现代仪器分析名词解释
仪器分析的名词解释

仪器分析的名词解释仪器分析是一项涉及科学技术和仪器设备的研究领域,旨在利用各种仪器设备来对物质进行精确测量和分析。
通过仪器分析,可以获取关于物质组成、结构和性质等方面的详细信息。
在现代科学研究、工业生产和环境监测等领域中,仪器分析技术发挥着至关重要的作用。
一、质谱分析质谱分析是一种基于物质分子的质量和质量与电荷比的仪器分析技术。
质谱仪是质谱分析的主要仪器设备。
通过将待测物质样品转化为气态、液态或固态粒子,并将其离子化,利用磁场或电场将离子按质量或质荷比进行分离,最后测量和记录离子信号,从而获得物质组成、结构和分子质量等信息。
质谱分析在有机化学、生物学、医学研究和环境监测中有着广泛应用。
二、光谱分析光谱分析是一种利用物质与电磁辐射相互作用的仪器分析技术。
光谱仪是光谱分析的主要仪器设备。
通过将样品与特定波长或一定范围的电磁辐射相互作用,测量和记录信号的能量和强度变化,从而获得物质样品的光谱信息。
光谱分析包括可见光谱、红外光谱、紫外光谱等多种形式,根据物质与辐射的相互作用方式和特点,可获得物质组成、结构和性质等信息。
光谱分析在化学、物理、材料科学、地球科学和天文学等多个领域中发挥着重要作用。
三、电化学分析电化学分析是一种利用电化学原理和技术对物质进行分析的方法。
电化学仪器是电化学分析的主要设备,如电位计、电解槽和电化学工作站等。
通过将待测物质与电极接触,应用电位差和电流进行反应和测量,从而获得物质的电活性和电化学参数等信息。
电化学分析可用于测定溶液中的离子浓度、物质的电导率以及电化学反应速率等。
在环境保护、生命科学和电池等领域中,电化学分析具有广泛的应用前景。
四、色谱分析色谱分析是一种将待分析物质溶液以流动相或静态相的形式通过色谱柱,利用待测物质在固定填料上的相互作用和迁移行为进行分离和测量的仪器分析技术。
色谱仪是色谱分析的主要仪器设备。
根据分离原理和方法不同,色谱分析可分为气相色谱、液相色谱、超高效液相色谱等。
名词解释-仪器分析

适用范围有限
不同的仪器分析方法有不同的适用范围, 对于某些特定类型的样品或特定组分的测 定可能不适用。
对操作人员要求高
仪器分析需要操作人员具备较高的专业知 识和技能,能够正确使用和维护仪器,保 证分析结果的准确性和可靠性。
05 仪器分析的发展趋势
高通量和高灵敏度仪器的发展
总结词
随着科学技术的发展,仪器分析的高通量和 高灵敏度已成为重要的发展趋势。
红外光谱法是通过测量样品对红外光的吸收程度,来确定样品中分子的结构和组成。紫外-可见光谱法则是通过测量样品对紫 外-可见光的吸收和反射程度,来确定样品中分子的结构和组成。拉曼光谱法则是通过测量拉曼散射光的波长和强度,来确定 样品中分子的结构和组成。
电化学分析法
电化学分析法是利用电化学反应进行分析的方法。根据电化学反应过程中电流、电压、电导等参数的 变化,可以确定样品中物质的种类和浓度。电化学分析法包括电位分析法、伏安分析法、电导分析法 等。
详细描述
高灵敏度仪器能够检测更低浓度的物质,有 助于发现和诊断早期疾病,保护环境和食品 安全。高通量仪器能够在短时间内处理大量 样本,提高分析效率,满足大规模筛查和个 性化医疗的需求。
微型化与便携式仪器的发展
要点一
总结词
要点二
详细描述
仪器分析的微型化和便携化使得检测更为便捷,特别适用 于现场快速检测和移动医疗。
多技术联用仪器将电化学、光学、质谱等多种检测技术 集成在一个仪器中,充分发挥各种技术的优势,提高检 测的准确性和可靠性。这种仪器可以同时检测多种指标 ,提供更全面的信息,适用于复杂样品的分析和跨学科 的研究领域。
感谢您的观看
THANKS
VS
