60 解析:32【解析】 【分析】 【详解】设AC 与BD 交于点O .在三角形ABD 中,因为∠A =120°,AB =2.可得AO =1. 过A 作面BCD 的垂线,垂足E ,则AE 即为所求. 由题得,∠AOE =180°−∠AOC =180°−120°=60°. 在RT △AOE 中,AE =AO•sin ∠AOE =3.16.【解析】试题分析:圆的面积最大即半径最大此时所以圆心为半径为1考点:圆的方程解析:(0,1)-,1 【解析】试题分析:圆的面积最大即半径最大,此时0k =()2211x y ∴++=,所以圆心为(0,1)-半径为1 考点:圆的方程17.【解析】【分析】将直线的方程化为可求出直线所过的定点坐标作出曲线的图象利用数形结合思想可得出当直线与曲线有公共点时直线的斜率的最小值【详解】将直线的方程化为由得则直线过定点将曲线的方程变形为曲线为圆解析:15【解析】 【分析】将直线l 的方程化为()()210m x y x y +--+=,可求出直线l 所过的定点坐标,作出曲线C 的图象,利用数形结合思想可得出当直线l 与曲线C 有公共点时,直线l 的斜率的最小值. 【详解】将直线l 的方程化为()()210m x y x y +--+=,由2100x y x y +-=⎧⎨+=⎩,得11x y =-⎧⎨=⎩. 则直线l 过定点()1,1P -,将曲线C 的方程变形为()()()222242x y y -+-=≥,曲线C 为圆()()22224x y -+-=的上半圆,如下图所示:由图象可知,当直线l 过点A 时,直线l 的斜率取最小值211415PA k -==+. 故答案为:15. 【点睛】本题考查利用直线与圆的位置关系求直线斜率的最值,考查数形结合思想的应用,属于中等题.18.【解析】【分析】根据直线垂直的条件计算即可【详解】因为直线与直线互相垂直所以解得故填【点睛】本题主要考查了两条直线垂直的条件属于中档题 解析:1-【解析】 【分析】根据直线垂直的条件计算即可.【详解】因为直线10x y --=与直线20x ay --=互相垂直, 所以110a ⨯+= 解得1a =-.故填1-. 【点睛】本题主要考查了两条直线垂直的条件,属于中档题.19.【解析】【分析】先由题得到点A 在圆上再设出切线方程为利用直线和圆相切得到k 的值即得过点A 的圆的切线方程【详解】因为所以点在圆上设切线方程为即kx-y-k+2=0因为直线和圆相切所以所以切线方程为所以 解析:25x y +=【解析】 【分析】先由题得到点A 在圆上,再设出切线方程为2(1),y k x -=-利用直线和圆相切得到k 的值,即得过点A 的圆的切线方程. 【详解】因为22125+=,所以点()1,2A 在圆上,设切线方程为2(1),y k x -=-即kx-y-k+2=0,12k =∴=-,所以切线方程为112022x y --++=, 所以切线方程为25x y +=,故答案为:25x y += 【点睛】(1)本题主要考查圆的切线方程的求法,意在考查学生对该知识的掌握水平和分析推理能力.(2) 点00(,)P x y 到直线:0l Ax By C ++=的距离d =.20.【解析】设球的半径为表面积解得∵在中∴从圆心作平面的垂线垂足在斜边的中点处∴球心到平面的距离故答案为点睛:本题考查的知识点是空间点线面之间的距离计算其中根据球心距球半径解三角形我们可以求出所在平面截【解析】设球的半径为r ,表面积24π20πS r ==,解得r =ABC V 中,2AB AC ==,BC =222AB AC BC +=,∴90BAC ∠=︒,从圆心作平面ABC 的垂线,垂足在斜边BC 的中点处,∴球心到平面ABC 的距离d ==点睛:本题考查的知识点是空间点、线、面之间的距离计算,其中根据球心距d ,球半径R ,解三角形我们可以求出ABC V 所在平面截球所得圆(即ABC V 的外接圆半径),构造直角三角形,满足勾股定理,我们即可求出球心到平面ABC 的距离是与球相关的距离问题常用方法. 三、解答题21.(1)证明见解析;(2)①证明见解析;②11. 【解析】试题分析:(1)要证明//EF 平面PAB ,可以先证明平面//EF MA ,利用线面平行的判定定理,即可证明//EF 平面PAB ;(2)①要证明平面PBC ⊥平面ABCD ,可用面面垂直的判定定理,即只需证明PB ⊥平面ABCD 即可;②由①BE ⊥平面PBC ,所以FEB ∠为直线EF 与平面PBC 所成的角,由PB =ABP ∠为直角,即可计算,AM EF 的长度,在Rt EBF ∆中,即计算直线EF 与平面PBC 所成的角的正弦值.试题解析:(1)证明:如图,取PB 中点M ,连接MF ,AM . 因为F 为PC 中点,故MF ∥BC 且MF =12BC .由已知有BC ∥AD ,BC =AD . 又由于E 为AD 中点,因而MF ∥AE 且MF =AE ,故四边形AMFE 为平行四边形, 所以EF ∥AM .又AM ⊂平面PAB ,而EF ⊄平面PAB ,所以EF ∥平面PAB . (2)①证明:如图,连接PE ,BE .因为PA =PD ,BA =BD ,而E 为AD 中点,故PE ⊥AD ,BE ⊥AD , 所以∠PEB 为二面角P -AD -B 的平面角.在△PAD 中,由PA =PD AD =2,可解得PE =2.在△ABD 中,由BA =BD ,AD =2,可解得BE =1.在△PEB 中,PE =2,BE =1,∠PEB =60°,由余弦定理,可解得PB 从而∠PBE =90°,即BE ⊥PB .又BC ∥AD ,BE ⊥AD ,从而BE ⊥BC ,因此BE ⊥平面PBC . 又BE ⊂平面ABCD ,所以平面PBC ⊥平面ABCD .②连接BF .由①知,BE ⊥平面PBC ,所以∠EFB 为直线EF 与平面PBC 所成的角.由PB 及已知,得∠ABP 为直角.而MB =12PB AM =2,故EF =2.又BE =1,故在Rt △EBF 中,sin ∠EFB =BE EF =11.所以直线EF 与平面PBC 所成角的正弦值为21111.考点:直线与平面平行的判定及直线与平面垂直的判定与性质;直线与平面所成角的求解.【方法点晴】本题主要考查了直线与平面平行的判定及直线与平面垂直的判定与性质,直线与平面所成角的求解,熟练掌握线面位置关系的判定定理与性质定理是解答基础,同时根据题设条件确定直线与平面所成的角是解答的关键,本题的第二问的解答中,根据BE ⊥平面PBC ,可以确定FEB ∠为直线EF 与平面PBC 所成的角,可放置在Rt EBF ∆中,即计算直线EF 与平面PBC 所成的角的正弦值.22.(Ⅰ)证明见解析;(Ⅱ)23. 【解析】 【分析】(Ⅰ)连接PF ,由题意可得//PE AF ,由面面垂直的性质和等腰三角形的性质可得DC ⊥平面ABC ,AF BC ⊥,进而可得AF ⊥平面BCD 即PE ⊥平面BCD ,由面面垂直的判定即可得证;(Ⅱ)由(1)知PE ⊥平面BDF ,计算出2PE BF ==2BDF S =V 三棱锥体积公式即可得解. 【详解】(Ⅰ)证明:连接PF ,Q F 为BC 的中点,P 为BD 的中点,∴//PF CD 且12PF CD =,Q //AE CD 且2DC AE =,∴//PF AE 且PF AE =, ∴四边形AEPF 为平行四边形,∴//PE AF ,Q 平面AEDC ⊥平面ABC ,平面AEDC I 平面ABC AC =,90ACD ∠=︒,∴DC ⊥平面ABC ,∴DC AF ⊥,又AC AB =,∴AF BC ⊥,Q BC DC C =I ,∴AF ⊥平面BCD ,∴PE ⊥平面BCD , 又PE ⊂平面BDE ,∴平面BDE ⊥平面BCD .(Ⅱ)由(Ⅰ)得PE ⊥平面BCD 即PE ⊥平面BDF ,Q 22DC AC AB AE ====,90ACD BAC ∠=∠=︒∴221122222PE AF BF BC ====+=, ∴122BDF S BF DC =⋅=V , ∴11332223BDF E BDF S PE V -⋅⨯⨯===V . 【点睛】本题考查了面面垂直的判定和三棱锥体积的求解,考查了空间思维能力,属于中档题. 23.(1);(2).【解析】 试题分析:解题思路:(1)因为圆与直线x+y ﹣1=0相切,所以利用点到直线的距离公式求出圆心到直线的距离即为圆的半径,写出圆的标准方程即可;(2)先判定过P 点的最短弦所在直线与过P 点的直径垂直,再进行求解.规律总结:直线圆的位置关系,主要涉及直线与圆相切、相交、相离,在解决直线圆的位置关系时,要注意结合初中平面几何中的直线与圆的知识. 试题解析:(1)圆的半径r==,所以圆的方程为(x ﹣1)2+(y+2)2=2.圆的圆心坐标为C (1,﹣2),则过P 点的直径所在直线的斜率为﹣, 由于过P 点的最短弦所在直线与过P 点的直径垂直, ∴过P 点的最短弦所在直线的斜率为2,∴过P 点的最短弦所在直线的方程y+=2(x ﹣2),即4x ﹣2y ﹣13=0. 考点:1.圆的标准方程;2.直线与圆的位置关系.24.(1)①l α⊂;②m α⊄;③m A α=I ;④A l ∉,示意图答案见解析(2)答案见解析 【解析】【分析】(1)根据题意,作出示意图即可; (2)根据题意,作出示意图即可. 【详解】(1)l α⊂;m α⊄;m A α=I ;A l ∉;示意图如下:(2)如图,直线IL 即为所求.【点睛】本题考查了空间点、线、面之间的位置关系,属于基础题. 25.(1)见解析(2)见解析 【解析】 【分析】(1)取AB 的中点P ,连接1,PM PB ,通过中位线定理求证四边形1PMNB 是平行四边形,进而求证;(2)连接1AB ,,设法证明11A B AB ⊥,111A B B C ⊥,进而证明1A B ⊥平面1AB N ,求得1A B AN ⊥. 【详解】解:(1)如图,取AB 的中点P ,连接1,PM PB ,,M P Q 分别是,AC AB 的中点,//PM BC ∴,且12PM BC =,在直三棱柱11t ABC A B C -中, 11//BC B C ,11BC B C =, N Q 是11B C 的中点,∴1PM B N =,且1//PM B N , ∴四边形1PMNB 是平行四边形,1//MN PB ∴,而MN ⊄平面11ABB A ,1PB ⊂平面11ABB A ,//MN ∴平面11ABB A .(2)如图,连接1AB ,由111ABC A B C -是直三棱柱,90ABC ︒∠=,1AB AA =可知,111B C BB ⊥,1111B C A B ⊥,1111BB B A B =I ,∴11B C ⊥平面11A B BA ,111B C A B ∴⊥,又Q 侧面11A B BA 为正方形,11A B AB ∴⊥,1111AB B C B ⋂=,1A B ∴⊥平面11AB C , 又AN ⊂平面11AB C ,1A B AN ∴⊥【点睛】本题考查线面平行,线线垂直的证明,属于中档题.26.(1)见解析;(2)16;(3)见解析. 【解析】【分析】(1)连结AE ,由几何体的空间结构可证得DE PAE ⊥平面,利用线面垂直的定义可知DE PE ⊥.(2)由(1)知DCE ∆为腰长为1的等腰直角三角形,结合题意转化顶点可得16C PDE P DCE V V --==. (3)在PA 上存在中点G ,使得//EG PCD 平面.取,PA PD 的中点,G H ,连结,,EG GH CH .易证得四边形EGHC 是平行四边形,所以EG //CH ,结合线面平行的判断定理可知EG //平面PCD .【详解】(1)连结AE ,∵E 为BC 的中点,1EC CD ==,∴DCE ∆为等腰直角三角形,则45DEC ∠=o ,同理可得45AEB ∠=o ,∴90AED ∠=o ,∴DE AE ⊥,又PA ABCD 平面⊥,且DE ABCD ⊂平面, ∴PA DE ⊥,又∵AE PA A ⋂=,∴DE PAE ⊥平面,又PE PAE ⊂平面,∴DE PE ⊥.(2)由(1)知DCE ∆为腰长为1的等腰直角三角形, ∴111122DCE S ∆=⨯⨯=,而PA 是三棱锥P DCE -的高, ∴111113326C PDE P DCE DCE V V S PA --∆==⋅=⨯⨯=. (3)在PA 上存在中点G ,使得//EG PCD 平面.理由如下:取,PA PD 的中点,G H ,连结,,EG GH CH .∵,G H 是,PA PD 的中点, ∴//GH AD ,且12GH AD =, 又因为E 为BC 的中点,且四边形ABCD 为矩形,所以EC //AD ,且EC =12AD , 所以EC //GH ,且EC =GH ,所以四边形EGHC 是平行四边形,所以EG //CH ,又EG ⊄平面PCD ,CH ⊂平面PCD ,所以EG //平面PCD .【点睛】 本题主要考查线面垂直的判断定理,线面垂直的判断定理,棱锥的体积公式,立体几何中探索问题的处理方法等知识,意在考查学生的转化能力和计算求解能力.。

2020-2021学年四川省成都市高二(下)期末数学试卷(理科)

2020-2021学年四川省成都市高二(下)期末数学试卷(理科)

