吉林省实验中学2018年中考第一次模拟数学试卷含答案

合集下载

吉林省实验中学2018年中考第一次模拟数学试卷含答案

吉林省实验中学2018年中考第一次模拟数学试卷含答案

吉林省实验中学2018年上学期初三年级第一次模拟—— 数学试卷 ——(满分120分 限时120分钟)命题人:张楠 审题人:马玉春 一、选择题:(共24分,每小题3分)1.在Rt ABC ∆中,90C ∠=°,40B ∠=°,AB=5,则BC 的长为 ( )A . 5tan40°B . 5cos40°C .5sin40°D .°5cos 402.在ABC ∆中,090C ∠=,若cosB=2,则sinA 的值为 ( )D.123. 对于函数25y x =,下列结论正确的是 ( )A .y 随x 的增大而增大B .图象开口向下C .图象关于y 轴对称D .无论x 取何值,y 的值总是正的4. 如图,D 、E 分别是AB 、AC 的中点,则:ADE ABC S S =△△( )A . 1∶2B .1∶3C .1∶4D . 2∶35. 在ABC ∆中,,A B ∠∠都是锐角,tanA=1,sinB=2, 你认为ABC ∆最确切的判断是()A. 等腰三角形B.等腰直角三角形C. 直角三角形D.锐角三角形6. 如图,四个二次函数的图象中,分别对应的是:①2y ax =;②2y b x =;③2y cx =;④2y dx =,则,,,a b c d 的大小关系为 ( )A.a b c d >>>B.a b d c >>>C.b a c d >>>D.b a d c >>>7. 如图,在Rt △ABC 中,∠A =30°,BC =1,点D ,E 分别是直角边BC ,AC 的中点,则DE 的长为 ( )A .1B .2 C. 3 D .1+ 3 8. 如图,菱形ABCD 的周长为20cm ,DE ⊥AB ,垂足 为E ,4cos 5A =,则下列结论中:①DE=3cm ; ②EB=1cm ; ③215S cm =菱形ABCD .正确的个数为 ( ) A .0个B .1个C .2个D .3个第7题 第8题 第12题二、填空:(共18分,每小题3分)9. 若22(2)32m y m x x -=++-是二次函数,则m 的值是 ________. 10. 已知点A(-3,1y ),B(-1,2y ),C(2,3y )在抛物线223y x =上,则1y ,2y ,3y 的大小关系是 ________________.(用“<”连接) 11. ABC △中,90C ∠=,4tan 3A =,则sin cos A A += _________. 12. 如图,四边形ABCD 中,点P 是对角线BD 的中点,点E ,F 分别是AB ,CD 的中点,AD =BC ,∠PEF =35°,则∠PFE 的度数是 _________°. 13. 如果某人沿坡度i =4:3的斜坡前进50米后,•他所在的位置比原来的位置升高 了_______米.14. 已知在ABC ∆中,BC=6,AC=,∠A=30°,则AB 的长是________________. 三、解答题:(共78分) 15. 计算:(8分)(1)()2cos602009πtan 45--+ (2)2sin 603tan 302sin 452-+-.16.(6分)如图,在边长均为1的小正方形网格纸中,△OAB 的顶点O ,A ,B 均在格点上,且O 是直角坐标系的原点,点A 在x 轴上. (1)以O 为位似中心,将△OAB 放大,使得放大后 的△OA 1B 1与△OAB 对应线段的比为2∶1,画出△OA 1B 1 (所画△OA 1B 1与△OAB 在原点两侧);(2)直接写出点A 1、B 1的坐标______________________. (3)直接写出11tan OA B ∠=____________. 17.(6分)如图,一段河坝的断面为梯形ABCD,试根据图中数据,求出坡角α和坝底宽AD.(结果保留根号)18.(7分) 如图,M 是△ABC 的边BC 的中点,AN平分∠BAC ,BN ⊥AN 于点N ,延长BN 交AC 于点D ,已知AB =10,BC =15,MN =3. (1)求证:BN =DN ;(2)直接写出△ABC 的周长是______________.19.(7分)如图,直线2y x =-+过x 轴上的点A(2,0),且与抛物线2y ax =交于B ,C 两点,点B 坐标为(1,1).(1)求抛物线的函数表达式; (2)连结OC ,求出AOC ∆的面积.20.(8分) 如图,在矩形ABCD 中,DE ⊥AC 于E ,3cos 5ADE ∠=,AB =3,(1)求AD 的值.(2)直接写出DEC S ∆的值是_____________. 21. (8分)如图,在∆ABC 中,AD 是BC 边上的高,tan cos B DAC =∠。