原子吸收光谱法是通过测量样品中原 子对特定波长光的吸收程度,来确定 样品中元素的含量。原子发射光谱法 则是通过测量样品中原子发射出的光 子能量和数量,来确定样品中元素的 种类和含量。
仪器分析(名词解释)

仪器分析(名词解释).doc仪器分析(Instrumental Analysis)是一门研究测定物质的含量、结构及性质的科学。
它是由分析化学与仪器学结合起来的科学。
它是对物质的构成、含量及性质进行分析测定和确定的方法,也就是说,借助仪器和手段,通过物质本身的反应,检测物质的特征和各种组成,以及它们之间的关系,从而达到确定物质组成和性质的目的。
仪器分析具有准确、快速、高效、可重复等特点。
它结合了传统的分析化学和仪器学的技术,能够检测出物质的特征,并且能够精确地测定出物质的含量。
仪器分析可以分为光谱分析、质谱分析、电化学分析和核磁共振分析等。
光谱分析是仪器分析中最常用的一种技术。
它利用物质发出的不同波长的光,从而判断物质的组成、结构及性质。
可以分为原子光谱分析、分子光谱分析、X射线光谱分析、红外光谱分析、紫外光谱分析等。
质谱分析是测定物质分子结构的另一种方法。
它利用质谱仪,将物质分成其原子的离子,并以质量分辨率的形式测定出物质的分子结构。
它分为电子质谱分析和离子质谱分析两类。
电化学分析是测定物质及其反应物的含量时使用的常用方法。
它通过测量物质在电极上发生的电化学反应,从而测定出物质的含量。
它有很大的应用前景,因为它可以测定出低激活能量物质的含量。
核磁共振分析(NMR)是一种测定物质结构和性质的非常有效的方法。
它可以通过在核磁场中对物质的核磁共振信号的分析,测定出物质的结构和性质。
它也可用于测定物质的含量。
仪器分析是一门研究物质的含量、结构及性质的科学,它是由分析化学与仪器学结合起来的科学。
仪器分析具有准确、快速、高效、可重复等特点,它的应用非常广泛,可以用于科学研究、工业生产、农业生产等多个领域。
它是通过借助仪器和手段,结合传统的分析化学和仪器学技术,对物质进行分析测定和确定的方法,从而达到确定物质组成和性质的目的。
常见的仪器分析方法有光谱分析、质谱分析、电化学分析和核磁共振分析等。
现代仪器分析

一、名词解释第一章1、标准曲线: 标准系列的浓度(或含量) 和其相对应的响应信号测量值的关系曲线。
2、灵敏度: 物质单位浓度或单位质量的变化所引起响应信号值变化的程度,称为方法的灵敏度,用S表示。
3、检出限: 某一方法在给定的置信水平上可以检出被测物质的最小浓度或最小质量,称为这种方法对该物质的检出限。
4、相关系数: 用来表征被测物质浓度(或含量)x与其响应信号值y之间线性关系好坏程度的一个统计参数。
相关系数定义为:5、仪器分析:某些物理或物理化学性质的参数及其变化来获取物质的化学组成、成分含量及化学结构等信息的一类方法。
6、分析化学:包括化学分析和仪器分析两大部分。
化学分析是分析化学的基础。
仪器分析是分析化学的发展方向。
测量常量组分常用化学分析,而测量微量或痕量组分时,则常用仪器分析。
二、填空题1、仪器分析包括(检测技术)和(分离技术)。
2、监测技术包括(光学分析法)和(电化学分析法)分离技术包括(色谱分析)(电泳分析)。
3、色谱技术主要包括(气相色谱)、(液相色谱)(超临界流体)。
4、分析仪器的基本结构包括(信号发生器)(检测器)(信号处理器)(读出装置)四部分组成。
5、分析化学的第一阶段标志工具是(天平)。
6、仪器分析定量分析主要评价指标:(准确度)(精密度)(标准曲线)(灵敏度)(检出限)三、简答题1、仪器分析可以分为哪几类?发展方向是什么?分为:1、光分析法:凡是以电磁辐射为测量信号的分析方法均为光分析法。
可分为光谱法和非光谱法。
光谱法则是以光的吸收、发射和拉曼散射等作用而建立的光谱方法。
这类方法比较多,是主要的光分析方法。