2020-2021学年四川省成都市高二(下)期末数学试卷(理科)一、单选题(本大题共12小题,共60.0分)1. 设全集U ={x ∈N ∗|x <9},集合A ={3,4,5,6},则∁U A =( )A. {1,2,3,8}B. {1,2,7,8}C. {0,1,2,7}D. {0,1,2,7,8}2. 已知函数f(x)={log 2(2−x),x <1e x ,x ≥1,则f(−2)+f(ln4)=( )A. 2B. 4C. 6D. 83. 某校为增强学生垃圾分类的意识,举行了一场垃圾分类知识问答测试,满分为100分.如图所示的茎叶图为某班20名同学的测试成绩(单位:分).则这组数据的极差和众数分别是( )A. 20,88B. 30,88C. 20,82D. 30,914. 若实数x ,y 满足约束条件{2x −y ≥0x +y −4≤0y ≥0,则z =x −2y 的最大值为( )A. −4B. 0C. 2D. 45. 已知双曲线x 2a 2−y 2b 2=1(a >0,b >0)的一个焦点到其中一条渐近线的距离为2a ,则该双曲线的渐近线方程为( )A. y =±2xB. y =±12xC. y =±xD. y =±√2x6. 记函数f(x)的导函数为f′(x).若f(x)=e x sin2x ,则f′(0)=( )A. 2B. 1C. 0D. −17. 已知M 为圆(x −1)2+y 2=2上一动点,则点M 到直线x −y +3=0的距离的最大值是( )A. √2B. 2√2C. 3√2D. 4√28. 已知直线l 1:x +y +m =0,l 2:x +m 2y =0.则“l 1//l 2”是“m =1”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件9. 执行如图所示的程序框图,则输出的S 的值是( )A. 45B. 56C. 67D. 7810. 在三棱锥P −ABC 中,已知PA ⊥平面ABC ,PA =AB =BC =2,AC =2√2.若该三棱锥的顶点都在同一个球面上,则该球的表面积为( )A. 4πB. 10πC. 12πD. 48π11. 已知函数f(x)=ax+1,g(x)=lnx.若对任意x 1,x 2∈(0,2],且x 1≠x 2,都有g(x 2x 1)−f(x 1)+f(x 2)x 2−x 1>−1,则实数a 的取值范围是( )A. (−∞,274]B. (−∞,2]C. (−∞,272]D. (−∞,8]12. 设抛物线y 2=2px(p >0)的焦点为F ,准线为l ,过抛物线上一点A 作l 的垂线,垂足为B ,设C(2p,0),AF 与BC 相交于点D.若|CF|=|AF|,且△ACD 的面积为2√2,则点F 到准线l 的距离是( )A. √2B. √3C. 4√23 D. 4√33二、单空题(本大题共4小题,共20.0分) 13. 设复数z =1+2i i(i 为虚数单位),则|z|=______.14. 一个路口的红灯亮的时间为30秒,黄灯亮的时间为5秒,绿灯亮的时间为40秒,当你到达路口时,看见不是红灯亮的概率为______. 15. 已知关于x ,y 的一组数据:x 1 m 3 4 5 y0.50.6n1.41.5根据表中这五组数据得到的线性回归直线方程为y ̂=0.28x +0.16,则n −0.28m 的值为______. 16. 已知f(x)是定义在R 上的奇函数,当x >0时,f(x)={2|x−1|−1,0<x ≤212f(x −2),x >2有下列结论:①函数f(x)在(−6,−5)上单调递增;②函数f(x)的图象与直线y=x有且仅有2个不同的交点;③若关于x的方程[f(x)]2−(a+1)f(x)+a=0(a∈R)恰有4个不相等的实数根,则这4个实数根之和为8;④记函数f(x)在[2k−1,2k](k∈N∗)上的最大值为a k,则数列{a n}的前7项和为12764.其中所有正确结论的编号是______.三、解答题(本大题共6小题,共70.0分)17.已知函数f(x)=13x3+a2x2−2x+56,其中a∈R.若函数f(x)的图象在点(1,f(1))处的切线与直线2x+y−1=0平行.(Ⅰ)求a的值;(Ⅱ)求函数f(x)的极值.18.“2021年全国城市节约用水宣传周”已于5月9日至15日举行.成都市围绕“贯彻新发展理念,建设节水型城市”这一主题,开展了形式多样,内容丰富的活动,进一步增强全民保护水资源,防治水污染,节约用水的意识.为了解活动开展成效,某街道办事处工作人员赴一小区调查住户的节约用水情况,随机抽取了300名业主进行节约用水调查评分,将得到的分数分成6组:[70,75),[75,80),[80,85),[85,90),[90,95),[95,100],得到如图所示的频率分布直方图.(Ⅰ)求a的值,并估计这300名业主评分的中位数;(Ⅱ)若先用分层抽样的方法从评分在[90,95)和[95,100]的业主中抽取5人,然后再从抽出的这5位业主中任意选取2人作进一步访谈,求这2人中至少有1人的评分在[95,100]的概率.19.如图,在四棱锥P−ABCD中,DC//AB,BC⊥AB,E为棱AP的中点,AB=4,PA=PD=DC=BC=2.(Ⅰ)求证:DE//平面PBC;(Ⅱ)若平面PAD⊥平面ABCD,M是线段BP上的点,且BM=2MP,求二面角M−AD−B的余弦值.20. 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右焦点分别为F 1,F 2,点P 在椭圆C 上,|PF 1|=2,∠F 1PF 2=π3,且椭圆C 的离心率为12. (Ⅰ)求椭圆C 的方程;(Ⅱ)设直线l :y =kx +m(m ≠0)与椭圆C 相交于A ,B 两点,O 为坐标原点.求△OAB 面积的最大值.21. 已知函数f(x)=2ax −lnx ,其中a ∈R .(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)当a >0时,若x 1,x 2(0<x 1<x 2)满足f(x 1)=f(x 2),证明:f(2ax 1)+f(2ax 2)>4a 2(x 1+x 2).22. 在直角坐标系xOy 中,曲线C 的参数方程为{x =cosαy =sinα(α为参数).以O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为√3ρcosθ−ρsinθ+√3=0. (Ⅰ)求曲线C 的普通方程和直线l 的直角坐标方程;(Ⅱ)在曲线C 上任取一点(x,y),保持纵坐标y 不变,将横坐标x 伸长为原来的√3倍得到曲线C 1.设直线l 与曲线C 1相交于M ,N 两点点P(−1,0),求|PM|+|PN|的值.答案和解析1.【答案】B【解析】解:∵U ={1,2,3,4,5,6,7,8},A ={3,4,5,6}, ∴∁U A ={1,2,7,8}. 故选:B .可求出集合U ,然后进行补集的运算即可.本题考查了集合的描述法和列举法的定义,补集及其运算,全集的定义,考查了计算能力,属于基础题.2.【答案】C【解析】解:∵函数f(x)={log 2(2−x),x <1e x ,x ≥1,∴f(−2)=log 24=2, f(ln4)=e ln4=4,∴f(−2)+f(ln4)=2+4=6. 故选:C .推导出f(−2)=log 24=2,f(ln4)=e ln4=4,由此能求出f(−2)+f(ln4)的值. 本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,是基础题.3.【答案】B【解析】解:最大值为98,最小值为68,故极差为98−68=30.数据88出现3次,出现的次数最多,所以众数为88. 故选:B .利用茎叶图找到数据的最大值,最小值,出现次数最多的数据即可. 本题考查茎叶图的数字特征,属于基础题.4.【答案】D【解析】解:由z=x−2y得y=12x−12z,作出不等式组对应的平面区域如图(阴影部分):平移直线y=12x−12z,由图象可知当直线y=经过点B(4,0)时,直线y=12x−12z的截距最小,此时z最大,代入目标函数z=x−2y,得z=4−2×0=4,故选:D.作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可.本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.5.【答案】A【解析】解:因为双曲线的一个焦点到其中一条渐近线的距离为2a,所以焦点(c,0)到渐近线y=ba x的距离为√a2+b2=2a,又c2=a2+b2,所以b=2a,所以ba=2,所以双曲线的渐近线的方程为y=±2x.故选:A.由于焦点(c,0)到渐近线y=ba x的距离为√a2+b2=2a,又c2=a2+b2,推出ba=2,进而可得答案.本题考查双曲线的性质,解题中需要一定的计算能力,属于中档题.6.【答案】A【解析】解:f′(x)=e x sin2x+2e x cos2x,∴f′(0)=0+2=2.故选:A.可根据基本初等函数和复合函数的求导公式求出f′(x),然后将x换上0即可求出f′(0)的值.本题考查了基本初等函数和复合函数的求导公式,已知函数求值的方法,考查了计算能力,属于基础题.7.【答案】C【解析】解:圆(x−1)2+y2=2的圆心坐标为(1,0),半径为√2,圆心(1,0)到直线x−y+3=0的距离d=√2=2√2,∴圆上的点M到直线x−y+3=0的距离的最大值是2√2+√2=3√2.故选:C.由圆的方程求得圆心坐标与半径,再求出圆心到直线的距离,加上半径得答案.本题考查直线与圆的位置关系,考查点到直线距离公式的应用,是基础题.8.【答案】B【解析】解:由l1//l2可得,1×m2−1×1=0,解得m=±1,∴“l1//l2”是“m=1”的必要不充分条件.故选:B.由l1//l2可得,1×m2−1×1=0,解得m=±1,可解决此题.本题考查直线平行判定及充分、必要条件,考查数学运算能力及直观想象能力,属于基础题.9.【答案】C【解析】解:模拟程序的运行,可得程序的功能是利用循环结构计算并输出变量S=11×2+12×3+.....+16×7的值,由于S=11×2+12×3+.....+16×7=1−12+12−13+...+16−17=1−17=67.故选:C.由已知中的程序语句可知该程序的功能是利用循环结构计算并输出变量S=11×2+12×3+.....+16×7的值,利用裂项法即可求解.本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.10.【答案】C【解析】解:如图,由PA⊥平面ABC,满足侧棱⊥底面,求此类三棱锥外接球的问题,转化为直棱柱求解,∵AB=BC=2,AC=2√2,∴AB2+BC2=AC2,∴△ABC为直角三角形,∴△ABC外接圆的半径r=12AC=√2,锥高ℎ=PA=2,设球的半径为R,由勾股定理R2=(12ℎ)2+r2,可得R2=1+2=3,∴三棱锥外接球的面积为S=4πR2=4π×3=12π,故选:C.由PA⊥平面ABC,满足侧棱⊥底面,求此类三棱锥外接球的问题,可转化为直棱柱外接球求解,先求底面外接圆半径r,再找到柱高h,然后用勾股定理R2=(12ℎ)2+r2,求出球的半径R,求解即可.本题考查球的表面积计算问题,涉及球与三棱锥和直棱柱的关系,考查转化思想和计算能力,是中档题.11.【答案】A【解析】解:不妨设0<x 1<x 2≤2,可得g(x2x 1)−f(x 1)+f(x 2)>x 1−x 2, 因为g(x 2x 1)=ln x2x 1=lnx 2−lnx 1=g(x 2)−g(x 1),所以g(x 2)+f(x 2)+x 2−g(x 1)−f(x 1)−x 1>0, 令ℎ(x)=f(x)+g(x)+x =ax+1+lnx +x , 所以ℎ(x)在(0,2]上单调递增,所以ℎ′(x)=−a(x+1)2+1x +1≥0在(0,2]上恒成立, 即a ≤(x+1)3x在(0,2]上恒成立,令m(x)=(x+1)3x,则m′(x)=3x(x+1)2−(x+1)3x 2=(x+1)2(2x−1)x 2,所以当x ∈(0,12)时,m′(x)<0,m(x)单调递减,当x ∈(12,2],m′(x)>0,m(x)单调递增, 所以m(x)≥m(12)=274,所以a ≤274,即实数a 的取值范围是(−∞,274】. 故选:A .不妨设0<x 1<x 2≤2,可得g(x 2)+f(x 2)+x 2−g(x 1)−f(x 1)−x 1>0,可得ℎ(x)=f(x)+g(x)+x 在(0,2]上单调递增,可得ℎ′(x)≥0在(0,2]上恒成立,利用分参法结合导数研究其单调性与最值即可得出结果. 本题主要考查利用导数研究函数的单调性与最值,解题的关键是将问题转化为构造新函数的单调性问题,考查转化思想与运算求解能力,属于中档题.12.【答案】D【解析】解:如图所示:抛物线y2=2px(p>0)的焦点F(p2,0),准线方程l为:x=−p2,过抛物线上一点A作l的垂线,垂足为B,可得|AF|=|AB|,又由C(2p,0)且|CF|=|AF|,所以|CF|=|AF|=|AB|=32p,所以x A+p2=3p2,解得x A=p,代入抛物线的方程,可得y A=√2p,又由AB//CF且AB=CF,所以四边形ABFC为平行四边形,所以D为BC的中点,所以△ACD的面积为S△ACD=12S△ABC=12×12×3p2×√2p=2√2,解得p=4√33,所以点F到准线l的距离是4√33,故选:D.由题意可得|AF|=|AB|,根据|CF|=|AF|,得到|CF|=|AF|=|AB|=32p,求得x A,y A,又由AB//CF且AB=CF,则四边形ABFC为平行四边形,推出D为BC的中点,进而可得S△ACD=12S△ABC,列方程,求解,即可得出答案.本题考查抛物线的性质,解题中需要一定的计算能力,属于中档题.13.【答案】√5【解析】解:∵z=1+2ii =(1+2i)ii2=2−i,∴|z|=√22+(−1)2=√5.故答案为:√5.根据已知条件,运用复数的运算法则,以及复数模的公式,即可求解.本题考查了复数代数形式的乘法运算,以及复数模的公式,需要学生熟练掌握公式,属于基础题.14.【答案】35【解析】解:一个路口的红绿灯,红灯的时间为30秒,黄灯的时间为5秒,绿灯的时间为40秒, 由对立事件的概率可知,当到达路口时,看到的不是红灯的概率是: P =1−3030+5+40=35. 故答案为:35.由已知直接利用对立事件概率计算公式求解.本题考查概率的求法,考查对立事件概率计算公式的应用,是基础题.15.【答案】0.44【解析】解:根据表格中的数据可得,x −=1+m+3+4+55=13+m 5,y −=0.5+0.6+n+1.4+1.55=4+n 5,∵线性回归直线方程为y ̂=0.28x +0.16, ∴4+n 5=0.28×13+m 5+0.16,解得n −0.28m =0.44.