2018年吉林省长春市中考数学一模试卷

2018年吉林省长春市中考数学一模试卷

2018年吉林省长春市中考数学一模试卷一、选择题(共8小题,每小题3分,满分24分)1.若等式2□(﹣1)=3成立,则“□”内的运算符号是()A.+ B.﹣C.× D.÷2.2015年10月1日,某市旅游景点接待游客约有61500人次,数据61500用科学记数法表示为()A.6.15×104B.6.15×105C.61.5×103D.0.615×1053.如图是某个几何体的三视图,该几何体是()A.正方体B.圆柱C.圆锥D.球4.如图,不等式组中的两个不等式的解集在同一个数轴上表示正确的是()A.B.C.D.5.把一副直角三角板ABC(含30°、60°角)和CDE(含45°、45°角)如图放置,使直角顶点C重合,若DE∥BC,则∠1的度数是()A.75° B.105° C.110° D.120°6.如图,AD∥BE∥CF,直线l1、l2与这三条平行线分别交于点A、B、C和点D、E、F.若AB=4.5,BC=3,EF=2,则DE的长度是()A.B.3 C.5 D.7.如图,OA,OB是⊙O的半径,且OA⊥OB,AO的延长线与弦BC交于点D,连结AC.若∠B=25°,则∠A的度数是()A.65° B.45° C.25° D.20°8.如图,在△ABO中,BA=BO,OA=3,OA在y轴的正半轴上,若点B在直线y=﹣x+1上,△ABO的面积是()A.B.C.2 D.3二、填空题(本大题共6小题,每小题3分,共18分)9.化简:﹣=.10.计算:(﹣2xy2)3=.11.一个菱形的周长为52cm,一条对角线长为10cm,则其面积为cm2.12.如图,ABCD是⊙O的内接四边形,点E在AB的延长线上,BF是∠CBE的平分线,∠ADC=110°,则∠FBE=.13.如图,在△ABC中,∠ACB=90°,AC=1,AB=2,以A为圆心,以AC为半径画弧,交AB于D,则扇形CAD的周长是(结果保留π)14.如图,二次函数y=a(x﹣2)2+k的图象与x轴交于A,B两点,且点A的横坐标为﹣1,则点B的横坐标为.三、解答题(本大题共10小题,共78分)15.先化简,再求值:÷,其中x=﹣.16.一个不透明的口袋中有三个小球,上面分别标有数字﹣2,1,3,每个小球除数字外其它都相同,小明先从袋中随机取出1个小球,记下数字;小强再从口袋剩余的两个小球中随机取出1个小球记下数字,用画树状图(或列表)的方法,求小明,小强两人所记的数字之和为奇数的概率.17.一辆客车和一辆卡车同时从A地出发沿同一公路同方向行驶,客车的行驶速度是70km/h,卡车的行驶速度是60km/h,客车比卡车早1h经过B地,A、B两地间的路程是多少?18.每年的3月22日为“世界水日”,为宣传节约用水,小强随机调查了某小区部分家庭3月份的用水情况,并将收集的数据整理成如下统计图.(1)小强共调查了户家庭.(2)所调查家庭3月份用水量的众数为吨;平均数为吨;(3)若该小区有500户居民,请你估计这个小区3月份的用水量.19.如图,在四边形ABDC中,E,F,G,H分别为AB,BC,CD,DA的中点,并且E,F,G,H四点不共线.(1)求证:四边形EFGH为平行四边形.(2)当AC=BD时,求证:四边形EFGH为菱形.20.如图,某山坡坡长AB为110米,坡角(∠A)为34°,求坡高BC及坡宽AC.(结果精确到0.1米)【参考数据:sin34°=0.559,cos34°=0.829,tan34°=0.675】21.如图,在正方形ABCD中,E为直线AB上的动点(不与A,B重合),作射线DE并绕点D逆时针旋转45°,交直线BC边于点F,连结EF.探究:当点E在边AB上,求证:EF=AE+CF.应用:(1)当点E在边AB上,且AD=2时,则△BEF的周长是.(2)当点E不在边AB上时,EF,AE,CF三者的数量关系是.22.甲、乙两辆汽车沿同一路线从A地前往B地,甲以a千米/时的速度匀速行驶,途中出现故障后停车维修,修好后以2a千米/时的速度继续行驶;乙在甲出发2小时后匀速前往B地,设甲、乙两车与A地的路程为s(千米),甲车离开A 地的时间为t(时),s与t之间的函数图象如图所示.(1)求a和b的值.(2)求两车在途中相遇时t的值.(3)当两车相距60千米时,t=时.23.如图,四边形ABCO为矩形,点A在x轴上,点C在y轴上,且点B的坐标为(﹣1,2),将此矩形绕点O顺时针旋转90°得矩形DEFO,抛物线y=﹣x2+bx+c 过B,E两点.(1)求此抛物线的函数关系式.(2)将矩形ABCO向左平移,并且使此矩形的中心在此抛物线上,求平移距离.(3)将矩形DEFO向上平移距离d,并且使此抛物线的顶点在此矩形的边上,则d的值是.24.如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=4cm,AD=6cm,BC=9cm,点P从点A出发,以2cm/s的速度沿A→D→C方向向点C运动;同时点Q从点C 出发,以1cm/s的速度沿C→B方向向点B运动,设点Q运动时间为ts,△APQ 的面积为Scm2.(1)DC=cm,sin∠BCD=.(2)当四边形PDCQ为平行四边形时,求t的值.(3)求S与t的函数关系式.(4)若S与t的函数图象与直线S=k(k为常数)有三个不同的交点,则k的取值范围是.2018年吉林省长春市中考数学一模试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.若等式2□(﹣1)=3成立,则“□”内的运算符号是()A.+ B.﹣C.× D.÷【分析】根据有理数的运算法则计算即可求解.【解答】解:∵2﹣(﹣1)=2+1=3,∴若等式2□(﹣1)=3成立,则“□”内的运算符号是﹣.故选B.【点评】本题考查了有理数的运算,熟练掌握运算法则是解题的关键.2.2015年10月1日,某市旅游景点接待游客约有61500人次,数据61500用科学记数法表示为()A.6.15×104B.6.15×105C.61.5×103D.0.615×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:61500=6.15×104,故选A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图是某个几何体的三视图,该几何体是()A.正方体B.圆柱C.圆锥D.球【分析】首先根据俯视图将正方体淘汰掉,然后跟主视图和左视图将圆锥和球淘汰;【解答】解:∵俯视图是圆,∴排除A,∵主视图与左视图均是长方形,∴排除C、D故选B.【点评】此题主要考查了简单几何体的三视图,用到的知识点为:三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.4.如图,不等式组中的两个不等式的解集在同一个数轴上表示正确的是()A.B.C.D.【分析】先分别解两个不等式得到x≤3和x<﹣1,然后利用数轴分别表示出x≤3和x<﹣1,于是可得到正确的选项.【解答】解:解不等式x﹣1≤2得x≤3,解不等式3+x<2得x<﹣1,所以不等式组的两个不等式的解集在同一个数轴上表示为:.故选C.【点评】本题考查了在数轴上表示不等式的解集:用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.5.把一副直角三角板ABC(含30°、60°角)和CDE(含45°、45°角)如图放置,使直角顶点C重合,若DE∥BC,则∠1的度数是()A.75° B.105° C.110° D.120°【分析】根据DE∥BC得出∠E=∠ECB=45°,进而得出∠1=∠ECB+∠B即可.【解答】解:∵DE∥BC,∴∠E=∠ECB=45°,∴∠1=∠ECB+∠B=45°+60°=105°,故选B【点评】此题考查平行线的性质,关键是根据DE∥BC得出∠E=∠ECB和三角形外角性质分析.6.如图,AD∥BE∥CF,直线l1、l2与这三条平行线分别交于点A、B、C和点D、E、F.若AB=4.5,BC=3,EF=2,则DE的长度是()A.B.3 C.5 D.【分析】根据平行线分线段成比例得到比例式,代入数据即可得到结论.【解答】解:∵AD∥BE∥CF,∴,即:,∴DE=3,故选B.【点评】本题考查了平行线分线段成比例定理的应用,能根据定理得出比例式是解此题的关键,注意:一组平行线截两条直线,所截得的对应线段成比例.7.如图,OA,OB是⊙O的半径,且OA⊥OB,AO的延长线与弦BC交于点D,连结AC.若∠B=25°,则∠A的度数是()A.65° B.45° C.25° D.20°【分析】由OA⊥OB,利用圆周角定理,可求得∠C的度数,由三角形外角的性质,可求得∠ADB的度数,继而求得∠A的度数.【解答】解:∵OA⊥OB,∴∠AOB=90°,∴∠C=∠AOB=45°,∠ADB=∠AOB﹣∠B=90°﹣25°=65°,∴∠A=∠ADB﹣∠C=20°.故选D.【点评】此题考查了圆周角定理以及三角形外角的性质.注意在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.8.如图,在△ABO中,BA=BO,OA=3,OA在y轴的正半轴上,若点B在直线y=﹣x+1上,△ABO的面积是()A.B.C.2 D.3【分析】根据等腰三角形的性质解答即可.【解答】解:因为在△ABO中,BA=BO,OA=3,OA在y轴的正半轴上,若点B在直线y=﹣x+1上,可得y=,把y=代入y=﹣x+1,可得:x=﹣2,所以△ABO的面积=,故选B【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.二、填空题(本大题共6小题,每小题3分,共18分)9.化简:﹣=.【考点】二次根式的加减法.【分析】先把各根式化为最简二次根式,再根据二次根式的减法进行计算即可.【解答】解:原式=2﹣=.故答案为:.10.计算:(﹣2xy2)3=﹣8x3y6.【考点】幂的乘方与积的乘方.【分析】根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;幂的乘方,底数不变指数相乘计算.【解答】解:(﹣2xy2)3,=(﹣2)3x3(y2)3,=﹣8x3y6.故填﹣8x3y6.11.一个菱形的周长为52cm,一条对角线长为10cm,则其面积为120cm2.【考点】菱形的性质.【分析】先由菱形ABCD的周长求出边长,再根据菱形的性质求出OA,然后由勾股定理求出OB,即可得出BD,再根据菱形的面积等于对角线乘积的一半计算即可.【解答】解:如图所示:∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD,OA=AC=5,OB=BD,∵菱形ABCD的周长为52cm,∴AB=13cm,在Rt△AOB中,根据勾股定理得:OB===12cm,∴BD=2OB=24cm,∴菱形ABCD的面积=×10×24=120cm2,故答案为120.12.如图,ABCD是⊙O的内接四边形,点E在AB的延长线上,BF是∠CBE的平分线,∠ADC=110°,则∠FBE=55°.【考点】圆内接四边形的性质.【分析】根据圆内接四边形的性质求出∠CBE=∠ADC=110°,根据角平分线定义求出即可.【解答】解:∵ABCD是⊙O的内接四边形,∠ADC=110°,∴∠CBE=∠ADC=110°,∵BF是∠CBE的平分线,∴∠FBE=∠CBE=55°,故答案为:55°.13.如图,在△ABC中,∠ACB=90°,AC=1,AB=2,以A为圆心,以AC为半径画弧,交AB于D,则扇形CAD的周长是+2(结果保留π)【考点】弧长的计算;勾股定理.【分析】首先根据锐角三角函数确定∠A的度数,然后利用弧长公式求得弧长,加上两个半径即可求得周长.【解答】解:∵∠ACB=90°,AC=1,AB=2,∴∠A=60°,∴的长为=,∴扇形CAD的周长是+2,故答案为: +2.14.如图,二次函数y=a(x﹣2)2+k的图象与x轴交于A,B两点,且点A的横坐标为﹣1,则点B的横坐标为5.【考点】抛物线与x轴的交点.【分析】根据二次函数的解析式即可求出对称轴为x=2,利用对称性即可求出B 的横坐标.