非光谱法是指那些不以光的波长为特征的信号,仅通过测量电磁幅射的某些基本性质(反射,折射,干涉,衍射,偏振等)。
光分析法的分类:原子发射光谱,原子吸收光谱,紫外可见光谱,红外光谱,核磁谱,分子荧光光谱,原子荧光光谱2、电化学分析法:根据物质在溶液中的电化学性质建立的一类分析方法。
仪器分析名词解释

绪论1.仪器分析:以物质的某些物理或化学性质(光、电、热、磁等)为基础,并借助于特殊的设备,对待测物质进行定性、定量及结构分析和动态分析的一类方法,又称物理分析法。
2.检出限:供试品中被测物能被检测出的最低量(信噪比3:1)。
3.定量限:供试品中被测组分能被定量测定的最低量(信噪比10:1)。
4.灵敏度:物质单位浓度或单位质量的变化引起响应信号值变化的程度称为方法的灵敏度,用S 表示。
信号变化量/浓度变化量,标准曲线斜率越大,灵敏度越高。
光谱绪论5.光学分析法:基于物质发射的电磁辐射或物质与辐射相互作用后产生的辐射信号或发生的信号变化来测定物质的性质、含量和结构的一类仪器分析方法。
6.波数:每cm长度中波的数目,单位cm-17.吸收:物质选择性吸收特定频率的辐射能(光子的能量等于原子、分子或离子的基态和激发态能量之差),并从低能级跃迁到高能级的过程。
8.发射:物质吸收能量从基态跃迁到激发态,激发态不稳定,物质以光的形式释放能量重新回到基态的过程。
9.可见光:波长在400~750nm范围的光。
10.单色光:具有同一波长、同一能量的光。
11.复合光:由不同波长的光组合成的光。
12.光的互补:若两种不同颜色的单色光按一定的强度比例混合得到白光,那么就称这两种单色光为互补色光,这种现象称为光的互补。
如黄-蓝;蓝绿-红13.光谱法:物质内部发生能级跃迁,记录由能级跃迁所产生的辐射能强度随波长的变化,所得的图谱称为光谱,利用光谱进行定性定量和结构分析的方法。
14.非光谱法:不涉及物质内部能级的跃迁,仅通过测量电测辐射的某些基本性质(反射、折射、干涉、衍射和偏振)变化的分析方法。
UV-Vis15.紫外-可见光分光光度法:利用待测物质具有选择吸收紫外-可见光辐射的特性,所产生的吸收光谱进行定性、定量及结构分析的方法。
16.最大吸收波长:最大吸收峰峰高处所对应的波长。
17.吸收曲线:不同波长的光通过待测物质,经待测物质吸收后,测量其对不同波长光的吸收程度(即吸光度A),以辐射波长λ为横坐标,吸光度A为纵坐标,作图得到该物质的吸收光谱或吸收曲线。
仪器分析-名词解释

仪器分析-名词解释一:名词解释1. 色谱法(chromatography):以试样组分在固定相和流动相间的溶解、吸附、分配、离子交换或其他亲和作用的差异为依据而建立起来的各种分离分析方法称色谱法。
2. 基线:在操作条件下,仅有纯流动相进入检测器时的流出曲线。
3. 保留时间:从进样至被测组分出现浓度最大值时所需时间tR。
4. 色谱流出曲线:试样中各组分经色谱柱分离后,按先后次序经过检测器时,检测器就将流动相中各组分浓度变化转变为相应的电信号,由记录仪所记录下的信号——时间曲线或信号——流动相体积曲线,称为色谱流出曲线。
5. 塔板理论:塔板理论认为,一根柱子可以分为n段,在每段内组分在两相间很快达到平衡,把每一段称为一块理论塔板。
设柱长为L,理论塔板高度为H,则:H = L / n 式中n为理论塔板数6. 速率理论认为,单个组分粒子在色谱柱内固定相和流动相间要发生千万次转移,加上分子扩散和运动途径等因素,它在柱内的运动是高度不规则的,是随机的,在柱中随流动相前进的速度是不均一的。
7. 有效塔板数:8. 在一定温度和压力下,组分在固定相和流动相之间分配达到平衡时的质量比,称为容量因子,也称分配比,用k表示。