故答案为:0.44.先求出变量x 与y 的均值,再结合线性回归方程过样本中心,即可求解. 本题主要考查了线性回归方程的性质,以及平均值的求解,属于基础题.16.【答案】①④【解析】解:当x =0时,f(0)=0,此时不满足方程,若2<x ≤4,则0<x −2≤2,即f(x)=12f(x −2)=12(2|x−3|−1), 若4<x ≤6,则2<x −2≤4,即f(x)=12f(x −2)=12(2|x−5|−1), 作出函数x ≥0的图象,如图所示:对于①,由图可知,函数f(x)在(5,6)上单调递增,由奇函数性质可知,函数f(x)在(−6,−5)上单调递增,故①正确; 对于②,可知函数在x >0时的图象与直线y =x 有1个交点,结合函数的奇偶性可知,f(x)的图象与直线y =x 有3个不同的交点,故②错误;对于③,设f(x)=t ,则关于[f(x)]2−(a +1)f(x)+a =0(a ∈R)的方程等价于t 2−(a +1)t +a =0, 解得t =a 或t =1,当t =1时,即f(x)=1对应一个交点为x 1=2,方程恰有4个不同的根,可分为两种情况: (1)t =a =12,即f(x)=12对应3个交点,且x 2+x 3=2,x 4=4, 此时4个实数根的和为8,(2)t =a =−12,即f(x)=−12对应3个交点,且x 2+x 3=−2,x 4=4,此时4个实数根的和为4,故③错误;对于④,函数f(x)在[1,2]上的最大值为f(2)=1,即a 1=1,由函数解析式及性质可知,数列{a n }是首项为1,公比为12的等比数列, 则数列的前7项和为1−(12)71−12=12764,故④正确.故答案为:①④.由f(x)是奇函数,则f(0)=0,写出f(x)在(−6,−5)上的函数解析式,作出函数x ≥0的图象,对于①,由图可知,函数f(x)在(5,6)上单调递增,由奇函数性质可知,函数f(x)在(−6,−5)上单调性,即可判断①是否正确;对于②,结合函数的奇偶性可知,f(x)的图象与直线y =x 有3个不同的交点,即可判断②是否正确; 对于③,设f(x)=t ,则关于[f(x)]2−(a +1)f(x)+a =0(a ∈R)的方程等价于t 2−(a +1)t +a =0,解得t =a 或t =1,结合图象,分两种情况:(1)t =a =12,(2)t =a =−12,讨论f(x)=a 的实数根的和,即可判断③是否正确;对于④,函数f(x)在[1,2]上的最大值为f(2)=1,即a 1=1,则函数解析式及性质可知,数列{a n }是首项为1,公比为12的等比数列,即可判断④是否正确.本题考查命题真假的判断,解题关键是熟悉函数的性质,属于中档题.17.【答案】解:(I)f′(x)=x 2+ax −2,因为函数f(x)的图象在点(1,f(1))处的切线与直线2x +y −1=0平行, 所以f′(1)=−2,即a −1=−2,解得a =−1.当a =−1时,f(x)=13x 3−12x 2−2x +56,f(1)=13−12−2+56=−43,所以函数f(x)的图象在点(1,f(1))处的切线方程为y =−2(x −1)−43,即2x +y −23=0. 满足题意,所以a =−1.(II)由(I)可知f(x)=13x 3−12x 2−2x +56,f′(x)=x 2−x −2=(x +1)(x −2), 令f′(x)=0,解得x =−1或x =2,当x 变化时,f′(x)与f(x)的变化情况如下表:所以当x =−1时,f(x)取得极大值f(−1)=2; 当x =2时,f(x)取得极小值f(2)=−52.【解析】(I)由导数的几何意义求解即可;(II)结合导数符号与原函数单调性之间的关系求出函数的单调性,进而求出函数的极值.本题考查导数的几何意义,考查导数的应用,利用导数研究函数的单调性、极值,考查数学运算和数学抽象的核心素养,属于基础题.18.【答案】解:(Ⅰ)由频率分布直方图得:(0.025+0.035+a+0.050+0.030+0.020)×5=1,解得a=0.04.[70,80)的频率为(0.025+0.035)×5=0.3,[80,85)的频率为0.04×5=0.2,∴估计这300名业主评分的中位数为85.(Ⅱ)用分层抽样的方法从评分在[90,95)和[95,100]的业主中抽取5人,则从评分在[90,95)中抽取0.0300.030+0.020×5=3人,从评分在[95,100)中抽取0.0200.030+0.020×5=2人,∴从抽出的这5位业主中任意选取2人作进一步访谈,基本事件总数n=C52=10,这2人中至少有1人的评分在[95,100]包含的基本事件个数m=C31C21+C22=7,∴这2人中至少有1人的评分在[95,100]的概率为P=mn =710.【解析】(Ⅰ)由频率分布直方图列方程求出a,再求出中位数.(Ⅱ)由条件,可知评分在[90,95)中抽取3人,从评分在[95,100)中抽取2人,从抽出的这5位业主中任意选取2人作进一步访谈,基本事件总数n=C52,这2人中至少有1人的评分在[95,100]包含的基本事件个数m=C31C21+C22,由此求出这2人中至少有1人的评分在[95,100]的概率.本题考查频率、中位数、概率的求法,考查频率分布直方图等基础知识,考查运算求解能力,是基础题.19.【答案】(Ⅰ)证明:取PB的中点H,连接EH,HC,在△PAB中,因为E,H分别为AP,PB的中点,所以EH//AB且EF=12AB,又DC//AB且DC=12AB,所以EH//DC且EH=DC,故四边形CDEH为平行四边形,则DE//CH,又DE ⊄平面PBC ,CH ⊂平面PBC , 故DE //平面PBC ;(Ⅱ)解:连接BD ,因为DC//AB ,BC ⊥AB , 则BC ⊥DC ,在Rt △BCD 中,因为DC =BC =2, 所以BD =√DC 2+BC 2=2√2, 在直角梯形ABCD 中,可得AD =2√2,在△ABD 中,因为AD =2√2,AB =4,所以AD 2+BD 2=AB 2, 则BD ⊥AD ,取AD 的中点O ,连接PO , 因为PA =PD ,则PO ⊥AD ,因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,PO ⊂平面PAD , 所以PO ⊥平面ABCD ,取AB 的中点N ,则ON//BD ,ON ⊥AD , 所以PO ,AD ,ON 两两垂直,以点O 为坐标原点建立空间直角坐标系如图所示,则A(√2,0,0),D(−√2,0,0),B(−√2,2√2,0),P(0,0,√2),M(−√23,2√23,2√23), 所以AM ⃗⃗⃗⃗⃗⃗ =(−4√23,2√23,2√23),DM⃗⃗⃗⃗⃗⃗⃗ =(2√23,2√23,2√23), 设平面ADM 的一个法向量为m⃗⃗⃗ =(x,y,z), 则{AM ⃗⃗⃗⃗⃗⃗ ⋅m ⃗⃗⃗ =0DM ⃗⃗⃗⃗⃗⃗⃗ ⋅m ⃗⃗⃗ =0,可得{−2x +y +z =0x +y +z =0,令z =1,则m⃗⃗⃗ =(0,−1,1), 又平面ABD 的一个法向量为n ⃗ =(0,0,1), 所以|cos <m ⃗⃗⃗ ,n ⃗ >|=|m ⃗⃗⃗ ⋅n ⃗⃗ ||m ⃗⃗⃗ ||n ⃗⃗ |=√2×1=√22, 故二面角M −AD −B 的余弦值为√22.【解析】(Ⅰ)取PB 的中点H ,连接EH ,HC ,然后由中位线定理证明CDEH 为平行四边形,可得DE//CH ,由线面平行的判定定理证明即可;(Ⅱ)建立合适的空间直角坐标系,求出所需点的坐标和向量的坐标,然后利用待定系数法求出平面ADM 的法向量,由向量的夹角公式求解即可.本题考查了线面平行的判定定理和二面角的求解,在求解有关空间角问题的时候,一般会建立合适的空间直角坐标系,将空间角问题转化为空间向量问题进行研究,属于中档题.20.【答案】解:(Ⅰ)由题意可得,点P 在椭圆C 上,且|PF 1|=2,由椭圆的定义,可得|PF 2|=2a −|PF 1|=2a −2,在△PF 1F 2中,由余弦定理可得4c 2=|PF 1|2+|PF 2|2−2|PF 1|PF 2|cos∠F 1PF 2, 所以4c 2=4+(2a −2)2−4(2a −2)cos π3, 化简得c 2=a 2−3a +3,由椭圆C 的离心率e =ca =12,可得a =2c , 联立方程组,解得c =1,a =2, 所以b 2=a 2−c 2=3, 所以椭圆C 的方程为x 24+y 23=1.(Ⅱ)设A(x 1,y 1),B(x 2,y 2), 联立{y =kx +m x 24+y 23=1,得(4k 2+3)x 2+8kmx +4m 2−12=0,由△=16(12k 2−3m 2+9)>0, 可得4k 2+3>m 2, 则x 1+x 2=−8km4k 2+3,x 1x 2=4m 2−124k 2+3,所以|AB|=√1+k 2|x 1−x 2|=√1+k 24√12k 2−3m2+94k 2+3,因为坐标原点O 到直线l 的距离d =√1+k 2,所以S △OAB =12√1+k 2⋅√1+k 24√12k 2−3m 2+94k 2+3=2√3⋅|m|√4k 2+3−m 24k 2+3=2√3⋅√(4k 2+3−m 2)m 24k 2+3≤2√3⋅(4k 2+3−m 2)+m 224k 2+3=√3,当且仅当4k 2+3−m 2=m 2,即4k 2+3=2m 2时,等号成立, 满足4k 2+3=2m 2>m 2, 所以△OAB 面积的最大值为√3.【解析】(Ⅰ)由椭圆的定义,可得|PF 2|=2a −|PF 1|=2a −2,△PF 1F 2中,由余弦定理可得c 2=a 2−3a +3,由椭圆C 的离心率e =ca =12,可得a =2c ,联立方程组,解得c ,a ,b ,即可得出答案.(Ⅱ)设A(x 1,y 1),B(x 2,y 2),联立直线l 与椭圆的方程,由△>0,可得4k 2+3>m 2,结合韦达定理可得x 1+x 2,x 1x 2,由弦长公式可得|AB|,坐标原点O 到直线l 的距离d =, 再利用基本不等式,可得S △OAB 的最大值.本题考查椭圆的方程,直线与椭圆的相交问题,解题中需要一定的计算能力,属于中档题.21.【答案】解:(Ⅰ)函数f(x)的定义域为(0,+∞),f′(x)=2ax−1x,①当a ≤0时,在(0,+∞)上,f′(x)≤0恒成立, 所以f(x)在(0,+∞)上单调递减,无单调递增区间, ②当a >0时,则由f′(x)=0,得x =12a , 当x ∈(0,12a )时,f′(x)<0,f(x)单调递减, 当x ∈(12a ,+∞)时,f′(x)>0,f(x)单调递增,综上所述,当a ≤0时,f(x)在(0,+∞)上单调递减,无单调递增区间, 当a >0时,f(x)在(0,12a )上单调递减,在(12a ,+∞)单调递增. (Ⅱ)证明:因为f(x 1)=f(x 2), 所以2ax 1−lnx 1=2ax 2−lnx 2, 所以lnx 1−lnx 2x 1−x 2=2a ,若证:f(2ax 1)+f(2ax 2)>4a 2(x 1+x 2),⇒2a(2ax 1)−ln(2ax 1)+2a(2ax 2)−ln(2ax 2)>4a 2(x 1+x 2), ⇒ln(4a 2x 1x 2)<0, ⇒4a 2x 1x 2<1, ⇒(lnx 1−lnx 2x 1−x 2)2x 1x 2<1,⇒(ln x 1x 2)2<(x 1−x 2)2x 1x 2⇒(ln x1x 2)2<x1x 2+x2x 1−2,⇒(ln x 1x 2)2−x 1x 2−x2x 1+2<0,令t =x 1x 2,t ∈(0,1), 则(lnt)2−t −1t +2<0,所以t(lnt)2−t2−1+2t<0,令g(t)=t(lnt)2−t2−1+2t,t∈(0,1)g′(t)=(lnt)2+t⋅2lnt⋅1t−2t+2=(lnt)2+2lnt−2t+2,t∈(0,1)令ℎ(t)=(lnt)2+2lnt−2t+2,t∈(0,1)ℎ′(t)=2lnt⋅1t +2t−2=2lnt+2−2tt,令p(t)=2lnt+2−2t,p′(t)=2t −2=2(1−t)t,t∈(0,1)所以p′(t)>0,所以p(t)在(0,1)上单调递增,所以p(t)<p(1)=2ln1+2−2×1=0,所以ℎ′(t)<0,ℎ(t)在(0,1)上单调递减,所以ℎ(t)>ℎ(1)=(ln1)2+2ln1−2×1+2=0,所以g′(t)>0,所以g(t)在(0,1)上单调递增,所以g(t)<g(1)=1×(ln1)2−12−1+2×1=0,所以不等式f(2ax1)+f(2ax2)>4a2(x1+x2)得证.【解析】(Ⅰ)函数f(x)的定义域为(0,+∞),求导得f′(x)=2ax−1x,分两种情况:①当a≤0时,②当a>0时,讨论f′(x)的正负,f(x)的单调性,即可得出答案.(Ⅱ)由f(x1)=f(x2),得lnx1−lnx2x1−x2=2a,若证:f(2ax1)+f(2ax2)>4a2(x1+x2),只需证ln x1x2)2−x1x2−x2x1+2<0,令t=x1x2,t∈(0,1),则t(lnt)2−t2−1+2t<0,令g(t)=t(lnt)2−t2−1+2t,t∈(0,1),只需证明g(t)max<0,即可.本题考查导数的综合应用,解题中注意分类讨论,转化思想的应用,属于中档题.22.【答案】解:(Ⅰ)由曲线C的参数方程为{x=cosαy=sinα(α为参数),消去参数α,得曲线C的普通方程x2+y2=1,又由直线l的极坐标方程为√3ρcosθ−ρsinθ+√3=0,把x=ρcosθ,y=ρsinθ代入,可得直线l的直角坐标方程为√3x−y+√3=0;(Ⅱ)设曲线C上的任意一点(x,y)经坐标变换后对应的点为(x′,y′),第21页,共21页 据题意,得{x′=√3x y′=y ,即{x =√33x′y =y′, ∵x 2+y 2=1,代入可得(x′)23+(y′)2=1,即曲线C 1的普通方程为x 23+y 2=1. ∵直线l 过定点P(−1,0),∴直线l 的参数方程为{x =−1+12t y =√32t(t 为参数), 将直线l 的参数方程代入曲线C 1的普通方程,整理可得5t 2−2t −4=0.则t 1+t 2=25,t 1t 2=−45<0且△=84>0,∴|PM|+|PN|=|t 1|+|t 2|=|t 1−t 2|=√(t 1+t 2)2−4t 1t 2=2√215.【解析】(Ⅰ)由曲线C 的参数方程消去α,得到曲线C 的普通方程,根据极坐标与直角坐标的互化公式即可得直线l 的直角坐标方程;(Ⅱ)设曲线C 上任意一点(x,y)经坐标变换后对应的点为(x′,y′),得到{x =√33x′y =y′,代入C 得到曲线C 1的普通方程x 23+y 2=1,再把直线l 的参数方程代入曲线C 1的普通方程,利用参数t 的几何意义与根与系数的关系求解.本题考查简单曲线的极坐标方程,考查参数方程化普通方程,关键是直线参数方程中参数t 的几何意义的应用,是中档题.。