【解答】解:由题意可知:二次函数的对称轴为x=2,∴点A与B关于x=2对称,设B的横坐标为x∴=2∴B的横坐标坐标为5故答案为:5.三、解答题(本大题共10小题,共78分)15.先化简,再求值:÷,其中x=﹣.【考点】分式的化简求值.【分析】先根据分式的除法法则把原式进行化简,再把x=﹣代入进行计算即可.【解答】解:原式=•=x2+4,当x=﹣时,原式=3+4=7.16.一个不透明的口袋中有三个小球,上面分别标有数字﹣2,1,3,每个小球除数字外其它都相同,小明先从袋中随机取出1个小球,记下数字;小强再从口袋剩余的两个小球中随机取出1个小球记下数字,用画树状图(或列表)的方法,求小明,小强两人所记的数字之和为奇数的概率.【考点】列表法与树状图法.【分析】列表得出所有等可能的情况数,找出这两个球上的两个数字之和为奇数的情况数,即可求出所求的概率.【解答】解:列表得:31﹣2 3﹣﹣﹣(1,3)(﹣2,3)1(3,1)﹣﹣﹣(﹣2,1)﹣2(3,﹣2)(1,﹣2)﹣﹣﹣所有等可能的情况有6种,其中两个数字之和为奇数的情况有4种,所以小明,小强两人所记的数字之和为奇数的概率==.17.一辆客车和一辆卡车同时从A地出发沿同一公路同方向行驶,客车的行驶速度是70km/h,卡车的行驶速度是60km/h,客车比卡车早1h经过B地,A、B两地间的路程是多少?【考点】一元一次方程的应用;代数式求值.【分析】设A、B两地间的路程为xkm,根据题意分别求出客车所用时间和卡车所用时间,根据两车时间差为1小时即可列出方程,求出x的值.【解答】解:设A、B两地间的路程为xkm,根据题意得﹣=1,解得x=420.答:A、B两地间的路程为420km.18.每年的3月22日为“世界水日”,为宣传节约用水,小强随机调查了某小区部分家庭3月份的用水情况,并将收集的数据整理成如下统计图.(1)小强共调查了20户家庭.(2)所调查家庭3月份用水量的众数为4吨;平均数为 4.2吨;(3)若该小区有500户居民,请你估计这个小区3月份的用水量.【考点】众数;用样本估计总体;加权平均数.【分析】(1)根据条形统计图求出调查的家庭总户数即可;(2)根据条形统计图求出6月份用水量的平均数,找出众数即可;(3)根据统计图求出平均每户的用水量,乘以500即可得到结果.【解答】解:(1)根据题意得:1+1+3+6+4+2+2+1=20(户),则小强一共调查了20户家庭;故答案为:20;(2)根据统计图得:3月份用水量的众数为4吨;平均数为=4.(吨),则所调查家庭3月份用水量的众数为4吨、平均数为4.2吨;故答案为:4,4.2;(3)根据题意得:500×4.2=2100(吨),则这个小区3月份的用水量为2100吨.19.如图,在四边形ABDC中,E,F,G,H分别为AB,BC,CD,DA的中点,并且E,F,G,H四点不共线.(1)求证:四边形EFGH为平行四边形.(2)当AC=BD时,求证:四边形EFGH为菱形.【考点】中点四边形;三角形中位线定理.【分析】(1)根据三角形中位线定理得到FG∥EH,FG=EH,根据平行四边形的判定定理证明;(2)根据菱形是判定定理证明.【解答】(1)证明:∵F,G分别为BC,CD的中点,∴FG=BD,FG∥BD,∵E,H分别为AB,DA的中点,∴EH=BD,EH∥BD,∴FG∥EH,FG=EH,∴四边形EFGH为平行四边形.(2)证明:由(1)得,FG=BD,GH=BC,∵AC=BD,∴GF=GH,∴平行四边形EFGH为菱形.20.如图,某山坡坡长AB为110米,坡角(∠A)为34°,求坡高BC及坡宽AC.(结果精确到0.1米)【参考数据:sin34°=0.559,cos34°=0.829,tan34°=0.675】【考点】解直角三角形的应用﹣坡度坡角问题.【分析】根据正弦、余弦的定义列出算式,计算即可.【解答】解:在Rt△ABC中,sinA=,cosA=,则BC=AB•sinA=110×0.559≈61.5(米),AC=AB•cosA=110×0.829≈91.2(米),答:坡高BC约为61.5米,坡宽AC约为91.2米.21.如图,在正方形ABCD中,E为直线AB上的动点(不与A,B重合),作射线DE并绕点D逆时针旋转45°,交直线BC边于点F,连结EF.探究:当点E在边AB上,求证:EF=AE+CF.应用:(1)当点E在边AB上,且AD=2时,则△BEF的周长是4.(2)当点E不在边AB上时,EF,AE,CF三者的数量关系是EF=CF﹣AE或EF=AE ﹣CF.【考点】四边形综合题.【分析】探究:作辅助线,构建全等三角形,证明△DAG≌△DCF(SAS),得∠1=∠3,DG=DF,再证明△GDE≌△FDE(SAS),根据EG的长可得结论;应用:(1)利用探究的结论计算三角形周长为4;(2)分两种情况:①点E在BA的延长线上时,如图2,EF=CF﹣AE,②当点E 在AB的延长线上时,如图3,EF=AE﹣CF,两种情况都是作辅助线,构建全等三角形,证明两三角形全等得线段相等,根据线段的和与差得出结论.【解答】探究:证明:如图,延长BA到G,使AG=CF,连接DG,∵四边形ABCD是正方形,∴DA=DC,∠DAG=∠DCF=90°,∴△DAG≌△DCF(SAS),∴∠1=∠3,DG=DF,∵∠ADC=90°,∠EDF=45°,∴∠EDG=∠1+∠2=∠3+∠2=45°=∠EDF,∵DE=DE,∴△GDE≌△FDE(SAS),∴EF=EG=AE+AG=AE+CF;应用:解:(1)△BEF的周长=BE+BF+EF,由探究得:EF=AE+CF,∴△BEF的周长=BE+BF+AE+CF=AB+BC=2+2=4,故答案为:4;(2)当点E不在边AB上时,分两种情况:①点E在BA的延长线上时,如图2,EF=CF﹣AE,理由是:在CB上取CG=AE,连接DG,∵∠DAE=∠DCG=90°,AD=DC,∴△DAE≌△DCG(SAS)∴DE=DG,∠EDA=∠GDC∵∠ADC=90°,∴∠EDG=90°∴∠EDF+∠FDG=90°,∵∠EDF=45°,∴∠FDG=90°﹣45°=45°,∴∠EDF=∠FDG=45°,在△EDF和△GDF中,∵,∴△EDF≌△GDF(SAS),∴EF=FG,∴EF=CF﹣CG=CF﹣AE;②当点E在AB的延长线上时,如图3,EF=AE﹣CF,理由是:把△DAE绕点D逆时针旋转90°至△DCG,可使AD与DC重合,连接DG,由旋转得:DE=DG,∠EDG=90°,AE=CG,∵∠EDF=45°,∴∠GDF=90°﹣45°=45°,∴∠EDF=∠GDF,∵DF=DF,∴△EDF≌△GDF,∴EF=GF,∴EF=CG﹣CF=AE﹣CF;综上所述,当点E不在边AB上时,EF,AE,CF三者的数量关系是:EF=CF﹣AE 或EF=AE﹣CF;故答案为:EF=CF﹣AE或EF=AE﹣CF.22.甲、乙两辆汽车沿同一路线从A地前往B地,甲以a千米/时的速度匀速行驶,途中出现故障后停车维修,修好后以2a千米/时的速度继续行驶;乙在甲出发2小时后匀速前往B地,设甲、乙两车与A地的路程为s(千米),甲车离开A 地的时间为t(时),s与t之间的函数图象如图所示.(1)求a和b的值.(2)求两车在途中相遇时t的值.(3)当两车相距60千米时,t=或时.【考点】一次函数的应用.【分析】(1)根据速度=路程÷时间即可求出a值,再根据时间=路程÷速度算出b到5.5之间的时间段,由此即可求出b值;关于t的函数关系(2)观察图形找出两点的坐标,利用待定系数法即可求出s乙式,令s乙=150即可求出两车相遇的时间;关于t的函数关系式,二者(3)分0≤t≤3、3≤t≤4和4≤t≤5.5三段求出s甲做差令其绝对值等于60即可得出关于t的函数绝对值符号的一元一次方程,解t的值.综上即可得出结论.之即可求出t值,再求出0≤t≤2时,s甲=50t=60中【解答】解:(1)a==50,b=5.5﹣=4.(2)设乙车与A地的路程s与甲车离开A地的时间t之间的函数关系式为s乙=kt+m,将(2,0)、(5,300)代入s=kt+m,,解得:,200(2≤t≤5).∴s乙=100t﹣200=150时,t=3.5.当s乙=100t﹣答:两车在途中相遇时t的值为3.5.(3)当0≤t≤3时,s甲=50t;当3≤t≤4时,s甲=150;当4≤t≤5.5时,s甲=150+2×50(t﹣4)=100t﹣250.∴s甲=.令|s甲﹣s乙|=60,即|50t﹣100t+200|=60,|150﹣100t+200|=60或|100t﹣250﹣100t+200|=60,解得:t1=,t2=(舍去),t3=(舍去),t4=(舍去);当0≤t≤2时,令s甲=50t=60,解得:t=.综上所述:当两车相距60千米时,t=或.故答案为:或.23.如图,四边形ABCO为矩形,点A在x轴上,点C在y轴上,且点B的坐标为(﹣1,2),将此矩形绕点O顺时针旋转90°得矩形DEFO,抛物线y=﹣x2+bx+c 过B,E两点.(1)求此抛物线的函数关系式.(2)将矩形ABCO向左平移,并且使此矩形的中心在此抛物线上,求平移距离.(3)将矩形DEFO向上平移距离d,并且使此抛物线的顶点在此矩形的边上,则d的值是或.【考点】二次函数图象与几何变换.【分析】(1)待定系数法即可解决问题.(2)矩形ABCO的中心坐标为(﹣,1),可得1=﹣x2+x+,解得x=﹣或2,所以平移距离d=﹣﹣(﹣)=.(3)求出顶点坐标,点E坐标,即可解决问题.【解答】解:(1)由题意,点E的坐标为(2,1),则,解得,∴此抛物线的解析式为y=﹣x2+x+.(2)∵矩形ABCO的中心坐标为(﹣,1),∴1=﹣x2+x+,解得x=﹣或2,∴平移距离d=﹣﹣(﹣)=.(3)∵y=﹣x2+x+=﹣(x﹣)2+,∴抛物线的顶点坐标为(,),∵E(2,1),∴平移距离d=或﹣1=,故答案为或.24.如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=4cm,AD=6cm,BC=9cm,点P从点A出发,以2cm/s的速度沿A→D→C方向向点C运动;同时点Q从点C 出发,以1cm/s的速度沿C→B方向向点B运动,设点Q运动时间为ts,△APQ 的面积为Scm2.(1)DC=5cm,sin∠BCD=.(2)当四边形PDCQ为平行四边形时,求t的值.(3)求S与t的函数关系式.(4)若S与t的函数图象与直线S=k(k为常数)有三个不同的交点,则k的取值范围是<k<12.【考点】四边形综合题.【分析】(1)如图1,作高线DE,证明四边形ABED是矩形,再利用勾股定理求DC的长,在Rt△DEC中,求出sin∠BCD==;(2)当四边形PDCQ为平行四边形时,点P在AD上,如图2,根据PD=CQ列方程得:6﹣2t=t,解出即可;(3)分三种情况:①当0<t≤3时,点P在边AD上,如图3,直接利用面积公式求S即可;②当3<t≤时,点P在边CD上,如图4,利用梯形面积减去三个三角形面积的差求S;③当<t≤9时,点P与C重合,Q在BC上,如图5,直接利用面积公式求S 即可;(4)画出图象,根据图象得出结论.【解答】解:(1)过D作DE⊥BC于E,则∠BED=90°,∵AD∥BC,∴∠B+∠BAD=180°,∵∠B=90°,∴∠B=∠BAD=90°,∴四边形ABED是矩形,∴AD=BE=6,DE=AB=4,∴EC=BC﹣BE=9﹣6=3,在Rt△DEC中,由勾股定理得:DC=5,sin∠BCD==,故答案为:5,;(2)由题意得:AP=2t,CQ=t,则PD=6﹣2t,当四边形PDCQ为平行四边形时,如图2,则PD=CQ,∴6﹣2t=t,∴t=2;(3)分三种情况:①当0<t≤3时,点P在边AD上,如图3,S=AP•AB=×4×2t=4t;②当3<t≤时,点P在边CD上,如图4,过P作MN⊥BC,交BC于N,交AD的延长线于M,由题意得:CQ=t,BQ=9﹣t,PA=2t,PD=2t﹣6,∴PC=5﹣PD=5﹣(2t﹣6)=11﹣2t,由图1得:sin∠C=,,PN=,∴PM=4﹣PN=4﹣=,S=S梯形ABCD﹣S△PQC﹣S△ABQ﹣S△APD,=﹣﹣×﹣=;③当<t≤9时,点P与C重合,Q在BC上,如图5,S==2t;综上所述,S与t的函数关系式为:S=.(4)如图6,S=;S的最小值为:=,当t=3时,S=4×3=12,∴则k的取值范围是:<k<12.故答案为:<k<12.。