9. 分配系数:在一定温度和压力下,组分在固定相和流动相间达到分配平衡时的浓度比值,用K表示。
10. 分离度:相邻两色谱峰保留值之差与两组分色谱峰底宽总和之半的比值,用R表示。
分离度可以用来作为衡量色谱峰分离效能的指标。
11. 程序升温:12. 气相色谱检测器:13. 化学键合固定相:是通过化学反应将有机分子键合在担体(硅胶)表面所形成固定相。
14. 反相分配色谱:流动相极性大于固定相极性,极性大的先流出,适于非极性组分分离。
15. 离子选择电极:是对某种特定离子产生选择性响应的一种电化学传感器。
其结构一般由敏感膜、内参比溶液和内参比电极组成。
16. 直接电位法:是将电极插入被测液中构成原电池,根据原电池的电动势与被测离子活度间的函数关系直接测定离子活度的方法。
现代仪器分析知识点

现代仪器分析知识点现代仪器分析:⼀般的说,仪器分析是指采⽤⽐较复杂或特殊的仪器设备,通过测量物质的某些物理或物理化学性质的参数及其变化来获取物质的化学组成、成分含量及化学结构等信息的⼀类⽅法。
灵敏度:指待测组分单位浓度或单位质量的变化所引起测定信号值的变化程度。
灵敏度也就是标准曲线的斜率。
斜率越⼤,灵敏度就越⾼光分析法:利⽤光电转换或其它电⼦器件测定“辐射与物质相互作⽤”之后的辐射强度等光学特性,进⾏物质的定性和定量分析的⽅法。
光吸收:当光与物质接触时,某些频率的光被选择性吸收并使其强度减弱,这种现象称为物质对光的吸收。
原⼦发射光谱法:元素在受到热或电激发时,由基态跃迁到激发态,返回到基态时,发射出特征光谱,依据特征光谱进⾏定性、定量的分析⽅法。
主共振线:在共振线中从第⼀激发态跃迁到激发态所发射的谱线。
分析线:复杂元素的谱线可能多⾄数千条,只选择其中⼏条特征谱线检验,称其为分析线。
多普勒变宽:原⼦在空间作不规则的热运动所引起的谱线变宽。
洛伦兹变宽:待测原⼦和其它粒⼦碰撞⽽产⽣的变宽。
助⾊团:本⾝不吸收紫外、可见光,但与发⾊团相连时,可使发⾊团产⽣的吸收峰向长波⽅向移动,且吸收强度增强的杂原⼦基团。
分析仪器的主要性能指标是准确度、检出限、精密度。
根据分析原理,仪器分析⽅法通常可以分为光分析法、电分析化学⽅法、⾊谱法、其它仪器分析⽅法四⼤类。
原⼦发射光谱仪由激发源、分光系统、检测系统三部分组成。
使⽤⽯墨炉原⼦化器是,为防⽌样品及⽯墨管氧化应不断加⼊(N2)⽓,测定时通常分为⼲燥试样、灰化试样、原⼦化试样、清残。
光谱及光谱法是如何分类的?⑴产⽣光谱的物质类型不同:原⼦光谱、分⼦光谱、固体光谱;⑵光谱的性质和形状:线光谱、带光谱、连续光谱;⑶产⽣光谱的物质类型不同:发射光谱、吸收光谱、散射光谱。
原⼦光谱与分⼦光谱,吸收光谱与发射光谱有什么不同?原⼦光谱:⽓态原⼦发⽣能级跃迁时,能发射或吸收⼀定频率的电磁波辐射,经过光谱依所得到的⼀条条分⽴的线状光谱。
仪器分析名词解释及简答题

仪器分析复习资料名词解释与简答题名词解释1.保留值:表示试样中各组分在色谱柱中的滞留时间的数值。
通常用时间或用将各组分带出色谱柱所需载气的体积来表示。
2.死时间:指不被固定相吸附或溶解的气体(如空气、甲烷)从进样开始到柱后出现浓度最大值时所需的时间。
3.保留时间:指被测组分从进样开始到柱后出现浓度最大值时所需的时间。
4.相对保留值:指某组分2的调整保留值与另一组分1的调整保留值之比。
5.半峰宽度:峰高为一半处的宽度。
6.峰底宽度:指自色谱峰两侧的转折点所作切线在基线上的截距。
7.固定液:8.分配系数:在一定温度下组分在两相之间分配达到平衡时的浓度比。
9.分配比:又称容量因子或容量比,是指在一定温度、压力下,在两相间达到平衡时,组分在两相中的质量比。
10.相比:VM与Vs的比值。
11.分离度:相邻两组分色谱峰保留值之差与两个组分色谱峰峰底宽度总和之半的比值。