2020-2021成都市高三数学下期末一模试题(带答案)

2020-2021成都市高三数学下期末一模试题(带答案)

2020-2021成都市高三数学下期末一模试题(带答案)一、选择题1.若3tan 4α= ,则2cos 2sin 2αα+=( ) A .6425 B .4825C .1D .16252.()22x xe ef x x x --=+-的部分图象大致是( )A .B .C .D .3.设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据(x i ,y i )(i=1,2,…,n ),用最小二乘法建立的回归方程为$y =0.85x-85.71,则下列结论中不正确的是 A .y 与x 具有正的线性相关关系 B .回归直线过样本点的中心(x ,y )C .若该大学某女生身高增加1cm ,则其体重约增加0.85kgD .若该大学某女生身高为170cm ,则可断定其体重必为58.79kg4.已知532()231f x x x x x =++++,应用秦九韶算法计算3x =时的值时,3v 的值为( ) A .27B .11C .109D .365.在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为 A .10 B .11C .12D .156.一个容量为80的样本中数据的最大值是140,最小值是51,组距是10,则应将样本数据分为( ) A .10组B .9组C .8组D .7组7.已知向量a v ,b v 满足2a =v,||1b =v ,且2b a +=v v ,则向量a v 与b v 的夹角的余弦值为( ) A .22B .23C .2 D .2 8.函数32()31f x x x =-+的单调减区间为 A .(2,)+∞B .(,2)-∞C .(,0)-∞D .(0,2)9.下列各组函数是同一函数的是( ) ①()32f x x =-与()2f x x x =-;()3f x 2x y x 2x 与=-=-②()f x x =与()2g x x =;③()0f x x =与()01g x x=;④()221f x x x =--与()221g t t t =--. A .① ② B .① ③C .③ ④D .① ④10.甲、乙、丙,丁四位同学一起去问老师询问成语竞赛的成绩。

(2021年整理)数学必修二期末测试题(含答案)

(2021年整理)数学必修二期末测试题(含答案)

数学必修二期末测试题(含答案) 数学必修二期末测试题(含答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(数学必修二期末测试题(含答案))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为数学必修二期末测试题(含答案)的全部内容。

- 1 -- 2 -数学必修二综合测试题一.选择题 *1。

下列叙述中,正确的是( )(A)因为,P Q αα∈∈,所以PQ ∈α(B )因为P α∈,Q β∈,所以αβ⋂=PQ(C )因为AB α⊂,C ∈AB ,D ∈AB ,所以CD ∈α(D)因为AB α⊂,AB β⊂,所以()A αβ∈⋂且()B αβ∈⋂*2.已知直线l 的方程为1y x =+,则该直线l 的倾斜角为( ).(A )30 (B)45 (C )60 (D)135*3.已知点(,1,2)A x B 和点(2,3,4),且26AB =,则实数x 的值是( ).(A )-3或4 (B )–6或2 (C)3或—4 (D)6或—2*4。