<合集试卷3套>2018届吉林省名校中考数学第一次练兵模拟试题

<合集试卷3套>2018届吉林省名校中考数学第一次练兵模拟试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.若关于x 的不等式组255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩只有5个整数解,则a 的取值范围( ) A .1162a -<-B .116a 2-<<-C .1162a -<-D .1162a -- 【答案】A【解析】分别解两个不等式得到得x <20和x >3-2a ,由于不等式组只有5个整数解,则不等式组的解集为3-2a <x <20,且整数解为15、16、17、18、19,得到14≤3-2a <15,然后再解关于a 的不等式组即可. 【详解】255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩①② 解①得x <20解②得x >3-2a ,∵不等式组只有5个整数解,∴不等式组的解集为3-2a <x <20,∴14≤3-2a <15,1162a ∴-<-故选:A【点睛】 本题主要考查对不等式的性质,解一元一次不等式,一元一次不等式组的整数解等知识点的理解和掌握,能求出不等式14≤3-2a <15是解此题的关键.2.关于x 的一元一次不等式≤﹣2的解集为x≥4,则m 的值为( ) A .14B .7C .﹣2D .2 【答案】D【解析】解不等式得到x≥12m+3,再列出关于m 的不等式求解. 【详解】23m x -≤﹣1, m ﹣1x≤﹣6,﹣1x≤﹣m ﹣6,x≥12m+3,∵关于x 的一元一次不等式23m x -≤﹣1的解集为x≥4, ∴12m+3=4,解得m=1. 故选D .考点:不等式的解集 3.关于x 的正比例函数,y=(m+1)23mx -若y 随x 的增大而减小,则m 的值为 ( ) A .2B .-2C .±2D .-12【答案】B【解析】根据正比例函数定义可得m 2-3=1,再根据正比例函数的性质可得m+1<0,再解即可.【详解】由题意得:m 2-3=1,且m+1<0,解得:m=-2,故选:B .【点睛】此题主要考查了正比例函数的性质和定义,关键是掌握正比例函数y=kx (k≠0)的自变量指数为1,当k <0时,y 随x 的增大而减小.4.如图,已知////AB CD EF ,那么下列结论正确的是( )A .AD BC DF CE =B .BC DF CE AD = C .CD BC EF BE = D .CD AD EF AF= 【答案】A【解析】已知AB ∥CD ∥EF ,根据平行线分线段成比例定理,对各项进行分析即可.【详解】∵AB ∥CD ∥EF ,∴AD BC DF CE=. 故选A .【点睛】本题考查平行线分线段成比例定理,找准对应关系,避免错选其他答案.5.点P (1,﹣2)关于y 轴对称的点的坐标是( )A .(1,2)B .(﹣1,2)C .(﹣1,﹣2)D .(﹣2,1)【答案】C【解析】关于y 轴对称的点,纵坐标相同,横坐标互为相反数,由此可得P (1,﹣2)关于y 轴对称的点的坐标是(﹣1,﹣2),故选C.【点睛】本题考查了关于坐标轴对称的点的坐标,正确地记住关于坐标轴对称的点的坐标特征是关键. 关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴对称的点的坐标特点:纵坐标不变,横坐标互为相反数.6.下列说法正确的是()A.“明天降雨的概率是60%”表示明天有60%的时间都在降雨B.“抛一枚硬币正面朝上的概率为50%”表示每抛2次就有一次正面朝上C.“彩票中奖的概率为1%”表示买100张彩票肯定会中奖D.“抛一枚正方体骰子,朝上的点数为2的概率为16”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在16附近【答案】D【解析】根据概率是指某件事发生的可能性为多少,随着试验次数的增加,稳定在某一个固定数附近,可得答案.【详解】解:A. “明天降雨的概率是60%”表示明天下雨的可能性较大,故A不符合题意;B. “抛一枚硬币正面朝上的概率为12”表示每次抛正面朝上的概率都是12,故B不符合题意;C. “彩票中奖的概率为1%”表示买100张彩票有可能中奖.故C不符合题意;D. “抛一枚正方体骰子,朝上的点数为2的概率为16”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在16附近,故D符合题意;故选D【点睛】本题考查了概率的意义,正确理解概率的含义是解决本题的关键.7.如图,A、B两点在双曲线y=4x上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()A.3 B.4 C.5 D.6【答案】D【解析】欲求S1+S1,只要求出过A、B两点向x轴、y轴作垂线段与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=4x的系数k,由此即可求出S1+S1.【详解】∵点A 、B 是双曲线y=4x 上的点,分别经过A 、B 两点向x 轴、y 轴作垂线段, 则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∴S 1+S 1=4+4-1×1=2.故选D .8.要使分式有意义,则x 的取值应满足( ) A .x=﹣2B .x≠2C .x >﹣2D .x≠﹣2【答案】D【解析】试题分析:∵分式有意义,∴x+1≠0,∴x≠﹣1,即x 的取值应满足:x≠﹣1.故选D . 考点:分式有意义的条件.9.如图,在△ABC 中,AC ⊥BC ,∠ABC=30°,点D 是CB 延长线上的一点,且BD=BA ,则tan ∠DAC 的值为( )A .2+3B .23C .3+3D .33【答案】A 【解析】设AC=a ,由特殊角的三角函数值分别表示出BC 、AB 的长度,进而得出BD 、CD 的长度,由公式求出tan ∠DAC 的值即可.【详解】设AC=a ,则BC=30AC tan ︒=3a ,AB=30AC sin ︒=2a , ∴BD=BA=2a ,∴CD=(2+3)a ,∴tan ∠DAC=2+3.故选A.【点睛】本题主要考查特殊角的三角函数值.10.一次函数y ax c =+与二次函数2y ax bx c =++在同一平面直角坐标系中的图像可能是( ) A . B . C . D .【答案】D【解析】本题可先由一次函数y=ax+c 图象得到字母系数的正负,再与二次函数y=ax 2+bx+c 的图象相比较看是否一致.【详解】A 、一次函数y=ax+c 与y 轴交点应为(0,c ),二次函数y=ax 2+bx+c 与y 轴交点也应为(0,c ),图象不符合,故本选项错误;B 、由抛物线可知,a >0,由直线可知,a <0,a 的取值矛盾,故本选项错误;C 、由抛物线可知,a <0,由直线可知,a >0,a 的取值矛盾,故本选项错误;D 、由抛物线可知,a <0,由直线可知,a <0,且抛物线与直线与y 轴的交点相同,故本选项正确. 故选D .【点睛】本题考查抛物线和直线的性质,用假设法来搞定这种数形结合题是一种很好的方法.二、填空题(本题包括8个小题)11.分解因式:x 2y ﹣4xy+4y =_____.【答案】y(x-2)2【解析】先提取公因式y ,再根据完全平方公式分解即可得.【详解】原式=2(44)y x x -+=2(2)y x -, 故答案为2(2)y x -.12.分解因式:32a 4ab -= .【答案】()()a a 2b a 2b +-【解析】分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此, 先提取公因式a 后继续应用平方差公式分解即可:()()()3222a 4ab a a 4ba a 2b a 2b -=-=+-.13.同一个圆的内接正方形和正三角形的边心距的比为_____.【答案】2:1【解析】先画出同一个圆的内接正方形和内接正三角形,设⊙O 的半径为R ,求出正方形的边心距和正三角形的边心距,再求出比值即可.【详解】设⊙O 的半径为r ,⊙O 的内接正方形ABCD ,如图,过O 作OQ ⊥BC 于Q ,连接OB 、OC ,即OQ 为正方形ABCD 的边心距,∵四边形BACD 是正方形,⊙O 是正方形ABCD 的外接圆,∴O 为正方形ABCD 的中心,∴∠BOC=90°,∵OQ ⊥BC ,OB=CO ,∴QC=BQ ,∠COQ=∠BOQ=45°,∴OQ=OC×cos45°=2R ; 设⊙O 的内接正△EFG ,如图,过O 作OH ⊥FG 于H ,连接OG ,即OH 为正△EFG 的边心距,∵正△EFG 是⊙O 的外接圆,∴∠OGF=12∠EGF=30°, ∴OH=OG×sin30°=12R , ∴OQ :OH=(22R ):(12R )2:1, 2:1.【点睛】本题考查了正多边形与圆、解直角三角形,等边三角形的性质、正方形的性质等知识点,能综合运用知识点进行推理和计算是解此题的关键.14.若关于x 的方程111m x x x ----=0有增根,则m 的值是______. 【答案】2【解析】去分母得,m-1-x=0.∵方程有增根,∴x=1, ∴m-1-1=0, ∴m=2.15.若反比例函数y =﹣6x 的图象经过点A(m ,3),则m 的值是_____. 