12.梯度洗提:就是流动相中含有多种(或更多)不同极性的溶剂,在分离过程中按一定的程序连续改变流动相中溶剂的配比和极性,通过流动相中极性的变化来改变被分离组分的容量因子和选择性因子,以提高分离效果。
梯度洗提可以在常压下预先按一定的程序将溶剂混合后再用泵输入色谱柱,这种方式叫做低压梯度,又叫外梯度,也可以将溶剂用高压泵增压以后输入色谱系统的梯度混合室,加以混合后送入色谱柱,即所谓高压梯度或称内梯度。
13.化学键合固定相:将各种不同有机基团通过化学反应共价键合到硅胶(担体)表面的游离羟基上,代替机械涂渍的液体固定相,从而产生了化学键合固定相。
14.正相液相色谱法:流动相的极性小于固定相的极性。
15.反相液相色谱法:流动相的极性大于固定相的极性。
16.半波电位:扩散电流为极限扩散电流一半时的电位。
17.支持电解质(消除迁移电位):如果在电解池中加入大量电解质,它们在溶液中解离为阳离子和阴离子,负极对所有阳离子都有静电吸引力,因此作用于被分析离子的静电吸引力就大大的减弱了,以致由静电力引起的迁移电流趋近于零,从而达到消除迁移电流的目的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《现代仪器分析》名词解释
1、仪器分析:以物质的物理性质或物理化学性质(如光、电、热等)及其在分析过程中所产生
的分析信号与物质的内在关系为基础,并借助于比较复杂或特殊的现代仪器,
对待测物质进行定性、定量及结构分析与动态分析的方法。
2、光(学)分析法:就是利用待测组分的光学性质(如光的吸收、发射、散射、反射、折射、干涉、衍射、偏振等)进行分析测定的仪器分析方法。
3、光谱:由光波按其波长或频率有序排列所组成的光带。
4、光谱分析法:就是利用物质吸收光、发射光、散射光所给出的光谱波长与强度进行定性与
定量分析的方法。
5、单色光:只含有一种频率或波长成分的光。
6、复合光:含有多种频率或波长成分的光。
7、分析光(线):指负载了样品结构与组成信息的单色光(或复合光)。
8、杂散光:指定波长外的光,为干扰光,干扰负载信息的测定。
9、色散:将波长很宽的复合光分散开来,成为许多波长范围狭小的“单色光”的过程。
10、光的吸收定律(即Lamber– Beer定律):在一定浓度范围内,物质的吸光度A与吸光样品的浓度c 及厚度L的乘积成正比( A=κ c L,κ为摩尔吸收系数, 就是在一定温度下光吸收物质的一个特征常数,就是物质对光吸收能力的量度)。
11、能级:即具有不同能量的电子层或轨道。
12、基态:能量最低的能级。
13、激发态:比基态能量高的能级。
14、能级跃迁:物质粒子吸收或发射光子的过程。
15、激发:物质吸收光子后,由低能级跃迁到高能级的过程。
16、原子光谱:就是由气态原子发生外层纯电子能级跃迁而产生的线状光谱,
17、分子光谱:主要就是由分子中电子能级与振–转能级的跃迁而产生的带状光谱。
18、吸收光谱:当物质受到光能作用时,物质中的分子或原子吸收了特定(λ或υ)的光子
之后,由基态被激发跃迁到激发态时所产生的光谱。
19、发射光谱:处于激发态的分子或原子释放出所吸收的能量后,跃迁回到基态或较低能态时所产生的光谱。
20、(主)共振吸收线:原子的外层电子由基态跃迁到能量最低的第一激发态时所产生的吸
收线。
21、极大(峰)值吸收系数(K0):基态原子对波长等于中心波长(特征波长)的光的吸收系数。
22、原子化:被测元素由试样中转入气相,并解离为基态原子的过程。
23、标准曲线:就是待测物质标准溶液的浓度或含量与仪器响应(测定)信号的关系曲线。
线性范围:标准曲线的直线部分所对应的待测物质浓度(或含量)的范围。
24、化学干扰:由于被测元素在原子化过程中形成稳定或难溶的化合物,而不能完全解