长方体的三个面的面积分别是632、、,则长方体的体积是( ).A .23B .32C .6D .6*5.棱长为a 的正方体内切一球,该球的表面积为( )A 、2a πB 、22a πC 、32a πD 、a π24 *6.若直线a 与平面α不垂直,那么在平面α内与直线a 垂直的直线( )(A )只有一条 (B )无数条 (C )是平面α内的所有直线 (D )不存在**7.已知直线l 、m 、n 与平面α、β,给出下列四个命题:①若m ∥l ,n ∥l ,则m ∥n ②若m ⊥,m ∥, 则 ⊥③若m ∥,n ∥,则m ∥n ④若m ⊥ , ⊥ ,则m ∥ 或m 错误!其中假命题...是( ). (A) ① (B ) ② (C ) ③(D) ④主视图左视图俯视图- 3 -xyOxyOxyOxyO**8.在同一直角坐标系中,表示直线y ax =与y x a =+正确的是( ).**9.如图,一个空间几何体的主视图和左视图都是边长为1的正方形, 俯视图是一个圆,那么这个几何体的侧面积...为( * ). (A)4π(B ) 54π(C ) π (D ) 32π**10。

2020-2021成都市高中必修二数学下期末第一次模拟试题及答案

2020-2021成都市高中必修二数学下期末第一次模拟试题及答案

2020-2021成都市高中必修二数学下期末第一次模拟试题及答案一、选择题1.已知向量a v ,b v 满足4a =v,b v 在a v 上的投影(正射影的数量)为-2,则2a b -v v 的最小值为( ) A .43B .10C .10D .82.如图,在ABC ∆中,已知5AB =,6AC =,12BD DC =u u u v u u u v ,4AD AC ⋅=u u u v u u u v,则AB BC ⋅=u u u v u u u vA .-45B .13C .-13D .-373.如图,在ABC V 中,90BAC ︒∠=,AD 是边BC 上的高,PA ⊥平面ABC ,则图中直角三角形的个数是( )A .5B .6C .8D .104.设集合{1,2,3,4}A =,{}1,0,2,3B =-,{|12}C x R x =∈-≤<,则()A B C =U I A .{1,1}- B .{0,1} C .{1,0,1}-D .{2,3,4}5.已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B I 中元素的个数为( ) A .3B .2C .1D .06.已知ABC V 为等边三角形,2AB =,设P ,Q 满足AP AB λ=uu u r uu u r ,()()1AQ AC λλ=-∈R u u u r u u u r ,若32BQ CP ⋅=-uu u r uu r ,则λ=( )A .12B .122± C .1102± D .322± 7.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女子善织,日益功,疾,初日织五尺,今一月织九匹三丈(1匹=40尺,一丈=10尺),问日益几何?”其意思为:“有一女子擅长织布,每天比前一天更加用功,织布的速度也越来越快,从第二天起,每天比前一天多织相同量的布,第一天织5尺,一月织了九匹三丈,问每天增加多少尺布?”若一个月按30天算,则每天增加量为A .12尺 B .815尺 C .1629尺 D .1631尺 8.有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为 A .45B .35C .25D .159.设正项等差数列的前n 项和为,若,则的最小值为A .1B .C .D .10.已知二项式2(*)nx n N x ⎛-∈ ⎪⎝⎭的展开式中第2项与第3项的二项式系数之比是2︰5,则3x 的系数为( ) A .14B .14-C .240D .240-11.若函数()(),1231,1xa x f x a x x ⎧>⎪=⎨-+≤⎪⎩是R 上的减函数,则实数a 的取值范围是( )A .2,13⎛⎫⎪⎝⎭B .3,14⎡⎫⎪⎢⎣⎭C .23,34⎛⎤⎥⎝⎦D .2,3⎛⎫+∞⎪⎝⎭12.若函数()(1)(0xxf x k a a a -=-->且1a ≠)在R 上既是奇函数,又是减函数,则()log ()a g x x k =+的图象是( )A .B .C .D .二、填空题13.函数2sin 26y x π⎛⎫=-⎪⎝⎭([]0,x π∈)为增函数的区间是 . 14.若三点1(2,3),(3,2),(,)2A B C m --共线,则m 的值为 . 15.若,a b 是函数()()20,0f x x px q p q =-+>>的两个不同的零点,且,,2a b -这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q +的值等于________. 16.已知函数2,()24,x x mf x x mx m x m⎧≤=⎨-+>⎩ 其中0m >,若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是________________. 17.如图,棱长均为2的正四棱锥的体积为_______.18.函数2cos 1y x =+的定义域是 _________.19.函数sin 3y x x =-的图像可由函数2sin y x =的图像至少向右平移________个单位长度得到.20.若()1,x ∈+∞,则131y x x =+-的最小值是_____. 三、解答题21.如图,在矩形ABCD 中,点E 在边AB 上,且2AE EB =u u u vu u u v,M 是线段CE 上一动点. (1)若M 是线段CE 的中点,AM mAB nAD =+u u u u v u u u v u u u v,求m n +的值;(2)若9,43AB CA CE =⋅=u u u v u u u v,求()2MA MB MC +⋅u u u v u u u v u u u u v 的最小值.22.从甲、乙两名学生中选拔一人参加射箭比赛,为此需要对他们的射箭水平进行测试.现这两名学生在相同条件下各射箭10次,命中的环数如下: 甲897976101086乙 10 9 8 6 8 7 9 7 8 8(1)计算甲、乙两人射箭命中环数的平均数和标准差; (2)比较两个人的成绩,然后决定选择哪名学生参加射箭比赛. 23.已知不等式的解集为或.(1)求;(2)解关于的不等式24.已知:a b c v v v、、是同一平面内的三个向量,其中()1,2a =v(1)若25c =v ,且//c a v v ,求c v的坐标;(2)若52b =v,且2a b +v v 与2a b -v v 垂直,求a v 与b v 的夹角θ. (3)若()1,1b =v ,且a v 与a b λ+v v的夹角为锐角,求实数λ的取值范围.25.已知函数()e cos xf x x x =-.(Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)求函数()f x 在区间π[0,]2上的最大值和最小值.26.已知四点A (-3,1),B (-1,-2),C (2,0),D (23,4m m +)(1)求证:AB BC ⊥u u u v u u u v;(2) //AD BC u u u v u u u v,求实数m 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】b r 在a r上的投影(正射影的数量)为2-可知||cos ,2b a b <>=-r r r ,可求出||2b ≥r ,求22a b -r r 的最小值即可得出结果.【详解】因为b r 在a r上的投影(正射影的数量)为2-,所以||cos ,2b a b <>=-r r r,即2||cos ,b a b =-<>r r r ,而1cos ,0a b -≤<><r r , 所以||2b ≥r,因为2222222(2)44||4||||cos ,4||a b a b a a b b a a b a b b -=-=-⋅+=-<>+r r r r r r r r r r r r r r22=1644(2)4||484||b b -⨯⨯-+=+r r所以22484464a b -≥+⨯=r r ,即28a b -≥r r ,故选D.【点睛】本题主要考查了向量在向量上的正射影,向量的数量积,属于难题.2.D解析:D 【解析】 【分析】先用AB u u u v 和AC uuu v表示出2A AB BC AB C AB ⋅=⋅-u u u v u u u v u u u v u u u v u u u v ,再根据,12BD DC =u u u v u u u v 用用AB u u u v 和AC uuu v 表示出AD u u u v,再根据4AD AC ⋅=u u u v u u u v 求出A AB C ⋅u u u v u u u v 的值,最后将A AB C ⋅u u u v u u u v 的值代入2A AB BC AB C AB ⋅=⋅-u u u v u u u v u u u v u u u v u u u v ,,从而得出答案. 【详解】()2 A =A AB BC AB C AB AB C AB ⋅=⋅-⋅-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v ,∵12BD DC =u u u v u u u v ,∴111B C ?C B 222AD A A AD AD A AD A -=-=-+u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v(),整理可得:12 AB 33AD AC +u u u v u u u v u u u v=, 221A A 433AD AC AB C C ∴⋅⋅+=u u u v u u u v u u u v u u u v u u u v =∴ A =-12AB C ⋅u u u v u u u v , ∴2 =A =122537AB BC AB C AB ⋅⋅---=-u u u v u u u v u u u v u u u v u u u v .,故选:D . 【点睛】本题考查了平面向量数量积的运算,注意运用平面向量的基本定理,以及向量的数量积的性质,考查了运算能力,属于中档题.3.C解析:C 【解析】根据线面垂直得出一些相交直线垂直,以及找出题中一些已知的相交直线垂直,由这些条件找出图中的直角三角形. 【详解】①PA ⊥Q 平面ABC ,,,,PA AB PA AD PA AC PAB ∴⊥⊥⊥∴∆,,PAD PAC ∆∆都是直角三角形;②90,BAC ABC ︒∠=∴Q V 是直角三角形; ③,,AD BC ABD ACD ⊥∴∆∆Q 是直角三角形;④由,PA BC AD BC ⊥⊥得BC ⊥平面PAD ,可知:,,BC PD PBD PCD ⊥∴∆∆也是直角三角形.综上可知:直角三角形的个数是8个,故选C .【点睛】本题考查直角三角形个数的确定,考查相交直线垂直,解题时可以充分利用直线与平面垂直的性质得到,考查推理能力,属于中等题.4.C解析:C 【解析】分析:由题意首先进行并集运算,然后进行交集运算即可求得最终结果. 详解:由并集的定义可得:{}1,0,1,2,3,4A B ⋃=-, 结合交集的定义可知:(){}1,0,1A B C ⋃⋂=-. 本题选择C 选项.点睛:本题主要考查并集运算、交集运算等知识,意在考查学生的计算求解能力.5.B解析:B 【解析】试题分析:集合中的元素为点集,由题意,可知集合A 表示以()0,0为圆心,1为半径的单位圆上所有点组成的集合,集合B 表示直线y x =上所有的点组成的集合,又圆221x y +=与直线y x =相交于两点22,22⎛ ⎝⎭,2222⎛⎫-- ⎪ ⎪⎝⎭,则A B I 中有2个元【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.6.A解析:A 【解析】 【分析】运用向量的加法和减法运算表示向量BQ BA AQ =+u u u r u u u r u u u r ,CP CA AP =+u u u r u u u r u u u r,再根据向量的数量积运算,建立关于λ的方程,可得选项. 【详解】∵BQ BA AQ =+u u u r u u u r u u u r ,CP CA AP =+u u u r u u u r u u u r,∴()()BQ CP BA AQ CA AP AB AC AB AP AC AQ AQ AP ⋅=+⋅+=⋅-⋅-⋅+⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r()()2211AB AC AB AC AB AC λλλλ=⋅---+-⋅u u u r u u u r u u u r u u u r u u u r u u u r()()232441212222λλλλλλ=---+-=-+-=-,∴12λ=.故选:A. 7.C解析:C 【解析】试题分析:将此问题转化为等差数列的问题,首项为,,求公差,,解得:尺,故选C.考点:等差数列8.C解析:C 【解析】选取两支彩笔的方法有25C 种,含有红色彩笔的选法为14C 种,由古典概型公式,满足题意的概率值为142542105C p C ===. 本题选择C 选项. 考点:古典概型名师点睛:对于古典概型问题主要把握基本事件的种数和符合要求的事件种数,基本事件的种数要注意区别是排列问题还是组合问题,看抽取时是有、无顺序,本题从这5支彩笔中任取2支不同颜色的彩笔,是组合问题,当然简单问题建议采取列举法更直观一些.9.D解析:D 【解析】 【分析】先利用等差数列的求和公式得出,再利用等差数列的基本性质得出,再将代数式和相乘,展开后利用基本不等式可求出的最小值.【详解】由等差数列的前项和公式可得,所以,,由等差数列的基本性质可得,, 所以,,当且仅当,即当时,等号成立,因此,的最小值为,故选:D.【点睛】本题考查的等差数列求和公式以及等差数列下标性质的应用,考查利用基本不等式求最值,解题时要充分利用定值条件,并对所求代数式进行配凑,考查计算能力,属于中等题。