【答案】﹣2【解析】∵反比例函数6y x =-的图象过点A (m ,3), ∴63m=-,解得=2-. 16.用4块完全相同的长方形拼成正方形(如图),用不同的方法,计算图中阴影部分的面积,可得到1个、的等式为________.关于a b【答案】(a+b)2﹣(a﹣b)2=4ab【解析】根据长方形面积公式列①式,根据面积差列②式,得出结论.【详解】S阴影=4S长方形=4ab①,S阴影=S大正方形﹣S空白小正方形=(a+b)2﹣(b﹣a)2②,由①②得:(a+b)2﹣(a﹣b)2=4ab.故答案为(a+b)2﹣(a﹣b)2=4ab.【点睛】本题考查了完全平方公式几何意义的理解,此题有机地把代数与几何图形联系在一起,利用几何图形的面积公式直接得出或由其图形的和或差得出.17.如图,某海监船以20km/h的速度在某海域执行巡航任务,当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P在其北偏西30°方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之间的距离(即PC的长)为_____km.【答案】3【解析】首先证明PB=BC,推出∠C=30°,可得PC=2PA,求出PA即可解决问题.【详解】解:在Rt△PAB中,∵∠APB=30°,∴PB=2AB,由题意BC=2AB,∴PB=BC,∴∠C=∠CPB,∵∠ABP=∠C+∠CPB=60°,∴∠C=30°,∴PC=2PA,∵PA=AB•tan60°,∴PC=33km),故答案为403. 【点睛】本题考查解直角三角形的应用﹣方向角问题,解题的关键是证明PB =BC ,推出∠C =30°.18.若使代数式212x x -+有意义,则x 的取值范围是_____. 【答案】x≠﹣2【解析】直接利用分式有意义则其分母不为零,进而得出答案.【详解】∵分式212x x -+有意义, ∴x 的取值范围是:x+2≠0,解得:x≠−2.故答案是:x≠−2.【点睛】本题考查了分式有意义的条件,解题的关键是熟练的掌握分式有意义的条件.三、解答题(本题包括8个小题)19.如图,ABC ∆的顶点是方格纸中的三个格点,请按要求完成下列作图,①仅用无刻度直尺,且不能用直尺中的直角;②保留作图痕迹.在图1中画出AB 边上的中线CD ;在图2中画出ABEF ,使得ABEF ABC S S ∆=.【答案】(1)见解析;(2)见解析.【解析】(1)利用矩形的性质得出AB 的中点,进而得出答案.(2)利用矩形的性质得出AC 、BC 的中点,连接并延长,使延长线段与连接这两个中点的线段相等.【详解】(1)如图所示:CD 即为所求.(2)【点睛】本题考查应用设计与作图,正确借助矩形性质和网格分析是解题关键.20.如图,已知AB 是O 的直径,点C 、D 在O 上,60D ∠=且6AB =,过O 点作OE AC ⊥,垂足为E .()1求OE 的长;()2若OE 的延长线交O 于点F ,求弦AF 、AC 和弧CF 围成的图形(阴影部分)的面积S . 【答案】(1)OE =32;(2)阴影部分的面积为32π 【解析】(1)由题意不难证明OE 为△ABC 的中位线,要求OE 的长度即要求BC 的长度,根据特殊角的三角函数即可求得;(2)由题意不难证明△COE ≌△AFE ,进而将要求的阴影部分面积转化为扇形FOC 的面积,利用扇形面积公式求解即可.【详解】解:(1) ∵AB 是⊙O 的直径,∴∠ACB=90°,∵OE ⊥AC ,∴OE // BC ,又∵点O 是AB 中点,∴OE 是△ABC 的中位线,∵∠D=60°,∴∠B=60°,又∵AB=6,∴BC=AB·cos60°=3,∴OE=12 BC=32; (2)连接OC ,∵∠D=60°,∴∠AOC=120°,∵OF ⊥AC ,∴AE=CE ,AF =CF ,∴∠AOF=∠COF=60°,∴△AOF 为等边三角形,∴AF=AO=CO ,∵在Rt △COE 与Rt △AFE 中,AF CO AE CE =⎧⎨=⎩, ∴△COE ≌△AFE ,∴阴影部分的面积=扇形FOC 的面积,∵S 扇形FOC =2603360π⨯=32π. ∴阴影部分的面积为32π.【点睛】本题主要考查圆的性质、全等三角形的判定与性质、中位线的证明以及扇形面积的计算,较为综合.21.如图,AB 是⊙O 的直径,点C 是的中点,连接AC 并延长至点D ,使CD =AC ,点E 是OB 上一点,且,CE 的延长线交DB 的延长线于点F ,AF 交⊙O 于点H ,连接BH .求证:BD 是⊙O 的切线;(2)当OB =2时,求BH 的长.【答案】(1)证明见解析;(2)BH =.【解析】(1)先判断出∠AOC=90°,再判断出OC ∥BD ,即可得出结论;(2)先利用相似三角形求出BF ,进而利用勾股定理求出AF ,最后利用面积即可得出结论.【详解】(1)连接OC ,∵AB是⊙O的直径,点C是的中点,∴∠AOC=90°,∵OA=OB,CD=AC,∴OC是△ABD是中位线,∴OC∥BD,∴∠ABD=∠AOC=90°,∴AB⊥BD,∵点B在⊙O上,∴BD是⊙O的切线;(2)由(1)知,OC∥BD,∴△OCE∽△BFE,∴,∵OB=2,∴OC=OB=2,AB=4,,∴,∴BF=3,在Rt△ABF中,∠ABF=90°,根据勾股定理得,AF=5,∵S△ABF=AB•BF=AF•BH,∴AB•BF=AF•BH,∴4×3=5BH,∴BH=.【点睛】此题主要考查了切线的判定和性质,三角形中位线的判定和性质,相似三角形的判定和性质,求出BF=3是解本题的关键.22.如图,在直角坐标系xOy 中,直线y mx =与双曲线n y x=相交于A (-1,a )、B 两点,BC ⊥x 轴,垂足为C ,△AOC 的面积是1. 求m 、n 的值;求直线AC 的解析式.【答案】(1)m =-1,n =-1;(2)y =-12x +12 【解析】(1)由直线y mx =与双曲线n y x=相交于A(-1,a)、B 两点可得B 点横坐标为1,点C 的坐标为(1,0),再根据△AOC 的面积为1可求得点A 的坐标,从而求得结果;(2)设直线AC 的解析式为y =kx +b ,由图象过点A (-1,1)、C (1,0)根据待定系数法即可求的结果.【详解】(1)∵直线y mx =与双曲线n y x =相交于A(-1,a)、B 两点, ∴B 点横坐标为1,即C(1,0)∵△AOC 的面积为1,∴A(-1,1)将A(-1,1)代入y mx =,n y x=可得m =-1,n =-1; (2)设直线AC 的解析式为y =kx +b∵y =kx +b 经过点A (-1,1)、C (1,0)∴1,{0,k b k b -+=+=解得k =-12,b =12. ∴直线AC 的解析式为y =-12x +12. 【点睛】本题考查了一次函数与反比例函数图象的交点问题,此类问题是初中数学的重点,在中考中极为常见,熟练掌握待定系数法是解题关键.23.如图,在等边△ABC 中,点D 是 AB 边上一点,连接CD ,将线段CD 绕点C 按顺时针方向旋转60°后得到CE ,连接AE .求证:AE ∥BC .【答案】见解析【解析】试题分析:根据等边三角形的性质得出AC=BC,∠B=∠ACB=60°,根据旋转的性质得出CD=CE,∠DCE=60°,求出∠BCD=∠ACE,根据SAS 推出△BCD ≌△ACE,根据全等得出∠EAC=∠B=60°,求出∠EAC=∠ACB,根据平行线的判定得出即可.试题解析:∵△ABC 是等边三角形,∴AC=BC,∠B=∠ACB=60°,∵线段CD 绕点C 顺时针旋转60°得到CE,∴CD=CE,∠DCE=60°,∴∠DCE=∠ACB,即∠BCD+∠DCA=∠DCA+∠ACE,∴∠BCD=∠ACE,在△BCD 与△ACE 中,BC AC BCD ACE DC EC =⎧⎪∠=∠⎨⎪=⎩, ∴△BCD ≌△ACE,∴∠EAC=∠B=60°,∴∠EAC=∠ACB,∴AE ∥BC.24.如图,一个长方形运动场被分隔成A 、B 、A 、B 、C 共5个区,A 区是边长为am 的正方形,C 区是边长为bm 的正方形.列式表示每个B 区长方形场地的周长,并将式子化简;列式表示整个长方形运动场的周长,并将式子化简;如果a =20,b =10,求整个长方形运动场的面积.【答案】(1)4a (2)8a (3)1500S =【解析】试题分析:(1)结合图形可得矩形B 的长可表示为:a+b ,宽可表示为:a-b ,继而可表示出周长;(2)根据题意表示出整个矩形的长和宽,再求周长即可;(3)先表示出整个矩形的面积,然后代入计算即可.试题解析:(1)矩形B 的长可表示为:a+b ,宽可表示为:a-b ,∴每个B 区矩形场地的周长为:2(a+b+a-b )=4a ;(2)整个矩形的长为a+a+b=2a+b ,宽为:a+a-b=2a-b ,∴整个矩形的周长为:2(2a+b+2a-b )=8a ;(3)矩形的面积为:S=(2a+b )(2a-b )=224a b - ,把20a =,10b =代入得,S=4×202-102=4×400-100=1500.点睛:本题考查了列代数式的知识,属于基础题,解答本题的关键是结合图形表示出各矩形的长和宽.25.如图,在矩形ABCD 中,点F 在边BC 上,且AF=AD ,过点D 作DE ⊥AF ,垂足为点E .求证:DE=AB ;以D 为圆心,DE 为半径作圆弧交AD 于点G ,若BF=FC=1,试求的长.【答案】(1)详见解析;(2).