离出基态原子所引起的干扰。
25、(主)共振发射线:在共振线中从第一激发态向基态跃迁所发射的谱线。
26、等离子体:指具有相当电离程度,且宏观上呈中性的气体。
27、自吸:由弧焰中心(高温区)发射的辐射被边缘的同种基态原子吸收,使辐射
强度降低的现象。
28、自蚀:元素浓度低时,不出现自吸。
随浓度增加,自吸越严重,当达到一定值
时,谱线中心完全被吸收的现象(使原来的一条谱线分裂成两条谱线)。
29、原子荧光:待测元素的原子蒸气光致激发后,在跃迁至低能级过程中,所发射的光辐射。
30、共振荧光(线):气态原子光致激发后,激发态原子再发射出与吸收线波长相同的荧光(线)。
31、紫外线:波长在200 ~400 nm范围内的电磁波。
32、紫外-可见吸收曲线(光谱):以波长λ(nm)为横坐标,吸光度A为纵坐标作图,得到的A-
λ曲线。
33、发色团(生色团):指含有不饱与键,能吸收紫外可见光并产生n→π* 或π→π*跃
迁的基团。
34、助色团:含有未成键n 电子,本身不产生吸收峰,但与发色团相连时,能使发色团吸收峰向长波方向移动(即红移),吸收强度增强的杂原子基团。
35、红外线:波长在0、78~ 1000mm范围内的电磁波。
36、红外吸收曲线(光谱):以波数σ(cm-1)为横坐标,百分透光率T%为纵坐标作图,得
到的σ-T%曲线。
37、基频峰:即由基态振动能级(υ=0)跃迁至第一振动激发态(υ=1)时,所产生的吸
收峰。
38、化学键力常数(k) :含义为将两个原子由平衡位置伸长至单位长度时的恢复力。
39、特征峰:凡就是能用于鉴定分子官能团存在并有高强度的吸收峰。
40、相关峰:与特征峰相互依存而又相互可以佐证的吸收峰。
41、色谱分析法:就是先将待分析的混合各组分在两相(即流动相与固定相)中进行分离,然
后顺序分析各组分含量的方法。
42、色谱流出曲线:色谱柱流出物通过检测器时所产生的信号强度(mv,为纵坐标)对时间t(横
坐标)的曲线。
43、基线:只有流动相而没有组分通过检测器时的色谱曲线。
44、保留时间(t R):在色谱分析中,组分从进样到色谱峰出现峰最大值时所需的时间。
45、分配平衡:色谱分析中,在一定温度下,组分在固定相与流动相之间所达到的平衡。
46、分配系数(K) :指组分在两相之间分配达到平衡时,该组分在固定相与流动相中
的浓度之比。
47、分配比(容量因子k’ ):指组分在两相中分配达到平衡时,组分在固定相与流动相中的质
量之比(或分子数之比)。
48、恒温气相色谱:就是指在一个GC分析周期内,柱温恒定在某一个温度值。
49、程序升温技术:即在一个GC 分析周期内,柱温随分析时间的延长呈线性或非线性地升高,
使沸点不同的各组分都能在最佳柱温下流出色谱柱。
50、极性:指流动相(溶剂分子)与样品(溶质分子)之间的四种作用力的总与。
51、溶剂强度:就是指用作流动相的溶剂,将组分从色谱柱上洗脱下来的能力。
52、梯度洗脱技术:指在HPLC分离过程中,随时间函数程序地改变流动相的组成,即程序地
改变流动相的溶剂强度(极性、pH值、离子强度)。
53、质谱分析法(MS):利用电磁学原理,将化合物电离成具有不同质量的离子,然后利用带电粒
子质荷比(m/ z)的不同进行分离、测定的分析方法。
54、分子离子峰(母离子峰):试样分子受到离子源的作用(如高速电子撞击)后,失去一个电子生
成的正离子(即分子离子或母离子),
55、质谱线谱:以质荷比m/z为横坐标,相对强(丰)度为纵坐标,各条直线表示一个离子峰。
56、总离子色谱图(TIC):把每个质谱的所有离子相加得到总离子强度作为纵坐标对应离子
出现的时间作图。
57、质量色谱图(MC):质谱对色谱中的每个峰扫描后,以一定m/z的离子强度对应离子出现
的时间作图。