2020-2021成都盐道街中学实验学校高中必修二数学下期中一模试题附答案

2020-2021成都盐道街中学实验学校高中必修二数学下期中一模试题附答案

2020-2021成都盐道街中学实验学校高中必修二数学下期中一模试题附答案一、选择题1.已知三棱锥S ABC -的所有顶点都在球O 的求面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =,则此棱锥的体积为( )A .26B .3C .23D .2 2.若圆C:222430x y x y ++-+=关于直线260ax by ++=对称,则由点(,)a b 向圆所作的切线长的最小值是( )A .2B .4C .3D .63.若函数6(3)3,7(),7x a x x f x a x ---≤⎧=⎨>⎩单调递增,则实数a 的取值范围是( ) A .9,34⎛⎫ ⎪⎝⎭ B .9,34⎡⎫⎪⎢⎣⎭ C .()1,3 D .()2,34.已知m 和n 是两条不同的直线,α和β是两个不重合的平面,那么下面给出的条件中一定能推出m ⊥β的是( )A .α⊥β,且m ⊂αB .m ⊥n ,且n ∥βC .α⊥β,且m ∥αD .m ∥n ,且n ⊥β5.如图,已知正方体1111ABCD A B C D -中,异面直线1AD 与1A C 所成的角的大小是( )A .30oB .60oC .90oD .120o6.四棱锥P ABCD -的底面ABCD 为正方形,PA ⊥底面ABCD ,2AB =,72PA =,若该四棱锥的所有顶点都在同一球面上,则该球的表面积为( ) A .812π B .814π C .65π D .652π 7.若直线20ax y +-=和直线()2140x a y +-+=平行,则a 的值为( ) A .1-或2B .1-C .2D .不存在 8.已知圆M :2220x y y =++与直线l :350ax y a +-+=,则圆心M 到直线l 的最大距离为( )A .5B .6C .35D .41 9.长方体的三个相邻面的面积分别为2,3,6,则该长方体外接球的表面积为( ) A .72π B .56π C .14π D .64π10.一锥体的三视图如图所示,则该棱锥的最长棱的棱长为 ( )A .B .C .D .11.若方程21424x kx k +-=-+ 有两个相异的实根,则实数k 的取值范围是( )A .13,34⎛⎤ ⎥⎝⎦B .13,34⎛⎫ ⎪⎝⎭C .53,124⎛⎫ ⎪⎝⎭D .53,124纟çúçú棼12.已知平面αβ⊥且l αβ=I ,M 是平面α内一点,m ,n 是异于l 且不重合的两条直线,则下列说法中错误的是( ).A .若//m α且//m β,则//m lB .若m α⊥且n β⊥,则m n ⊥C .若M m ∈且//m l ,则//m βD .若M m ∈且m l ⊥,则m β⊥二、填空题13.如图,在长方形ABCD 中,2AB =,1BC =,E 为DC 的中点,F 为线段EC (端点除外)上一动点,现将AFD V 沿AF 折起,使平面ABD ⊥平面ABC ,在平面ABD 内过点D 作DK AB ⊥,K 为垂足,设AK t =,则t 的取值范围是__________.14.已知一束光线通过点()3,5A -,经直线l :0x y +=反射,如果反射光线通过点()2,5B ,则反射光线所在直线的方程是______.15.如图,以等腰直角三角形斜边BC 上的高AD 为折痕,把△ABD 与△ACD 折成互相垂直的两个平面后,某学生得出下列四个结论:①0BD AC ⋅≠u u u r u u u r;②∠BAC =60°;③三棱锥D ﹣ABC 是正三棱锥;④平面ADC 的法向量和平面ABC 的法向量互相垂直.其中正确结论的序号是 .(请把正确结论的序号都填上)16.已知动点,A B 分别在x 轴和直线y x =上,C 为定点()2,1,则ABC ∆周长的最小值为_______.17.已知,m n 为直线,,αβ为空间的两个平面,给出下列命题:①,//m n m nαα⊥⎧⇒⎨⊥⎩;②,////m n m n αβαβ⊂⎧⎪⊂⇒⎨⎪⎩;③,//m m ααββ⊥⎧⇒⎨⊥⎩;④,//m m n n ββ⊥⎧⇒⎨⊥⎩.其中的正确命题为_________________.18.已知直线:0l x my m ++=,且与以A (-1,1)、B (2,2)为端点的线段相交,实数m 的取值范围为___________.19.已知点(,)P x y 是直线4(0)y kx k =-->上的一个动点,PA ,PB 是圆22:20C x y y +-=的两条切线,A ,B 是切点,若四边形PACB 的面积的最小值为2,则实数k 的值为__________.20.在正方体1111ABCD A B C D -中,E 是棱1DD 的中点,则直线BE 和平面11ABB A 所成的角的正弦值为_____________.三、解答题21.已知圆22:(1)(2)25C x y -+-=,直线:(21)(1)74l m x m y m +++--=0,(m ∈R ).(1)证明:无论m 取何值,直线l 过定点;(2)求直线l 被圆C 截得的弦长最短时m 的值及最短弦长.22.如图,在四棱锥P ABCD -中,侧面PAD ⊥底面ABCD ,侧棱PA PD ⊥,底面ABCD 是直角梯形,其中//BC AD ,90BAD ∠=︒,3AD BC =,2AO OD =.(1)求证:平面PAB ⊥平面PCD .(2)试问在棱PA 上是否存在点E ,使得面//BOE 面PCD ,若存在,试指出点E 的位置并证明;若不存在,请说明理由.23.如图,在四棱锥P ABCD -中,CB ⊥平面PBD ,AD ⊥平面PBD ,PH BD ⊥于H ,10CD =,8BC AD ==.(1)求证:CD PH ⊥;(2)若13BH BD =,12PH BD =,在线段PD 上是否存在一点M ,使得HM ⊥平面PAD ,且直线HA 与平面PAD 所成角的正弦值为35.若存在,求PM 的长;若不存在,请说明理由.24.在正方体1111ABCD A B C D -中,AB=3,E 在1CC 上且12CE EC =.(1)若F 是AB 的中点,求异面直线1C F 与AC 所成角的大小;(2)求三棱锥1B DBE -的体积.25.如图,在直三棱柱111ABC A B C -中,90ABC ︒∠=,1AB AA =,,M N 分别为AC ,11B C 的中点.(1)求证://MN 平面11ABB A ;(2)求证:1AN A B ⊥.26.如图,正方体1111ABCDA B C D 的棱长为2,E F M 、、分别是1111C B C D ,和AB 的中点.(1)求证:1//MD 平面BEFD .(2)求M 到平面BEFD 的距离.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】【详解】根据题意作出图形:设球心为O ,过ABC 三点的小圆的圆心为O 1,则OO 1⊥平面ABC ,延长CO 1交球于点D ,则SD ⊥平面ABC .∵CO 1=2333=, ∴11613OO =-=∴高SD=2OO 1=263,∵△ABC 是边长为1的正三角形,∴S △ABC =3, ∴132623436S ABC V -=⨯⨯=三棱锥.考点:棱锥与外接球,体积.【名师点睛】本题考查棱锥与外接球问题,首先我们要熟记一些特殊的几何体与外接球(内切球)的关系,如正方体(长方体)的外接球(内切球)球心是对角线的交点,正棱锥的外接球(内切球)球心在棱锥的高上,对一般棱锥来讲,外接球球心到名顶点距离相等,当问题难以考虑时,可减少点的个数,如先考虑到三个顶点的距离相等的点是三角形的外心,球心一定在过此点与此平面垂直的直线上.如直角三角形斜边中点到三顶点距离相等等等.2.B解析:B【解析】试题分析:222430x y x y ++-+=即22(1)(2)2x y ++-=,由已知,直线260ax by ++=过圆心(1,2)C -,即2260,3a b b a -++==-,由平面几何知识知,为使由点(,)a b 向圆所作的切线长的最小,只需圆心(1,2)C -与直线30x y --=2123()242----=,故选B .考点:圆的几何性质,点到直线距离公式. 3.B解析:B【解析】【分析】利用函数的单调性,判断指数函数底数的取值范围,以及一次函数的单调性,及端点处函数值的大小关系列出不等式求解即可【详解】解:Q 函数6(3)3,7(),7x a x x f x a x ---⎧=⎨>⎩…单调递增, ()301373a a a a ⎧->⎪∴>⎨⎪-⨯-≤⎩解得934a ≤< 所以实数a 的取值范围是9,34⎡⎫⎪⎢⎣⎭.故选:B .【点睛】本题考查分段函数的应用,指数函数的性质,考查学生的计算能力,属于中档题. 4.D解析:D【解析】【分析】根据所给条件,分别进行分析判断,即可得出正确答案.【详解】解:αβ⊥且m α⊂⇒m β⊂或//m β或m 与β相交,故A 不成立;m n ⊥且//n β⇒m β⊂或//m β或m 与β相交,故B 不成立;αβ⊥且//m α⇒m β⊂或//m β或m 与β相交,故C 不成立;//m n 且n β⊥⇒m β⊥,故D 成立;故选:D【点睛】本题考查直线与平面的位置关系,线面垂直判定,属于基础题.5.C解析:C【解析】【分析】在正方体1111ABCD A B C D -中,利用线面垂直的判定定理,证得1AD ⊥平面1A DC ,由此能求出结果.【详解】如图所示,在正方体1111ABCD A B C D -中,连结1A D ,则1AD DC ⊥,11A D AD ⊥, 由线面垂直的判定定理得1AD ⊥平面1A DC ,所以11AD AC ⊥,所以异面直线1AD 与1A C 所成的角的大小是90o .故选C .【点睛】本题主要考查了直线与平面垂直的判定与证明,以及异面直线所成角的求解,其中解答中牢记异面直线所成的求解方法和转化思想的应用是解答的关键,平时注意空间思维能力的培养,着重考查了推理与论证能力,属于基础题.6.B解析:B【解析】【分析】根据题意可知,该四棱锥的外接球即为其所在长方体的外接球,根据公式即可求得.【详解】根据题意,为方便说明,在长方体中找出该四棱锥如图所示:由图可知在长方体中的四棱锥P ABCD -完全满足题意,故该四棱锥的外接球即是长方体的外接球, 故外接球半径222722294R ⎛⎫++ ⎪⎝⎭==, 故该球的表面积为28144S R ππ==. 故选:B .【点睛】本题考查四棱锥外接球的问题,关键的步骤是将问题转化为求长方体的外接球. 7.C解析:C【解析】【分析】直接根据直线平行公式得到答案.【详解】直线20ax y +-=和直线()2140x a y +-+=平行,则()12a a -=,解得2a =或1a =-.当1a =-时,两直线重合,排除.故选:C .【点睛】本题考查了根据直线平行求参数,意在考查学生的计算能力,多解是容易发生的错误.8.A解析:A【解析】【分析】计算圆心为()0,1M -,350ax y a +-+=过定点()3,5N -,最大距离为MN ,得到答案.【详解】圆M :2220x y y =++,即()2211x y ++=,圆心为()0,1M -, 350ax y a +-+=过定点()3,5N -,故圆心M 到直线l 的最大距离为5MN =. 故选:A .【点睛】本题考查了点到直线距离的最值问题,确定直线过定点()3,5N -是解题的关键.9.C解析:C【解析】【分析】由题意首先求得长方体的棱长,然后求解其外接球的表面积即可.【详解】设长方体的棱长分别为,,a b c ,则236ab bc ac =⎧⎪=⎨⎪=⎩,所以()236abc =,于是213a b c =⎧⎪=⎨⎪=⎩,设球的半径为R ,则2222414R a b c =++=,所以这个球面的表面积为24R π=14π. 本题选择C 选项.【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.10.C解析:C【解析】试题分析:该几何体为一个侧面与底面垂直,底面为正方形的四棱锥(如图所示),其中底面边长为,侧面平面,点在底面的射影为,所以,所以,,,,底面边长为,所以最长的棱长为,故选C.考点:简单几何体的三视图.11.D解析:D【解析】【分析】由题意可得,曲线22(1)4(1)x y y +-=…与直线4(2)y k x -=-有2个交点,数形结合求得k 的范围.【详解】如图所示,化简曲线得到22(1)4(1)x y y +-=…,表示以(0,1)为圆心,以2为半径的上半圆,直线化为4(2)y k x -=-,过定点(2,4)A ,设直线与半圆的切线为AD ,半圆的左端点为(2,1)B -,当AD AB k k k <…,直线与半圆有两个交点,AD2=,解得512AD k =,4132(2)4AB k -==--,所以53,124k ⎛⎤∈ ⎥⎝⎦.故选:D 【点睛】本题考查直线与圆的位置关系,属于中档题.12.D解析:D 【解析】 【分析】根据已知条件和线面位置关系一一进行判断即可. 【详解】选项A :一条直线平行于两个相交平面,必平行于两个面交线,故A 正确; 选项B :垂直于两垂直面的两条直线相互垂直,故B 正确; 选项C :M m ∈且//m l 得m α⊂且//m β,故C 正确;选项D :M m ∈且m l ⊥不一定得到m α⊂,所以,m l 可以异面,不一定得到m β⊥. 故选:D . 【点睛】本题主要考查的是空间点、线、面的位置关系的判定,掌握线面、线线之间的判定定理和性质定理是解决本题的关键,是基础题.二、填空题13.【解析】当位于的中点点与中点重合随点到点由得平面则又则因为所以故综上的取值范围为点睛:立体几何中折叠问题要注重折叠前后垂直关系的变化不变的垂直关系是解决问题的关键条件解析:1,12⎛⎫ ⎪⎝⎭【解析】当F 位于DC 的中点,点D 与AB 中点重合,1t =. 随F 点到C 点,由CB AB ⊥,CB DK ⊥, 得CB ⊥平面ADB ,则CB BD ⊥.又2CD =,1BC =,则BD =. 因为1AD =,2AB =, 所以AD BD ⊥,故12t =. 综上,t 的取值范围为1,12⎛⎫⎪⎝⎭.点睛:立体几何中折叠问题,要注重折叠前后垂直关系的变化,不变的垂直关系是解决问题的关键条件.14.【解析】【分析】计算关于直线的对称点为计算直线得到答案【详解】设关于直线的对称点为故故故反射光线为:化简得到故答案为:【点睛】本题考查了直线的反射问题找出对称点是解题的关键 解析:27310x y -+=【解析】 【分析】计算()3,5A -关于直线0x y +=的对称点为()15,3A -,计算直线1A B 得到答案.【详解】设()3,5A -关于直线0x y +=的对称点为()1,A x y ,故51335022y x x y -⎧=⎪⎪+⎨-+⎪+=⎪⎩,故()15,3A -. 故反射光线为1A B :()532525y x -=-++,化简得到27310x y -+=. 故答案为:27310x y -+=.【点睛】本题考查了直线的反射问题,找出对称点是解题的关键.15.②③【解析】【分析】①由折叠的原理可知BD ⊥平面ADC 可推知BD ⊥AC 数量积为零②由折叠后AB =AC =BC 三角形为等边三角形得∠BAC =60°;③由DA =DB =DC 根据正三棱锥的定义判断④平面ADC解析:②③ 【解析】 【分析】①由折叠的原理,可知BD ⊥平面ADC ,可推知BD ⊥AC ,数量积为零,②由折叠后AB =AC =BC ,三角形为等边三角形,得∠BAC =60°;③由DA =DB =DC ,根据正三棱锥的定义判断.④平面ADC 和平面ABC 不垂直. 【详解】BD ⊥平面ADC ,⇒BD ⊥AC ,①错; AB =AC =BC ,②对;DA =DB =DC ,结合②,③对④错. 故答案为②③ 【点睛】本题主要考查折叠前后线线,线面,面面关系的不变和改变,解题时要前后对应,仔细论证,属中档题.16.【解析】【分析】点C 关于直线y=x 的对称点为(12)点C 关于x 轴的对称点为(2﹣1)三角形PAB 周长的最小值为(12)与(2﹣1)两点之间的直线距离【详解】点C 关于直线y=x 的对称点为(12)点C 关【解析】 【分析】点C 关于直线y=x 的对称点为C '(1,2),点C 关于x 轴的对称点为C ''(2,﹣1).三角形PAB 周长的最小值为C '(1,2)与C ''(2,﹣1)两点之间的直线距离. 【详解】点C 关于直线y=x 的对称点为C '(1,2),点C 关于x 轴的对称点为C ''(2,﹣1).三角形PAB 周长的最小值为C '(1,2)与C ''(2,﹣1)两点之间的直线距离,|C C '''(2,﹣1).【点睛】本题考查点到直线的距离公式,解题时要认真审题,仔细解答,注意合理地进行等价转化.17.③④【解析】关于①也会有的结论因此不正确;关于②也会有异面的可能的结论因此不正确;容易验证关于③④都是正确的故应填答案③④解析:③④ 【解析】关于①,也会有n ⊂α的结论,因此不正确;关于②,也会有,m n 异面的可能的结论,因此不正确;容易验证关于③④都是正确的,故应填答案③④.18.【解析】【分析】由直线系方程求出直线所过定点再由两点求斜率求得定点与线段两端点连线的斜率数形结合求得实数的取值范围【详解】解:由直线可知直线过定点又如图∵∴由图可知直线与线段相交直线的斜率或斜率不存解析:21,32⎡⎤-⎢⎥⎣⎦【解析】 【分析】由直线系方程求出直线所过定点,再由两点求斜率求得定点与线段两端点连线的斜率,数形结合求得实数m 的取值范围. 【详解】解:由直线:0l x my m ++=可知直线过定点()0,1P -, 又()1,1A -,()2,2B ,如图∵()11201PA K --==---,123022PB K --==-,∴由图可知,直线与线段相交,直线l 的斜率(]3,2,2k ⎡⎫∈-∞-+∞⎪⎢⎣⎭U ,或斜率不存在, ∴(]13,2,2m ⎡⎫-∈-∞-+∞⎪⎢⎣⎭U ,或0m =, 即203m -≤<或102m <≤,或0m =, ∴21,32m ⎡⎤∈-⎢⎥⎣⎦故答案为:21,32⎡⎤-⎢⎥⎣⎦. 【点睛】本题主要考查直线系方程的应用,考查了直线的斜率计算公式,考查了数形结合的解题思想方法,属于中档题.19.【解析】分析:画出图形(如图)根据圆的性质可得然后可将问题转化为切线长最小的问题进而转化为圆心到直线距离的最小值的问题处理详解:根据题意画出图形如下图所示由题意得圆的圆心半径是由圆的性质可得四边形的解析:【解析】分析:画出图形(如图),根据圆的性质可得2PBC PACB S S =V 四边形,然后可将问题转化为切线长最小的问题,进而转化为圆心到直线距离的最小值的问题处理. 详解:根据题意画出图形如下图所示.由题意得圆22:20C x y y +-=的圆心()0,1,半径是1r =, 由圆的性质可得2PBC PACB S S =V 四边形,四边形PACB 的最小面积是2, ∴PBC S V 的最小值112S rd ==(d 是切线长), ∴2d =最小值,∵圆心到直线的距离就是PC 的最小值,==又0k >, ∴2k =.点睛:本题考查圆的性质、切线长定理的运用,解题时注意转化思想方法的运用,结合题意将问题逐步转化为点到直线的距离的问题处理.20.【解析】【分析】作出直线和平面所成的角解直角三角形求得线面角的正弦值【详解】设为的中点连接根据正方体的性质可知平面所以是直线和平面所成的角设正方体的边长为在中所以故答案为:【点睛】本小题主要考查线面 解析:23【解析】 【分析】作出直线BE 和平面11ABB A 所成的角,解直角三角形求得线面角的正弦值. 【详解】设F 为1AA 的中点,连接,,EF EB BF ,根据正方体的性质可知EF ⊥平面11ABB A ,所以EBF ∠是直线BE 和平面11ABB A 所成的角.设正方体的边长为2,在Rt EBF ∆中2EF =,3BE ==,所以2sin 3EF EBF BE ∠==. 故答案为:23【点睛】本小题主要考查线面角的求法,考查空间想象能力,属于基础题.三、解答题21.(1)证明见解析;(2)34m =-,5 【解析】 【分析】(1)直线方程可化为()2740x y m x y +-++-=,令27040x y x y +-=⎧⎨+-=⎩,解方程组可求出定点坐标;(2)当圆心与定点所在直线与直线l 垂直时,直线l 被圆C 截得的弦长最短,求解即可. 【详解】(1)证明:直线:(21)(1)74l m x m y m +++--=0可化为()2740x y m x y +-++-=,令27040x y x y +-=⎧⎨+-=⎩,解得3,1x y ==,所以直线l 过定点()3,1.(2)直线l 过定点()3,1A ,22(31)(12)525-+-=<,故点()3,1A 在圆的内部,直线l与圆C 相交,圆C 的圆心为()1,2,半径为5,()()2231125AC =-+-=当l AC ⊥时,直线l 被圆C 截得的弦长最短,211132AC k -==--,直线l 的斜率为2,即2121m m +-=+,解得34m =-,此时弦长为=故当34m =-时,直线l 被圆C 截得的弦长最短为 【点睛】本题考查了动直线过定点问题,考查了圆的弦长,考查了学生的计算能力,属于中档题. 22.(1)见解析;(2)在棱PA 上存在点E 且E 满足2AEEP=时能使得面//BOE 面PCD ,证明见解析. 【解析】 【分析】(1)可证PD ⊥平面PAB ,从而得到要证明的面面垂直. (2)在棱PA 上存在点E 且E 满足2AEEP=时能使得面//BOE 面PCD , 利用面面平行的判断定理可证明该结论. 【详解】(1)因为90BAD ∠=︒,故BA AD ⊥又因为侧面PAD ⊥底面ABCD ,侧面PAD I 底面ABCD AD =,BA ⊂平面ABCD , 所以BA ⊥平面PAD .因为PD ⊂平面PAD ,故BA PD ⊥,又因为PA PD ⊥,PA AB A =I ,PA ⊂平面PAB ,AB Ì平面PAB , 所以PD ⊥平面PAB ,而PD ⊂平面PCD ,故平面PAB ⊥平面PCD . (2)在棱PA 上存在点E ,使得面//BOE 面PCD ,E 满足2AEEP=,证明如下: 因为2AEEP =,2AO OD =,所以DAE EP AO O =,故//OE PD . 因为OE ⊄平面PCD ,PD ⊂平面PCD ,故//OE 平面PCD .因为//BC AD ,13OD AD BC ==,故//,OD BC OD BC =, 所以四边形BCDO 为平行四边形,故//BO CD ,因为BO ⊄平面PCD ,CD ⊂平面PCD ,故//BO 平面PCD . 因为BO ⊂平面EOB ,EO ⊂平面EOB ,BO EO O ⋂=, 故面//BOE 面PCD .【点睛】本题考查面面垂直的证明和面面平行的探索,前者注意空间中三种垂直关系的转化,后者应根据题设条件得到动点满足的位置特征,然后再根据判定定理来证明,本题属于中档题. 23.(1)证明见详解(2)存在,95PM = 【解析】 【分析】(1)由线面垂直的性质定理可证AD PH ⊥,再由BD PH ⊥即可求证;(2)要证HM ⊥平面PAD ,即证MH PD ⊥,可作HM PD ⊥,连接AM ,经几何关系验证,恰好满足直线HA 与平面PAD 35,求得95PM =;【详解】(1)AD ⊥平面PBD ,PH 在平面PBD 上,所以,AD PH ⊥,又BD PH ⊥,AD 交BD 于D ,所以,PH ⊥平面ABCD ,所以,PH CD ⊥ (2)由题可知,6BD =,又13BH BD =,所以4HD =,132PH BD ==,5PD =,要证HM ⊥平面PAD ,由题设可知AD ⊥平面PBD ,则AD HM ⊥,即证HM PD ⊥, 作HM PD ⊥,在PHD ∆中,由等面积法可知125PH HD HM PD ⋅==, 2245HA HD AD =+=直线HA 与平面PAD 所成角正弦值即为 12355sin 2545HAM ∠==,此时3393555PH PM ==⨯=【点睛】本题考查线面垂直的证明,由线面垂直和线面角反求满足条件的点具体位置,逻辑推理与数学计算能力,属于中档题 24.(1) 4π (2) 92【解析】 【分析】(1)连接AC ,11A C ,由11AC AC P 知11FC A ∠ (或其补角)是异面直线1C F 与AC 所成角,由余弦定理解三角形即可(2)根据11B DBE D BEB V V --=,且三棱锥1D BEB -的高为DC ,底面积为1BEB ∆的面积.【详解】(1)连接AC ,11A C ,∵1111,AC AC FC A ∴∠P (或其补角)是异面直线1C F 与AC 所成角 在11FC A ∆中,111135932,22A C A F C F === 22211935(32)()(222cos 922322FC A +-∠==⨯∴异面直线1C F 与AC 所成角为4π. (2)由题意得, 1111119333=3322B DBE D BEB BEB V V S DC --∆==⋅=⋅⋅⋅⋅.【点睛】本题主要考查了异面直线所成的角,三棱锥的体积,属于中档题. 25.(1)见解析(2)见解析 【解析】 【分析】(1)取AB 的中点P ,连接1,PM PB ,通过中位线定理求证四边形1PMNB 是平行四边形,进而求证;(2)连接1AB ,,设法证明11A B AB ⊥,111A B B C ⊥,进而证明1A B ⊥平面1AB N ,求得1A B AN ⊥. 【详解】解:(1)如图,取AB 的中点P ,连接1,PM PB ,,M P Q 分别是,AC AB 的中点,//PM BC ∴,且12PM BC =,在直三棱柱11t ABC A B C -中, 11//BC B C ,11BC B C =, N Q 是11B C 的中点,∴1PM B N =,且1//PM B N ,∴四边形1PMNB 是平行四边形,1//MN PB ∴, 而MN ⊄平面11ABB A ,1PB ⊂平面11ABB A ,//MN ∴平面11ABB A .(2)如图,连接1AB ,由111ABC A B C -是直三棱柱,90ABC ︒∠=,1AB AA =可知,111B C BB ⊥,1111B C A B ⊥,1111BB B A B =I , ∴11B C ⊥平面11A B BA ,111B C A B ∴⊥,又Q 侧面11A B BA 为正方形,11A B AB ∴⊥,1111AB B C B ⋂=,1A B ∴⊥平面11AB C , 又AN ⊂平面11AB C ,1A B AN ∴⊥【点睛】本题考查线面平行,线线垂直的证明,属于中档题. 26.(1)见解析(2)23【解析】 【分析】(1)连接BF ,证明四边形1BMD F 是平行四边形即可得出1//D M BF ,故1//MD 平面BEFD ;(2)根据M BDE E BDM V V --=求出M 到平面BEFD 的距离.【详解】解:(1)证明:连接BF , ∵111111111111////22D F A B D F A B BM A B BM A B ==,,,, ∴11//D F BM D F BM =,,∴四边形1BMD F 是平行四边形,∴1//D M BF ,又1D M ⊄平面BEFD ,BF ⊂平面BEFD ,∴1//MD 平面BEFD .(2)解:连接ED EM DM ,,,则112122323E BDM V -=⨯⨯⨯⨯=, 又22221111122253BD AB BE BB B E DE D C C E ===+==+=,,,∴22210cos 2BD BE DE DBE BD BE +-∠==⋅,∴310sin DBE ∠=. ∴131022532BDE S =⨯⨯⨯=V , 设M 到平面BEFD 的距离为d ,则12333M BDE V d -=⨯⨯=, ∴23d =.即M 到平面BEFD 的距离为23.【点睛】本题考查了线面平行的判定,棱锥的体积计算,属于中档题.。