【解析】∵四边形ABCD 是矩形,∴∠B=∠C=90°,AB=CD,BC=AD ,AD ∥BC,∴∠EAD=∠AFB ,∵DE ⊥AF ,∴∠AED=90°,在△ADE 和△FAB 中,∴△ADE ≌△FAB(AAS),∴AE=BF=1∵BF=FC=1∴BC=AD=2故在Rt △ADE 中,∠ADE=30°,DE=, ∴的长==.26.解方程组4311,213.x y x y -=⎧⎨+=⎩①②【答案】53x y =⎧⎨=⎩ 【解析】将②×3,再联立①②消未知数即可计算.【详解】解:②3⨯得:6339x y += ③①+③得:1050x =5x =把5x =代入③得10339y +=3y =∴方程组的解为53x y =⎧⎨=⎩【点睛】本题考查二元一次方程组解法,关键是掌握消元法.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知直线y=ax+b(a≠0)经过第一,二,四象限,那么直线y=bx-a一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】根据直线y=ax+b(a≠0)经过第一,二,四象限,可以判断a、b的正负,从而可以判断直线y=bx-a 经过哪几个象限,不经过哪个象限,本题得以解决.【详解】∵直线y=ax+b(a≠0)经过第一,二,四象限,∴a<0,b>0,∴直线y=bx-a经过第一、二、三象限,不经过第四象限,故选D.【点睛】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.2.如图,经过测量,C地在A地北偏东46°方向上,同时C地在B地北偏西63°方向上,则∠C的度数为()A.99°B.109°C.119°D.129°【答案】B【解析】方向角是从正北或正南方向到目标方向所形成的小于90°的角,根据平行线的性质求得∠ACF与∠BCF的度数,∠ACF与∠BCF的和即为∠C的度数.【详解】解:由题意作图如下∠DAC=46°,∠CBE=63°,由平行线的性质可得∠ACF=∠DAC=46°,∠BCF=∠CBE=63°,∴∠ACB=∠ACF+∠BCF=46°+63°=109°,故选B.【点睛】本题考查了方位角和平行线的性质,熟练掌握方位角的概念和平行线的性质是解题的关键.3.《九章算术》中有这样一个问题:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”题意为:今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的钱数为50;而甲把其23的钱给乙,则乙的钱数也能为50,问甲、乙各有多少钱?设甲的钱数为x,乙的钱数为y,则列方程组为()A.15022503x yy x⎧+=⎪⎪⎨⎪+=⎪⎩B.15022503y yx x⎧+=⎪⎪⎨⎪+=⎪⎩C.15022503x yy x⎧-=⎪⎪⎨⎪-=⎪⎩D.15022503y yx x⎧-=⎪⎪⎨⎪-=⎪⎩【答案】A【解析】设甲的钱数为x,人数为y,根据“若乙把其一半的钱给甲,则甲的钱数为50;而甲把其23的钱给乙,则乙的钱数也能为50”,即可得出关于x,y的二元一次方程组,此题得解.【详解】解:设甲的钱数为x,乙的钱数为y,依题意,得:150 22503x yy x⎧+=⎪⎪⎨⎪+=⎪⎩.故选A.【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.4.已知二次函数y=x2﹣4x+m的图象与x轴交于A、B两点,且点A的坐标为(1,0),则线段AB的长为() A.1 B.2 C.3 D.4【答案】B【解析】先将点A(1,0)代入y=x2﹣4x+m,求出m的值,将点A(1,0)代入y=x2﹣4x+m,得到x1+x2=4,x1•x2=3,即可解答【详解】将点A(1,0)代入y=x2﹣4x+m,得到m=3,所以y=x2﹣4x+3,与x轴交于两点,设A(x1,y1),b(x2,y2)∴x2﹣4x+3=0有两个不等的实数根,∴x1+x2=4,x1•x2=3,∴AB=|x1﹣x2|=21212)4x x x x++(=2;故选B.【点睛】此题考查抛物线与坐标轴的交点,解题关键在于将已知点代入.5.若正六边形的边长为6,则其外接圆半径为()A.3 B.32C.33D.6【答案】D【解析】连接正六边形的中心和各顶点,得到六个全等的正三角形,于是可知正六边形的边长等于正三角形的边长,为正六边形的外接圆半径.【详解】如图为正六边形的外接圆,ABCDEF是正六边形,∴∠AOF=10°, ∵OA=OF, ∴△AOF是等边三角形,∴OA=AF=1.所以正六边形的外接圆半径等于边长,即其外接圆半径为1.故选D.【点睛】本题考查了正六边形的外接圆的知识,解题的关键是画出图形,找出线段之间的关系.6.如图,∠AOB=45°,OC是∠AOB的角平分线,PM⊥OB,垂足为点M,PN∥OB,PN与OA相交于点N,那么PMPN的值等于()A.12B.2C.32D.33【答案】B【解析】过点P作PE⊥OA于点E,根据角平分线上的点到角的两边的距离相等可得PE=PM,再根据两直线平行,内错角相等可得∠POM=∠OPN,根据三角形的一个外角等于与它不相邻的两个内角的和求出∠PNE=∠AOB,再根据直角三角形解答.【详解】如图,过点P作PE⊥OA于点E,∵OP是∠AOB的平分线,∴PE=PM,∵PN∥OB,∴∠POM=∠OPN,∴∠PNE=∠PON+∠OPN=∠PON+∠POM=∠AOB=45°,∴PMPN 2.故选:B.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,直角三角形的性质,以及三角形的一个外角等于与它不相邻的两个内角的和,作辅助线构造直角三角形是解题的关键.7.甲、乙两人加工一批零件,甲完成240个零件与乙完成200个零件所用的时间相同,已知甲比乙每天多完成8个零件.设乙每天完成x个零件,依题意下面所列方程正确的是()A.2402008x x=-B.2402008x x=+C.2402008x x=+D.2402008x x=-【答案】B【解析】根据题意设出未知数,根据甲所用的时间=乙所用的时间,用时间列出分式方程即可. 【详解】设乙每天完成x个零件,则甲每天完成(x+8)个.即得,2402008x x+=,故选B.【点睛】找出甲所用的时间=乙所用的时间这个关系式是本题解题的关键.8.已知方程组2728x yx y+=⎧⎨+=⎩,那么x+y的值()A.-1 B.1 C.0 D.5 【答案】D【解析】解:2728x yx y+=⎧⎨+=⎩①②,①+②得:3(x+y)=15,则x+y=5,故选D9.下列图形中,周长不是32 m的图形是( )A.B.C.D.【答案】B【解析】根据所给图形,分别计算出它们的周长,然后判断各选项即可.【详解】A. L=(6+10)×2=32,其周长为32.B. 该平行四边形的一边长为10,另一边长大于6,故其周长大于32.C. L=(6+10)×2=32,其周长为32.D. L=(6+10)×2=32,其周长为32.采用排除法即可选出B故选B.【点睛】此题考查多边形的周长,解题在于掌握计算公式.10.已知图中所有的小正方形都全等,若在右图中再添加一个全等的小正方形得到新的图形,使新图形是中心对称图形,则正确的添加方案是()A.B.C.D.【答案】B【解析】观察图形,利用中心对称图形的性质解答即可.【详解】选项A,新图形不是中心对称图形,故此选项错误;选项B,新图形是中心对称图形,故此选项正确;选项C,新图形不是中心对称图形,故此选项错误;选项D,新图形不是中心对称图形,故此选项错误;故选B.【点睛】本题考查了中心对称图形的概念,熟知中心对称图形的概念是解决问题的关键.二、填空题(本题包括8个小题)11.计算:﹣1﹣2=_____.【答案】-3【解析】-1-2=-1+(-2)=-(1+2)=-3,故答案为-3.12.下图是在正方形网格中按规律填成的阴影,根据此规律,则第n个图中阴影部分小正方形的个数是.【答案】n1+n+1.【解析】试题解析:仔细观察图形知道:每一个阴影部分由左边的正方形和右边的矩形构成,分别为:第一个图有:1+1+1个,第二个图有:4+1+1个,第三个图有:9+3+1个,…第n个为n1+n+1.考点:规律型:图形的变化类.13.如图,在ABCD中,AB=6cm,AD=9cm,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=42cm,则EF+CF的长为cm.【答案】5【解析】分析:∵AF是∠BAD的平分线,∴∠BAF=∠FAD.∵ABCD中,AB∥DC,∴∠FAD =∠AEB.∴∠BAF=∠AEB.∴△BAE是等腰三角形,即BE=AB=6cm.同理可证△CFE也是等腰三角形,且△BAE∽△CFE.∵BC= AD=9cm,∴CE=CF=3cm.∴△BAE和△CFE的相似比是2:1.∵BG⊥AE,BG=42cm,∴由勾股定理得EG=2cm.∴AE=4cm.∴EF=2cm.∴EF+CF=5cm.14.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:.①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=23其中正确的序号是(把你认为正确的都填上).【答案】①②④【解析】分析:∵四边形ABCD是正方形,∴AB=AD。

吉林省长春市朝阳区2018届最新中考第一次模拟考试数学试题及答案

吉林省长春市朝阳区2018届最新中考第一次模拟考试数学试题及答案

2018年朝阳区一模-数学本试卷包括三道大题,共24小题,共6页,全卷满分120分.考试时间为120分钟. 注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内.2.答题前,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效. 一、选择题(每小题3分,共24分)1.在0,-2,,1这四个数中,最小的数是(A )0.(B )-2(C ).(D )1.2.据国家统计局统计,我国2017年全年的棉花总产量约为5490000吨.将5490000这个数用科学计数法表示为 (A )65.4910⨯.(B )654.910⨯.(C )75.4910⨯.(D )70.54910⨯.3.用6个完全相同的小正方体组成如图所示的立体图形,它的俯视图是(第3题) (A )(B )(C )(D )4.6a 可以表示为 (A )6a.(B )23a a ⋅.(C )32()a .(D )122a a ÷.5.小明拿40元钱购买雪糕和矿泉水,已知每瓶矿泉水2元,每支雪糕1.5元,他买了5瓶矿泉水,x 支雪糕,则所列关于x 的不等式正确的是 (A )2 1.5540x +⨯<. (B )2 1.5540x +⨯≤. (C )25 1.540x ⨯+≥.(D )25 1.540x ⨯+≤.6.等腰直角三角尺与直尺按如图位置摆放,且三角尺在直角顶点在直尺的一边上. 若 ∠1=35°,则∠2的度数是 (A )95°(B )100°(C )105°(D )110°7.如图,直线l 是O 的切线,点A 为切点,B 为直线l 上一点,连接OB 交O 于点C ,D 是优弧AC 上一点,连接AD 、CD.若∠ABO=40°.则∠D 的大小是 (A )50°(B )40°(C )35°(D )25°8.如图,在平面直角坐标系中,正方形OABC 的边OA 在x 轴的正半轴上,OC 在y 轴的正半若正方形的边长为2,轴上,一次函数(0)y kx b k =+≠的图象经过点A ,且与边BC 有交点.则k 的值不可能是 (A )-2. (B )32-. (C )-1.(D )12-. 二、填空题(每小题3分,共18分) 9.函数20181y x =-的自变量x 的取值范围是_________. 10.一元二次方程2310x x -+=根的判别式的值为_________. 11.如图,AD//BE//CF ,直线1l 、2l 与这三条平行线分别交于点A 、B 、C 和点D 、E 、F.若AB=4.5,BC=3,EF=2,则DE 的长度是_________.(第11题)(第12题)度得到''AB C ∆,使12.如图,在△ABC 中,∠B=70°.将△ABC 绕着点A 顺时针旋转一定角点B 的对应点'B 恰好落在边BC 上.若''AC B C ⊥,则'C ∠的大小是_______度.合.若AB ,则13.如图,正方形ABCD 内接于O ,Rt △OEF 的直角顶点与圆心O 重图中阴影部分图形的面积和为______(结果保留π).(第13题)(第14题)14.如图,在平面直角坐标系中,等腰三角形ABC 的顶点A 在y 轴上,底边AB//x 轴,顶点B 、C 在函数(0)ky x x=>的图象上.若AC =A 的纵坐标为1,则k 的值为________. 三、解答题(本大题10小题,共78分)15.(6分)先化简,再求值2(1)2(1)(21)(21)a a a a a ---++-,其中a =16.(6分)在一个不透明的盒子中装有三张卡片,分别标有数字为1,2,7,这些卡片除数字不同外其余均相同.洗匀后,小强从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片.用画树状图或列表的方法,求两次抽取的卡片上数字之和为偶数的概率.17.(6分)某同学准备购买笔和本子送给农村希望小学的同学,在市场上了解到某种本子的单价比某种笔的单价少4元,且用30元买这种本子的数量与用50元买这种笔的数量相同,求这种笔的单价.18.(7分)为了打通抚松到万良的最近公路,在一座小山的底部打通隧道.甲、乙两施工队按如图所示进行施工,甲施工队沿AC 方向开山修路,乙施工队在这座小山的另一边E 处沿射线CA 方向同时施工.从AC 上的一点B ,取∠ABD=155°,经测得BD=1200m ,∠D=65°,求开挖点E 与点B 之间的距离(结果精确到1m ). 【参考数据:sin 650.906︒=,cos650.423︒=,tan 65 2.145︒=.】(第18题)19.(7分)为了传承中华优秀传统文化,某校组织八年级学生参加了“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解大赛的成绩分布情况,随机抽取了其中若干名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,绘制如下不完整的条形统计图.汉字听写大赛成绩分数段统计表汉字听写大赛成绩分数段条形统计图(1)补全条形统计图.(2)这次抽取的学生成绩的中位数在________的分数段中;这次抽取的学生成绩在6070x≤<的分数段的人数占抽取人数的百分比是_______.(3)若该校八年级一共有学生350名,成绩在90分以上(含90分)为“优”,则八年级参加这次比赛的学生中成绩“优”等的约有多少人?20.(7分)如图,在ABCD中,以点A为圆心,以任意长为半径画圆弧,分别交边AD、AB于点M、N,再分别以点M、N为圆心,以大于12MN长为半径画圆弧,两弧交于点P,作射线AP交边CD于点E,过点E作EF//BC 交AB于点F.求证:四边形ADEF是菱形.(第20题)21.(8分)某社区准备进行“为了地球,远离白色污染”的宣传活动,需要制定宣传单,选择社区附近的甲、乙两家印刷社印刷,他们各自制作这种宣传单的费用y(元)与宣传单数量x(张)之间的函数图象如图所示,结合图象解答下列问题:(1)求甲印刷社制作这种宣传单每张的钱数.(2)当x>500时,求乙印刷社所需的费用y与x之间的函数关系式.(3)如果该社区在制作这种宣传单时,第一次印刷了800张宣传单,第二次印刷了1200张宣传单,直接写出该社区两次印刷这种宣传单共花费的最少钱数.(第21题)22.(9分)【感知】如图①,△ABC是等边三角形,CM是外角∠ACD的平分线,E是边BC中点,在CM上截取CF=BE,连接AE、EF、AF.易证:△AEF是等边三角形(不需要证明).【探究】如图②,△ABC是等边三角形,CM是外角∠ACD的平分线,E是边BC上一点(不与点B、C重合),在CM上截取CF=BE,连接AE、EF、AF.求证:△AEF是等边三角形.【应用】将图②中的“E是边BC上一点”改为“E是边BC延长线上一点”,其他条件不变.当四边形ACEF是轴对称图形,且AB=2时,请借助备用图,直接写出四边形ACEF的周长.图①图②备用图(第22题)23.(10分)如图,BD 是□ABCD 的对角线,AB ⊥BD ,BD=8cm ,AD=10cm ,动点P 从点D 出发,以5cm/s 的速度沿DA 运动到终点A ,同时动点Q 从点B 出发,沿折线BD —DC 运动到终点C ,在BD 、DC 上分别以8cm/s 、6cm/s 的速度运动.过点Q 作QM ⊥AB ,交射线AB 于点M ,连接PQ ,以PQ 与QM 为边作□PQMN.设点P 的运动时间为t(s)(t>0),□PQMN 与□ABCD 重叠部分图形的面积为2()S cm .(1)AP=_______cm (同含t 的代数式表示). (2)当点N 落在边AB 上时,求t 的值. (3)求S 与t 之间的函数关系式.(4)连结NQ ,当NQ 与△ABD 的一边平行时,直接写出t 的值.24.(12分)定义:在平面直角坐标系中,过抛物线2(0)y ax bx c a =++≠与y 轴的交点作y 轴的垂线,则称这条垂线是该抛物线的伴随直线.例如:抛物线21y x =+的伴随直线为直线1y =.抛物线212y x m x n =-++的伴随直线l 与该抛物线交于点A 、D (点A 在y 轴上),该抛物线与x 轴的交点为B(-1,0)和C (点C 在点B 的右侧). (1)若直线l 是y=2,求该抛物线对应的函数关系式. (2)求点D 的坐标(用含m 的代数式表示). (3)设抛物线212y x mx n =-++的顶点为M ,作OA 的垂直平分线EF ,交OA 于点E ,交该抛物线的对称轴于点F.①当△ADF 是等腰直角三角形时,求点M 的坐标.②将直线EF 沿直线l 翻折得到直线GH ,当点M 到直线GH 的距离等于点C 到直线EF 的距离时,直接写出m 的值.2018年九年级第一次模拟考试测试题·数学答案一、选择题(每小题3分,共24分)1.B 2.A 3.D 4.C 5.D 6.B 7.D 8.D 二、填空题(每小题3分,共18分)9.1x ≠ 10.5 11.3 12.50 13.1142π- 14.4评分说明:第12题带单位可给分;第13题写成4π-2可得分.三、解答题(本大题10小题,共78分) 15.原式222212241a a a a a =-+-++-(3分)23a =.(4分)当a =,原式2315=⨯=.(6分)16.画出如下树状图:所以P(两次抽取的卡片上数字之和为偶数)59=.(6分)根据题意,列表如下:(4分)所以P(两次抽取的卡片上数字之和为偶数)59=.(6分)评分说明:列树状图不写出结果不扣分.17.设这种笔单价为x元.(1分)由题意,得30504x x=-.(4分)解得10x=.(5分)经检验10x=是原方程的解,且符合题意.(6分)答:这种笔的单价是10元.18.∵∠ABD=155°,∠D=65°,∴∠AED=155°-65°=90°.(2分)在Rt△BDE中,∠BED=90°,sin65BE BD︒=.(5分)∴BE=BD·sin65°=1 200×0.906=1087.2≈1 087m.(7分)答:开挖点E离点B的距离约为1 087m.评分说明:(1)计算过程和结果中写成“=”或“≈”均不扣分.(2)计算过程加单位不扣分,结果不写单位不扣分.19.(1)如图.(2分)(2)8090x <≤(4分) 12%(5分)(3)1535010550⨯=.(7分)答:该年级参加这次比赛的学生中成绩“优”等的约有105人. 20.∵四边形ABCD 是平行四边形,∴AD BC ,AB CD .(1分)∴DE AF ,∠AED =∠BAE .(2分)∵EF BC , ∴AD EF .(3分)∴四边形ADEF 是平行四边形.(4分)∵AE 平分∠BAD ,∴∠DAE =∠BAE . ∴∠AED =∠DAE . ∴AD AE =.(6分)∴□ADEF 是菱形.(7分) 21.(1)755000.15÷=(元).(2分)答:甲印刷社制作此种宣传单每张0.15元.(2)当500x >时,设乙印刷社所需的费用y 与x 之间的函数关系式为y kx b =+.∵1500.151000÷=,∴直线y kx b =+经过点(1000,150).(3分)由题意,得500100,1000150.k b k b +=⎧⎨+=⎩解得0.1,50.k b =⎧⎨=⎩∴0.150y x =+.(6分)(3)该社区印制两次这种宣传单共花费最少为290元. (8分)22.【探究】∵△ABC 是等边三角形,∴∠ACD =120°.∵CM 是外角∠ACD 的平分线,∴1602ACF ACD ∠=∠=︒.∴∠B =∠ACF =60°.(2分)∵C F =BE , ∴△ABE ≌△ACF .(4分)∴AE =AF ,∠BAE =∠CAF . (5分)∵∠BAC =60°,∴∠BAE +∠EAC =∠CAF +∠EAC . ∴∠EAF =60°.(6分)∴△AEF 是等边三角形. (7分)【应用】4(9分)23.(1)(10-5t )(1分)(2)如图①,4(105)85t t -=,∴23t =. (3分)(3)如图②,过点P 作PE ⊥BD 于点E ,则PE =3t .当203t <≤时,23824S t t t =⋅=.如图③,过点P 作PE ⊥BD 于点E ,则PE =3t ,设PN 交AB 于点F ,则4(105)845PF t t =-=-.当112t <≤时,213(848)6122S t t t t t =⨯-+=+.如图④,当12t <≤时,24213272S t t =-+-. (7分)(4)2t =,1t =,2t =. (10分)24.(1)由题意,得A 的坐标为(0,2).∵抛物线经过点(10)B -,, ∴22,1(1)(1)0.2n m n =⎧⎪⎨-⨯-+⨯-+=⎪⎩ (2分) 解得3,22.m n ⎧=⎪⎨⎪=⎩ ∴该抛物线的对应的函数关系式为213222y x x =-++.(3分) (2)∵抛物线经过点(1,0)B -, ∴21(1)(1)02m n -⨯-+⨯-+=. ∴12n m =+. 将该抛物线配方,得22111()222y x m m m =--+++∴对称轴是直线x m =.∴点D 的坐标为1(2,)2m m +. (5分)(3)当0m >,且∠AFD =90°时,则△ADF 是等腰直角三角形.∴AD =2AE . ∴122m m =+. ∴12m =. (6分) ∴当12m =时,211119()22228y =⨯++=.∴点M 的坐标为19(,)28. (7分) 当102m -<<,∠AFD =90°时,则△ADF 是等腰直角三角形.∴AD =2AE . ∴122m m -=+. ∴16m =-. (8分) ∴当16m =-时,2111125()()266272y =⨯-+-+=.∴点M 的坐标为125(,)672-. (9分)当112m -<-≤时,EF>AE .此时△ADF 不是等腰直角三角形. 综上所述,点M 的坐标为19(,)28或125(,)672-.(4)0m =,1m =+1m = (12分)。