2020年成都市高中必修二数学下期末模拟试题带答案

2020年成都市高中必修二数学下期末模拟试题带答案

2020年成都市高中必修二数学下期末模拟试题带答案一、选择题1.为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:根据上表可得回归直线方程ˆˆˆybx a =+,其中ˆˆˆ0.76,b a y bx ==-,据此估计,该社区一户收入为15万元家庭年支出为( )A .11.4万元B .11.8万元C .12.0万元D .12.2万元2.已知集合{}{}2|320,,|05,A x x x x R B x x x N =-+=∈=<<∈,则满足条件A C B⊆⊆的集合C 的个数为( )A .1 B.2 C .3D .43.已知ABC V 为等边三角形,2AB =,设P ,Q 满足AP AB λ=uu ur uu u r ,()()1AQ AC λλ=-∈R u u u r u u u r ,若32BQ CP ⋅=-uu u r uu r ,则λ=( ) A .12 B .12± CD .32± 4.在ABC ∆中,AB =2AC =,E 是边BC 的中点.O 为ABC ∆所在平面内一点且满足222OA OB OC ==u u u v u u u v u u u v ,则·AE AO u u u v uu u v 的值为( ) A .12 B .1 C.2 D.325.在ABC V 中,角A ,B ,C 所对的边为a ,b ,c ,且B 为锐角,若sin 5sin 2A c B b =,sin 4B =,4ABC S =△,则b =( ) A .B . C D 6.《莱茵德纸草书》是世界上最古老的数学著作之一.书中有这样一道题目:把100个面包分给5个人,使每个人所得成等差数列,且使较大的三份之和的17是较小的两份之和,则最小的一份为( ) A .53 B .103 C .56 D .1167.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π8.若,l m 是两条不同的直线,m 垂直于平面α,则“l m ⊥”是“//l α”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件9.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是( ) A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 210.函数()lg ||f x x x =的图象可能是( ) A . B .C .D .11.若tan()24πα+=,则sin cos sin cos αααα-=+( ) A .12 B .2 C .2- D .12- 12.已知0.6log 0.5a =,ln0.5b =,0.50.6c =,则( )A .a c b >>B .a b c >>C .c a b >>D .c b a >>二、填空题13.若,2παπ⎛⎫∈ ⎪⎝⎭,1sin 43πα⎛⎫+= ⎪⎝⎭,则sin α=_________ 14.已知数列{}n a 满足1121,2n n a a a n +==+,则n a n 的最小值为_______. 15.关于函数()sin sin f x x x =+有如下四个结论:①()f x 是偶函数;②()f x 在区间,2ππ⎛⎫ ⎪⎝⎭上单调递增;③()f x 最大值为2;④()f x 在[],ππ-上有四个零点,其中正确命题的序号是_______.16.已知四棱锥P ­ABCD 的底面ABCD 是矩形,PA ⊥底面ABCD ,点E 、F 分别是棱PC 、PD 的中点,则①棱AB 与PD 所在直线垂直;②平面PBC 与平面ABCD 垂直;③△PCD 的面积大于△PAB 的面积;④直线AE 与直线BF 是异面直线.以上结论正确的是________.(写出所有正确结论的序号)17.已知函数42,0()log ,0x x f x x x ⎧≤=⎨>⎩,若1[()]2f f a =-,则a 的值是________. 18.函数2cos 1y x =+的定义域是 _________. 19.若a 10=12,a m =22,则m =______. 20.在△ABC 中,85a b ==,,面积为12,则cos 2C =______.三、解答题21.在ABC ∆中,内角A ,B ,C 的对边a ,b ,c ,且a c >,已知2BA BC ⋅=u u u r u u u r ,1cos 3B =,3b =,求: (1)a 和c 的值;(2)cos()B C -的值.22.在甲、乙两个盒子中分别装有标号为1、2、3、4的四个球,现从甲、乙两个盒子中各取出1个球,每个球被取出的可能性相等.(Ⅰ)求取出的两个球上标号为相同数字的概率;(Ⅱ)求取出的两个球上标号之积能被3整除的概率.23.将函数()4sin cos 6g x x x π⎛⎫=+ ⎪⎝⎭的图象向左平移02πϕϕ⎛⎫<≤ ⎪⎝⎭个单位长度后得到()f x 的图象.(1)若()f x 为偶函数,求()f ϕ的值;(2)若()f x 在7,6ππ⎛⎫ ⎪⎝⎭上是单调函数,求ϕ的取值范围.24.已知x ,y ,()0,z ∈+∞,3x y z ++=. (1)求111x y z++的最小值 (2)证明:2223x y z ≤++.25.某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x ,y.奖励规则如下:①若3xy ≤,则奖励玩具一个;②若8xy ≥,则奖励水杯一个;③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.(Ⅰ)求小亮获得玩具的概率;(Ⅱ)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.26.已知等差数列{}n a 的前n 项和为n S ,且28S =,38522a a a +=+.(1)求n a ;(2)设数列1{}n S 的前n 项和为n T ,求证:34n T <.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】 试题分析:由题,,所以. 试题解析:由已知,又因为ˆˆˆybx a =+,ˆˆˆ0.76,b a y bx ==- 所以,即该家庭支出为万元.考点:线性回归与变量间的关系. 2.D解析:D【解析】【分析】【详解】求解一元二次方程,得{}()(){}2|320,|120,A x x x x x x x x =-+=∈=--=∈R R {}1,2=,易知{}{}|05,1,2,3,4B x x x =<<∈=N .因为A C B ⊆⊆,所以根据子集的定义,集合C 必须含有元素1,2,且可能含有元素3,4,原题即求集合{}3,4的子集个数,即有224=个,故选D.【点评】本题考查子集的概念,不等式,解一元二次方程.本题在求集合个数时,也可采用列举法.列出集合C 的所有可能情况,再数个数即可.来年要注意集合的交集运算,考查频度极高.3.A解析:A【解析】【分析】 运用向量的加法和减法运算表示向量BQ BA AQ =+u u u r u u u r u u u r ,CP CA AP =+u u u r u u u r u u u r ,再根据向量的数量积运算,建立关于λ的方程,可得选项.【详解】∵BQ BA AQ =+u u u r u u u r u u u r ,CP CA AP =+u u u r u u u r u u u r, ∴()()BQ CP BA AQ CA AP AB AC AB AP AC AQ AQ AP ⋅=+⋅+=⋅-⋅-⋅+⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ()()2211AB AC AB AC AB AC λλλλ=⋅---+-⋅u u u r u u u r u u u r u u u r u u u r u u u r()()232441212222λλλλλλ=---+-=-+-=-,∴12λ=. 故选:A.4.D解析:D【解析】【分析】 根据平面向量基本定理可知()12AE AB AC =+u u u v u u u v u u u v ,将所求数量积化为1122AB AO AC AO ⋅+⋅u u u v u u u v u u u v u u u v ;由模长的等量关系可知AOB ∆和AOC ∆为等腰三角形,根据三线合一的特点可将AB AO ⋅u u u v u u u v 和AC AO ⋅u u u v u u u v 化为212AB u u u v 和212AC u u u v ,代入可求得结果. 【详解】E Q 为BC 中点 ()12AE AB AC ∴=+u u u v u u u v u u u v ()111222AE AO AB AC AO AB AO AC AO ∴⋅=+⋅=⋅+⋅u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v 222OA OB OC ==u u u v u u u v u u u v Q AOB ∴∆和AOC ∆为等腰三角形 211cos 22AB AO AB AO OAB AB AB AB ∴⋅=∠=⋅=u u u v u u u v u u u v u u u v u u u v u u u v u u u v ,同理可得:212AC AO AC ⋅=u u u v u u u v u u u v 22111314422AE AO AB AC ∴⋅=+=+=u u u v u u u v u u u v u u u v 本题正确选项:D【点睛】本题考查向量数量积的求解问题,关键是能够利用模长的等量关系得到等腰三角形,从而将含夹角的运算转化为已知模长的向量的运算.5.D解析:D 【解析】【分析】利用正弦定理化简sin5sin2A cB b=,再利用三角形面积公式,即可得到,a c,由sin B=,求得cos B,最后利用余弦定理即可得到答案.【详解】由于sin5sin2A cB b=,有正弦定理可得:52a cb b=,即52a c=由于在ABCV中,sin4B=,4ABCS=△1sin2ABCS ac B==V联立521sin2sina cac BB⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩,解得:5a=,2c=由于B为锐角,且sin4B=,所以3cos4B==所以在ABCV中,由余弦定理可得:2222cos14b ac ac B=+-=,故b=(负数舍去)故答案选D【点睛】本题考查正弦定理,余弦定理,以及面积公式在三角形求边长中的应用,属于中档题.6.A解析:A【解析】【分析】设5人分到的面包数量从小到大记为{}n a,设公差为d,可得345127()a a a a a++=+,5100S=,求出3a,根据等差数列的通项公式,得到关于d关系式,即可求出结论.【详解】设5人分到的面包数量从小到大记为{}n a,设公差为d,依题意可得,15535()51002a aS a+===,33451220,7()a a a a a a∴=++=+,6037(403)d d ∴+=-,解得556d =, 1355522033a a d ∴=-=-=. 故选:A.【点睛】 本题以数学文化为背景,考查等差数列的前n 项和、通项公式基本量的计算,等差数列的性质应用是解题的关键,属于中档题.7.C解析:C【解析】试题分析:由三视图分析可知,该几何体的表面积为圆锥的表面积与圆柱的侧面积之和.,,所以几何体的表面积为.考点:三视图与表面积. 8.B解析:B【解析】若l m ⊥,因为m 垂直于平面α,则//l α或l α⊂;若//l α,又m 垂直于平面α,则l m ⊥,所以“l m ⊥”是“//l α的必要不充分条件,故选B .考点:空间直线和平面、直线和直线的位置关系.9.D解析:D【解析】把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,得到函数y=cos2x 图象,再把得到的曲线向左平移π12个单位长度,得到函数y=cos2(x +π12)=cos (2x +π6)=sin (2x +2π3)的图象,即曲线C 2, 故选D . 点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母x 而言. 函数sin()()y A x x R ωϕ=+∈是奇函数π()k k Z ϕ⇔=∈;函数sin()()y A x x R ωϕ=+∈是偶函数ππ+()2k k Z ϕ⇔=∈;函数cos()()y A x x R ωϕ=+∈是奇函数ππ+()2k k Z ϕ⇔=∈;函数cos()()y A x x R ωϕ=+∈是偶函数π()k k Z ϕ⇔=∈.10.D解析:D【解析】【分析】分析函数()y f x =的定义域、奇偶性及其在()0,1上的函数值符号,可得出结论.【详解】函数()lg f x x x =的定义域为{}0x x ≠,定义域关于原点对称, ()()lg lg f x x x x x f x -=--=-=-,函数()y f x =为奇函数,排除A 、C 选项; 当01x <<时,lg 0x <,此时()lg 0f x x x =<,排除B 选项.故选:D.【点睛】本题考查由函数的解析式选择函数图象,一般分析函数的定义域、奇偶性、单调性、零点以及函数值符号,考查推理能力,属于中等题.11.D解析:D【解析】 由tan()24πα+=有tan 112,tan 1tan 3ααα+==-,所以11sin cos tan 1131sin cos tan 1213αααααα---===-+++,选D. 点睛:本题主要考查两角和的正切公式以及同角三角函数的基本关系式,属于中档题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021成都市盐道街中学高中必修二数学下期末一模试卷带答案一、选择题1.设集合{}1,2,4A =,{}240B x x x m =-+=.若{}1A B ⋂=,则B =( ) A .{}1,3-B .{}1,0C .{}1,3D .{}1,52.(2015新课标全国I 理科)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有A .14斛B .22斛C .36斛D .66斛3.函数()23sin 23f x x π⎛⎫=- ⎪⎝⎭的一个单调递增区间是 A .713,1212ππ⎡⎤⎢⎥⎣⎦ B .7,1212ππ⎡⎤⎢⎥⎣⎦ C .,22ππ⎡⎤-⎢⎥⎣⎦ D .5,66ππ⎡⎤-⎢⎥⎣⎦ 4.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x =f +x -,若(1)2f =,则(1)(2)f +f (3)(2020)f f +++=L ( )A .50B .2C .0D .50-5.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是( ) A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 26.已知{}n a 的前n 项和241n S n n =-+,则1210a a a +++=L ( )A .68B .67C .61D .607.已知01a b <<<,则下列不等式不成立...的是 A .11()()22ab>B .ln ln a b >C .11a b> D .11ln ln a b> 8.有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为 A .45B .35C .25D .159.已知1sin 34πα⎛⎫-= ⎪⎝⎭,则cos 23πα⎛⎫+= ⎪⎝⎭( )A .58-B .58C .78-D .7810.已知二项式2(*)nx n N⎛∈ ⎝的展开式中第2项与第3项的二项式系数之比是2︰5,则3x 的系数为( ) A .14B .14-C .240D .240-11.已知()f x 是定义在R 上的奇函数,当0x >时,()32f x x =-,则不等式()0f x >的解集为( )A .33,0,22⎛⎫⎛⎫-∞- ⎪ ⎪⎝⎭⎝⎭UB .33,,22⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭C .33,22⎛⎫- ⎪⎝⎭D .33,0,22⎛⎫⎛⎫-⋃+∞ ⎪ ⎪⎝⎭⎝⎭12.已知圆()()22:341C x y -+-=和两点(),0A m -,()(),00B m m >,若圆C 上存在点P ,使得90APB ∠=︒,则m 的最大值为( ) A .7B .6C .5D .4二、填空题13.设n S 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则n S =__________.14.在ABC ∆中,若3B π=,AC =2AB BC +的最大值为__________.15.等边ABC ∆的边长为2,则AB u u u v 在BC uuu v方向上的投影为________.16.如图是抛物线形拱桥,当水面在l 时,拱顶离水面2米,水面宽4米,水位下降1米后,水面宽 米.17.如图,在矩形中,为边的中点,1AB =,2BC =,分别以A 、D 为圆心,1为半径作圆弧EB 、EC (在线段AD 上).由两圆弧EB 、EC 及边所围成的平面图形绕直线旋转一周,则所形成的几何体的体积为 .18.直线l 与圆22240(3)x y x y a a ++-+=<相交于两点A ,B ,弦AB 的中点为(0,1),则直线l 的方程为__________.19.在ABC ∆中,120B =o ,1BC =,且ABC ∆的面积为3,则AC =__________. 20.已知()()2,3,4,3A B -,点P 在直线AB 上,且32AP PB =u u u v u u u v,则点P 的坐标为________三、解答题21.某市为了考核甲,乙两部门的工作情况,随机访问了50位市民,根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:(1)分别估计该市的市民对甲,乙两部门评分的中位数; (2)分别估计该市的市民对甲,乙两部门的评分高于90的概率; (3)根据茎叶图分析该市的市民对甲,乙两部门的评价.22.记n S 为公差不为零的等差数列{}n a 的前n 项和,已知2219a a =,618S =.(1)求{}n a 的通项公式;(2)求n S 的最大值及对应n 的大小.23.已知函数()()221+0g x ax ax b a =-+>在区间[2,3]上有最大值4和最小值1.(1)求a 、b 的值; (2)设()()2g x f x x =-,若不等式()0f x k ->在x ∈(]2,5上恒成立,求实数k 的取值范围.24.已知函数2()4f x x ax =-++,()|1||1|g x x x =++-. (1)当1a =时,求不等式()()f x g x ≥的解集;(2)若不等式()()f x g x ≥的解集包含[–1,1],求a 的取值范围.25.已知数列{}n a 的前n 项和n S ,且23n s n n =+;(1)求它的通项n a .(2)若12n n n b a -=,求数列{}n b 的前n 项和n T .26.某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:(I )记A 为事件:“一续保人本年度的保费不高于基本保费”.求P (A )的估计值; (Ⅱ)记B 为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求P (B )的估计值;(Ⅲ)求续保人本年度的平均保费估计值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C解析:C 【解析】∵ 集合{}124A ,,=,{}2|40B x x x m =-+=,{}1A B ⋂= ∴1x =是方程240x x m -+=的解,即140m -+= ∴3m =∴{}{}{}22|40|43013B x x x m x x x =-+==-+==,,故选C2.B解析:B 【解析】试题分析:设圆锥底面半径为r ,则12384r ⨯⨯=,所以163r =,所以米堆的体积为211163()5433⨯⨯⨯⨯=3209,故堆放的米约为3209÷1.62≈22,故选B. 考点:圆锥的性质与圆锥的体积公式3.A解析:A 【解析】 【分析】首先由诱导公式对函数的解析式进行恒等变形,然后求解其单调区间即可. 【详解】 函数的解析式即:()223sin 23sin 233f x x x ππ⎛⎫⎛⎫=-=-- ⎪ ⎪⎝⎭⎝⎭,其单调增区间满足:()23222232k x k k Z πππππ+≤-≤+∈, 解得:()7131212k x k k Z ππππ+≤≤+∈, 令0k =可得函数的一个单调递增区间为713,1212ππ⎡⎤⎢⎥⎣⎦. 故选A . 【点睛】本题主要考查诱导公式的应用,三角函数单调区间的求解等知识,意在考查学生的转化能力和计算求解能力.4.C解析:C 【解析】 【分析】利用()f x 是定义域为(,)-∞+∞的奇函数可得:()()f x f x -=-且()00f =,结合(1)(1)f x =f +x -可得:函数()f x 的周期为4;再利用赋值法可求得:()20f =,()32f =-,()40f =,问题得解.【详解】因为()f x 是定义域为(,)-∞+∞的奇函数, 所以()()f x f x -=-且()00f = 又(1)(1)f x =f +x -所以()()()()()21111f x f x f x f x f x ⎡⎤⎡⎤+=++=-+=-=-⎣⎦⎣⎦ 所以()()()()()4222f x f x f x f x f x ⎡⎤⎡⎤+=++=-+=--=⎣⎦⎣⎦ 所以函数()f x 的周期为4,在(1)(1)f x =f +x -中,令1x =,可得:()()200f f ==在(1)(1)f x =f +x -中,令2x =,可得:()()()3112f f f =-=-=- 在(1)(1)f x =f +x -中,令3x =,可得:()()()4220f f f =-=-= 所以(1)(2)f +f ()()()()2020(3)(2020)12344f f f f f f ⎡⎤+++=⨯+++⎣⎦L 50500=⨯=故选C 【点睛】本题主要考查了奇函数的性质及函数的周期性应用,还考查了赋值法及计算能力、分析能力,属于中档题.5.D解析:D 【解析】把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,得到函数y=cos2x 图象,再把得到的曲线向左平移π12个单位长度,得到函数y=cos2(x +π12)=cos (2x +π6)=sin (2x +2π3)的图象,即曲线C 2, 故选D .点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母x 而言. 函数sin()()y A x x R ωϕ=+∈是奇函数π()k k Z ϕ⇔=∈;函数sin()()y A x x R ωϕ=+∈是偶函数ππ+()2k k Z ϕ⇔=∈;函数cos()()y A x x R ωϕ=+∈是奇函数ππ+()2k k Z ϕ⇔=∈;函数cos()()y A x x R ωϕ=+∈是偶函数π()k k Z ϕ⇔=∈.6.B解析:B 【解析】 【分析】首先运用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩求出通项n a ,判断n a 的正负情况,再运用1022S S -即可得到答案. 【详解】当1n =时,112S a ==-;当2n ≥时,()()()22141141125n n n a S S n n n n n -⎡⎤=-=-+----+=-⎣⎦, 故2,125,2n n a n n -=⎧=⎨-≥⎩;所以,当2n ≤时,0n a <,当2n >时,0n a >. 因此,()()()12101234101022612367a a a a a a a a S S +++=-+++++=-=-⨯-=L L .故选:B . 【点睛】本题考查了由数列的前n 项和公式求数列的通项公式,属于中档题,解题时特别注意两点,第一,要分类讨论,分1n =和2n ≥两种情形,第二要掌握()12n n n a S S n -=-≥这一数列中的重要关系,否则无法解决此类问题,最后还要注意对结果的处理,分段形式还是一个结果的形式.7.B解析:B 【解析】 【分析】根据指数函数、对数函数的单调性,以及不等式的性质,对选项逐一分析,由此得出不等式不成立的选项. 【详解】依题意01a b <<<,由于12xy ⎛⎫= ⎪⎝⎭为定义域上的减函数,故11()()22a b >,故A 选项不等式成立.由于ln y x =为定义域上的增函数,故ln ln 0a b <<,则11ln ln a b>,所以B 选项不等式不成立,D 选项不等式成立.由于01a b <<<,故11a b>,所以C 选项不等式成立.综上所述,本小题选B. 【点睛】本小题主要考查指数函数和对数函数的单调性,考查不等式的性质,属于基础题.8.C解析:C 【解析】选取两支彩笔的方法有25C 种,含有红色彩笔的选法为14C 种,由古典概型公式,满足题意的概率值为142542105C p C ===. 本题选择C 选项. 考点:古典概型名师点睛:对于古典概型问题主要把握基本事件的种数和符合要求的事件种数,基本事件的种数要注意区别是排列问题还是组合问题,看抽取时是有、无顺序,本题从这5支彩笔中任取2支不同颜色的彩笔,是组合问题,当然简单问题建议采取列举法更直观一些.9.C解析:C 【解析】 由题意可得:1sin sin cos 32664ππππααα⎡⎤⎛⎫⎛⎫⎛⎫-=-+=+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 则217cos 2cos 22cos 121366168πππααα⎛⎫⎛⎫⎛⎫+=+=+-=⨯-=-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.本题选择C 选项.10.C解析:C 【解析】 【分析】由二项展开式的通项公式为()12rn rr r nT C x -+⎛= ⎝及展开式中第2项与第3项的二项式系数之比是2︰5可得:6n =,令展开式通项中x 的指数为3,即可求得2r =,问题得解. 【详解】二项展开式的第1r +项的通项公式为()12rn rr r nT Cx -+⎛= ⎝由展开式中第2项与第3项的二项式系数之比是2︰5,可得:12:2:5n n C C =. 解得:6n =.所以()()366216221rr n rr rr r r n T C x C xx ---+⎛=-=- ⎪⎝⎭ 令3632r -=,解得:2r =, 所以3x 的系数为()2262621240C --=故选C 【点睛】本题主要考查了二项式定理及其展开式,考查了方程思想及计算能力,还考查了分析能力,属于中档题.11.A解析:A 【解析】 【分析】根据题意,结合函数的解析式以及奇偶性分析可得()f x 的图象,据此分析可得答案. 【详解】解:因为()f x 是定义在R 上的奇函数, 所以它的图象关于原点对称,且()00f =, 已知当0x >时,()32f x x =-, 作出函数图象如图所示,从图象知:33022f f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭, 则不等式()0f x >的解集为33,0,22⎛⎫⎛⎫-∞-⋃ ⎪ ⎪⎝⎭⎝⎭. 故选:A.【点睛】本题考查函数的奇偶性与单调性的综合应用,以及函数的解析式,考查数形结合思想.12.B解析:B 【解析】由题意知,点P 在以原点(0,0)为圆心,以m 为半径的圆上,又因为点P 在已知圆上,所以只要两圆有交点即可,所以15m -=,故选B.考点:本小题主要考查两圆的位置关系,考查数形结合思想,考查分析问题与解决问题的能力.二、填空题13.【解析】原式为整理为:即即数列是以-1为首项-1为公差的等差的数列所以即【点睛】这类型题使用的公式是一般条件是若是消就需当时构造两式相减再变形求解;若是消就需在原式将变形为:再利用递推求解通项公式解析:1n-【解析】原式为1111n n n n n n n a S S S S S S ++++=⇔-=,整理为:1111n n S S +-= ,即1111n n S S +-=-,即数列1n S ⎧⎫⎨⎬⎩⎭是以-1为首项,-1为公差的等差的数列,所以()()1111n n n S =-+--=- ,即1n S n=-. 【点睛】这类型题使用的公式是11{n n n S a S S -=- 12n n =≥ ,一般条件是()n n S f a = ,若是消n S ,就需当2n ≥ 时构造()11n n S f a --= ,两式相减1n n n S S a --= ,再变形求解;若是消n a ,就需在原式将n a 变形为:1n n n a S S -=- ,再利用递推求解通项公式.14.【解析】【分析】【详解】设最大值为考点:解三角形与三角函数化简点评:借助于正弦定理三角形内角和将边长用一内角表示转化为三角函数求最值只需将三角函数化简为的形式解析:【解析】 【分析】 【详解】设22sin sin 3AB BC A θθπθ====⎛⎫- ⎪⎝⎭Q22sin ,3AB πθ⎛⎫∴=- ⎪⎝⎭2sin BC θ=()222sin 4sin 3AB BC πθθθϕ⎛⎫∴+=-+=+ ⎪⎝⎭,最大值为考点:解三角形与三角函数化简点评:借助于正弦定理,三角形内角和将边长用一内角表示,转化为三角函数求最值,只需将三角函数化简为()22sin cos sin a b a b θθθϕ+=++的形式15.【解析】【分析】建立直角坐标系结合向量的坐标运算求解在方向上的投影即可【详解】建立如图所示的平面直角坐标系由题意可知:则:且据此可知在方向上的投影为【点睛】本题主要考查平面向量数量积的坐标运算向量投 解析:1-【解析】【分析】建立直角坐标系,结合向量的坐标运算求解AB u u u r 在BC uuu r 方向上的投影即可.【详解】建立如图所示的平面直角坐标系,由题意可知:()0,0A ,()2,0B ,()1,3C , 则:()2,0AB =uu u r ,()1,3BC =-u u u v ,2AB BC ⋅=-u u u r u u u r且2AB =u u u r ,10BC =u u u v ,据此可知AB u u u r 在BC uuu r 方向上的投影为212AB BC AB ⋅-==-u u u v u u u v u u u v .【点睛】本题主要考查平面向量数量积的坐标运算,向量投影的定义与计算等知识,意在考查学生的转化能力和计算求解能力.16.2米【解析】【分析】【详解】如图建立直角坐标系设抛物线方程为将A (2-2)代入得m=-2∴代入B 得故水面宽为米故答案为米考点:抛物线的应用 解析:6米【解析】【分析】【详解】如图建立直角坐标系,设抛物线方程为2x my =,将A (2,-2)代入2x my =,得m=-2,∴22x y =-,代入B ()0,3x -得06x =,故水面宽为26米,故答案为26米.考点:抛物线的应用 17.【解析】由题意可得所得到的几何体是由一个圆柱挖去两个半球而成;其中圆柱的底面半径为1母线长为2;体积为;两个半球的半径都为1则两个半球的体积为;则所求几何体的体积为考点:旋转体的组合体解析:【解析】由题意,可得所得到的几何体是由一个圆柱挖去两个半球而成;其中,圆柱的底面半径为1,母线长为2;体积为;两个半球的半径都为1,则两个半球的体积为;则所求几何体的体积为.考点:旋转体的组合体.18.【解析】【分析】【详解】设圆心直线的斜率为弦AB 的中点为的斜率为则所以由点斜式得解析:10x y -+=.【解析】【分析】【详解】设圆心O ,直线l 的斜率为k ,弦AB 的中点为P ,PO 的斜率为op k ,2110op k -=--则l PO ⊥,所以k (1)11op k k k ⋅=⋅-=-∴=由点斜式得1y x =+.19.【解析】【分析】根据三角形面积公式得到再由余弦定理得到AC 长【详解】在中且的面积为由正弦定理的面积公式得到:再由余弦定理得到故得到故答案为:【点睛】本题主要考查余弦定理的应用以及三角形面积公式;在解【解析】【分析】根据三角形面积公式得到11 2.222S AB AB =⨯⨯⨯=⇒=再由余弦定理得到AC 长. 【详解】在ABC ∆中,120B =o ,1BC =,且ABC ∆到:11 2.222S AB AB =⨯⨯⨯=⇒= 再由余弦定理得到22202cos1207AC AB BC AB BC =+-⨯⨯⨯=故得到AC =.【点睛】本题主要考查余弦定理的应用以及三角形面积公式;在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据. 解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说 ,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.20.【解析】【分析】设点得出向量代入坐标运算即得的坐标得到关于的方程从而可得结果【详解】设点因为点在直线且或即或解得或;即点的坐标是【点睛】本题考查了平面向量的线性运算的坐标表示以及平面向量的共线问题意 解析:(8,-15), 163,55⎛⎫-⎪⎝⎭ 【解析】【分析】 设点(),P x y ,得出向量33,22AP BP AP BP ==-u u u r u u u r u u u r u u u r ,代入坐标运算即得P 的坐标,得到关于,x y 的方程,从而可得结果.【详解】设点(),P x y ,因为点P 在直线,且3||||2AP PB =u u u r u u u r , 33,22AP BP AP BP ∴==-u u u r u u u r u u u r u u u r , 3(2,3)(4,3)2x y x y ∴--=-+或, 3(2,3)(4,3)2x y x y ∴--=--+,即243122639x x y y -=-⎧⎨-=+⎩或243122639x x y y -=-+⎧⎨-=--⎩, 解得815x y =⎧⎨=-⎩或16535x y ⎧=⎪⎪⎨⎪=-⎪⎩; 即点P 的坐标是(8,-15),163,55⎛⎫- ⎪⎝⎭. 【点睛】本题考查了平面向量的线性运算的坐标表示以及平面向量的共线问题,意在考查对基础知识的掌握与应用,是基础题.三、解答题21.(1)该市的市民对甲、乙两部门评分的中位数的估计值分别为75,67;(2)0.1,0.16;(3)详见解析.【解析】试题分析:(1)50名市民对甲部门的评分由小到大排序,排在第25,26位的平均数即为甲部门评分的中位数.同理可得乙部门评分的中位数.(2)甲部门的评分高于90的共有5个,所以所求概率为550;乙部门的评分高于90的共8个,所以所求概率为850.(3)市民对甲部门的评分的中位数高于乙部门的评分的中位数,且甲部门的评分较集中,乙部门的评分相对分散,即甲部门的评分的方差比乙部门的评分的方差小.试题解析:解:(1)由所给茎叶图知,将50名市民对甲部门的评分由小到大排序,排在第25,26位的是75,75,故甲样本的中位数为75,所以该市的市民对甲部门评分的中位数估计值是75.50位市民对乙部门的评分由小到大排序,排在第25,26位的是66,68,故样本中位数为6668672+=,所以该市的市民对乙部门评分的中位数的估计值是67. (2)由所给茎叶图知,50位市民对甲,乙部门的评分高于90的比率为580.1,0.165050==,故该市的市民对甲,乙部门的评分高于90的概率的估计分别为0.1,0.16;(3)由所给茎叶图知,市民对甲部门的评分的中位数高于乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评分的标准差要小于乙部门的评分的标准差,说明该市市民对甲部门的评价较高,评价较为一致,对乙部门的评价较低,评价差异较大.(注:考生利用其它统计量进行分析,结论合理的同样给分).考点:1平均数,古典概型概率;2统计.22.(1)*(2)10n a n n ∈=-N (2)当4n =或5n =时,n S 有最大值为20.【解析】【分析】(1)将已知条件转化为1,a d 的形式列方程,由此解得1,a d ,进而求得{}n a 的通项公式. (2)根据等差数列前n 项和公式求得n S ,利用配方法,结合二次函数的性质求得n S 的最大值及对应n 的大小.【详解】(1)设{}n a 的公差为d ,且0d ≠.由2219a a =,得140a d +=,由618S =,得1532a d +=, 于是18a =,2d =-.所以{}n a 的通项公式为*(2)10n a n n ∈=-N .(2)由(1)得(1)8(2)2n n n S n -=+⨯- 29n n =-+2981()24n =--+ 因为*n ∈N ,所以当4n =或5n =时,n S 有最大值为20.【点睛】本小题主要考查等差数列通项公式和前n 项和公式基本量的计算,考查等差数列前n 项和的最值的求法,属于基础题.23.(1)1,0a b ==;(2)4k <.【解析】【分析】(1)函数()g x 的对称轴方程为1x =,开口向上,则在[]2,3上单调递增,则可根据最值列出方程,可解得,a b 的值.(2)由题意只需()min k f x <,则只需要求出()f x 在(]2,5上的最小值,然后运用基本不等式求最值即可.【详解】解:(1)()g x Q 开口方向向上,且对称轴方程为 1x =,()g x ∴在[]2,3上单调递增()()()()min max 2441139614g x g a a b g x g a a b ⎧==-++=⎪∴⎨==-++=⎪⎩.解得1a =且0b =.(2)()0f x k ->Q 在(]2,5x ∈上恒成立所以只需()min k f x <.有(1)知()221112224222x x f x x x x x x -+==+=-++≥=--- 当且仅当122x x -=-,即3x =时等号成立. 4k ∴<.【点睛】本题考查二次函数的最值的求法,注意讨论对称轴和区间的位置关系,考查不等式恒成立问题的解法,注意运用参数分离和基本不等式的应用,属于中档题.24.(1){|1x x -≤≤;(2)[1,1]-. 【解析】【详解】试题分析:(1)分1x <-,11x -≤≤,1x >三种情况解不等式()()f x g x ≥;(2)()()f x g x ≥的解集包含[1,1]-,等价于当[1,1]x ∈-时()2f x ≥,所以(1)2f -≥且(1)2f ≥,从而可得11a -≤≤.试题解析:(1)当1a =时,不等式()()f x g x ≥等价于21140x x x x -+++--≤.① 当1x <-时,①式化为2340x x --≤,无解;当11x -≤≤时,①式化为220x x --≤,从而11x -≤≤;当1x >时,①式化为240x x +-≤,从而1x <≤. 所以()()f x g x ≥的解集为1{|1}2x x --≤≤. (2)当[]1,1x ∈-时,()2g x =.所以()()f x g x ≥的解集包含[]1,1-,等价于当[]1,1x ∈-时()2f x ≥.又()f x 在[]1,1-的最小值必为()1f -与()1f 之一,所以()12f -≥且()12f ≥,得11a -≤≤.所以a 的取值范围为[]1,1-.点睛:形如||||x a x b c -+-≥(或c ≤)型的不等式主要有两种解法:(1)分段讨论法:利用绝对值号内式子对应方程的根,将数轴分为(,]a -∞,(,]a b ,(,)b +∞ (此处设a b <)三个部分,将每部分去掉绝对值号并分别列出对应的不等式求解,然后取各个不等式解集的并集.(2)图像法:作出函数1||||y x a x b =-+-和2y c =的图像,结合图像求解.25.(1)22n a n =+(2)12n n T n +=•【解析】【分析】(1)由2S 3n n n =+,利用n a 与n S 的关系式,即可求得数列的通项公式;(2)由(1)可得2(1)n n b n =+,利用乘公比错位相减法,即可求得数列{}n b 的前n 项和.【详解】(1)由2S 3n n n =+,当1n =时,11S 4a ==;当1n >时,2213(1)3(1)n n n a S S n n n n -=-=+----22n =+,当1n =也成立,所以则通项22n a n =+;(2)由(1)可得2(1)n n b n =+,-123223242(1)2n n T n =•+•+•+++•L ,231222322(1)2n n n T n n +=•+•++•++•L ,两式相减得2314(222)(1)2n n n T n +-=++++-+L g21112(12)4(1)2212n n n n n -++-=+-+=--g g 所以数列{}n b 的前n 项和为12n n T n +=•.【点睛】本题主要考查了数列n a 和n S 的关系、以及“错位相减法”求和的应用,此类题目是数列问题中的常见题型,解答中确定通项公式是基础,准确计算求和是关键,易错点是在“错位”之后求和时,弄错等比数列的项数,着重考查了的逻辑思维能力及基本计算能力等.26.(I )1120;(Ⅱ)310;(Ⅲ)1.1925a . 【解析】【分析】(I )求出A 为事件:“一续保人本年度的保费不高于基本保费”的人数.总事件人数,即可求P (A )的估计值;(Ⅱ)求出B 为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”的人数.然后求P (B )的估计值;(Ⅲ)利用人数与保费乘积的和除以总续保人数,可得本年度的平均保费估计值.【详解】解:(I )记A 为事件:“一续保人本年度的保费不高于基本保费”.事件A 的人数为:60+50=110,该险种的200名续保,P (A )的估计值为:1101120020=; (Ⅱ)记B 为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.事件B 的人数为:30+30=60,P (B )的估计值为:60320010=; (Ⅲ)续保人本年度的平均保费估计值为0.856050 1.2530 1.530 1.7520210200a a a a a a x ⨯+⨯+⨯+⨯+⨯+⨯==1.1925a . 【点睛】 本题考查样本估计总体的实际应用,考查计算能力.。

相关文档
最新文档