2018年吉林省中考数学全真一模试卷和解析答案

2018年吉林省中考数学全真一模试卷和解析答案

2018年吉林省中考数学全真模拟试卷(一)一、选择题(下列各题地备选答案中,只有一个是正确地.每小题3分,共24分)1.(3分)﹣2地绝对值是()A.2 B.﹣2 C.0 D.2.(3分)2014年广东省人口数超过105000000,将105000000这个数用科学记数法表示为()A.0.105×109B.1.05×109C.1.05×108D.105×1063.(3分)下面所给几何体地俯视图是()A.B.C.D.4.(3分)一组数据8,3,8,6,7,8,7地众数和中位数分别是()A.8,6 B.7,6 C.7,8 D.8,75.(3分)下列计算结果正确地是()A.a8÷a4=a2B.a2•a3=a6 C.(a3)2=a6D.(﹣2a2)3=8a66.(3分)如图,Rt△AOB中,AB⊥OB,且AB=OB=3,设直线x=t截此三角形所得阴影部分地面积为S,则S与t之间地函数关系地图象为下列选项中地()A.B.C.D.7.(3分)如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=6,EF=2,则BC长为()A.8 B.10 C.12 D.148.(3分)如图,将一块含有30°角地直角三角板地两个顶点放在矩形直尺地一组对边上.如果∠2=60°,那么∠1地度数为()A.60°B.50°C.40°D.30°二、填空题(每小题3分,共24分)9.(3分)分解因式:xy2﹣x=.10.(3分)不等式组地解集为.11.(3分)一个正多边形地一个外角等于30°,则这个正多边形地边数为.12.(3分)反比例函数y=地图象经过点(2,3),则k=.13.(3分)某公司今年4月份营业额为60万元,6月份营业额达到100万元,设该公司5、6两个月营业额地月均增长率为x,则可列方程为.14.(3分)观察下列数据:﹣2,,﹣,,﹣,…,它们是按一定规律排列地,依照此规律,第11个数据是.15.(3分)如图,正方形ABCD边长为3,连接AC,AE平分∠CAD,交BC地延长线于点E,FA⊥AE,交CB延长线于点F,则EF地长为.16.(3分)如图,在平面直角坐标系中,A、B两点分别在x轴、y轴上,OA=3,OB=4,连接AB.点P在平面内,若以点P、A、B为顶点地三角形与△AOB全等(点P与点O不重合),则点P地坐标为.三、解答题(每小题8分,共16分)17.(8分)计算:20160﹣|﹣|+()﹣1+2sin45°18.(8分)在平面直角坐标系中,△ABC地位置如图所示(每个小方格都是边长为1个单位长度地正方形).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到地△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到地△AB2C2,并直接写出点B2、C2地坐标.四、(每小题10分,共20分)19.(10分)为了促进学生多样化发展,某校组织开展了社团活动,分别设置了体育类、艺术类、文学类及其它类社团(要求人人参与社团,每人只能选择一项).为了解学生喜爱哪种社团活动,学校做了一次抽样调查.根据收集到地数据,绘制成如下两幅不完整地统计图,请根据图中提供地信息,完成下列问题:(1)此次共调查了多少人?(2)求文学社团在扇形统计图中所占圆心角地度数;(3)请将条形统计图补充完整;(4)若该校有1500名学生,请估计喜欢体育类社团地学生有多少人?20.(10分)甲、乙两人进行摸牌游戏.现有三张形状大小完全相同地牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.(1)请用列表法或画树状图地方法,求两人抽取相同数字地概率;(2)若两人抽取地数字和为2地倍数,则甲获胜;若抽取地数字和为5地倍数,则乙获胜.这个游戏公平吗?请用概率地知识加以解释.五、(每小题10分,共20分)21.(10分)某商场购进甲、乙两种商品,乙商品地单价是甲商品单价地2倍,购买240元甲商品地数量比购买300元乙商品地数量多15件,求两种商品单价各为多少元?22.(10分)如图,已知AB是⊙O地弦,半径OA=2,OA和AB地长度是关于x 地一元二次方程x2﹣4x+a=0地两个实数根.(1)求弦AB地长度;;(2)计算S△AOB(3)⊙O上一动点P从A点出发,沿逆时针方向运动一周,当S=S△AOB时,△POA求P点所经过地弧长(不考虑点P与点B重合地情形).六、(每小题10分,共20分)23.(10分)水果店张阿姨以每斤4元地价格购进某种水果若干斤,然后以每斤6元地价格出售,每天可售出150斤,通过调查发现,这种水果每斤地售价每降低0.1元,每天可多售出30斤,为保证每天至少售出360斤,张阿姨决定降价销售.(1)若将这种水果每斤地售价降低x元,则每天地销售量是斤(用含x 地代数式表示);(2)销售这种水果要想每天盈利450元,张阿姨需将每斤地售价降低多少元?24.(10分)某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间地距离和每棵树所受光照就会减少,单棵树地产量随之降低.若该果园每棵果树产果y(千克),增种果树x(棵),它们之间地函数关系如图所示.(1)求y与x之间地函数关系式;(2)在投入成本最低地情况下,增种果树多少棵时,果园可以收获果实6750千克?(3)当增种果树多少棵时,果园地总产量w(千克)最大?最大产量是多少?七、(本题12分)25.(12分)如图,抛物线y1=x2+bx+c与x轴交于点A、B,交y轴于点C(0,﹣2),且抛物线对称轴x=﹣2交x轴于点D,E是抛物线在第3象限内一动点.(1)求抛物线y1地解析式;(2)将△OCD沿CD翻折后,O点对称点O′是否在抛物线y1上?请说明理由.(3)若点E关于直线CD地对称点E′恰好落在x轴上,过E′作x轴地垂线交抛物线y1于点F,①求点F地坐标;②直线CD上是否存在点P,使|PE﹣PF|最大?若存在,试写出|PE﹣PF|最大值.八、(本题14分)26.(14分)如图,在Rt△ABC中,∠A=90°,AB=6,AC=8,D,E分别是边AB,AC地中点,点P从点D出发沿DE方向运动,过点P作PQ⊥BC于Q,过点Q作QR∥BA交AC于R,当点Q与点C重合时,点P停止运动.设BQ=x,QR=y.(1)求点D到BC地距离DH地长;(2)求y关于x地函数关系式(不要求写出自变量地取值范围);(3)是否存在点P,使△PQR为等腰三角形?若存在,请求出所有满足要求地x 地值;若不存在,请说明理由.2018年吉林省中考数学全真模拟试卷(一)参考答案与试题解析一、选择题(下列各题地备选答案中,只有一个是正确地.每小题3分,共24分)1.(3分)﹣2地绝对值是()A.2 B.﹣2 C.0 D.【解答】解:﹣2地绝对值是2,故选:A.2.(3分)2014年广东省人口数超过105000000,将105000000这个数用科学记数法表示为()A.0.105×109B.1.05×109C.1.05×108D.105×106【解答】解:将105000000用科学记数法表示为1.05×108.故选:C.3.(3分)下面所给几何体地俯视图是()A.B.C.D.【解答】解:由几何体可得:圆锥地俯视图是圆,且有圆心.故选:B.4.(3分)一组数据8,3,8,6,7,8,7地众数和中位数分别是()A.8,6 B.7,6 C.7,8 D.8,7【解答】解:把这组数据从小到大排列:3,6,7,7,8,8,8,8出现了3次,出现地次数最多,则众数是8;最中间地数是7,则这组数据地中位数是7.故选:D.5.(3分)下列计算结果正确地是()A.a8÷a4=a2B.a2•a3=a6 C.(a3)2=a6D.(﹣2a2)3=8a6【解答】解:A、a8÷a4=a4,故A错误;B、a2•a3=a5,故B错误;C、(a3)2=a6,故C正确;D、(﹣2a2)3=﹣8a6,故D错误.故选:C.6.(3分)如图,Rt△AOB中,AB⊥OB,且AB=OB=3,设直线x=t截此三角形所得阴影部分地面积为S,则S与t之间地函数关系地图象为下列选项中地()A.B.C.D.【解答】解:∵Rt△AOB中,AB⊥OB,且AB=OB=3,∴∠AOB=∠A=45°,∵CD⊥OB,∴CD∥AB,∴∠OCD=∠A,∴∠AOD=∠OCD=45°,∴OD=CD=t,∴S=×OD×CD△OCD=t2(0≤t≤3),即S=t2(0≤t≤3).故S与t之间地函数关系地图象应为定义域为[0,3]、开口向上地二次函数图象;故选:D.7.(3分)如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=6,EF=2,则BC长为()A.8 B.10 C.12 D.14【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,DC=AB=6,AD=BC,∴∠AFB=∠FBC,∵BF平分∠ABC,∴∠ABF=∠FBC,则∠ABF=∠AFB,∴AF=AB=6,同理可证:DE=DC=6,∵EF=AF+DE﹣AD=2,即6+6﹣AD=2,解得:AD=10;故选:B.8.(3分)如图,将一块含有30°角地直角三角板地两个顶点放在矩形直尺地一组对边上.如果∠2=60°,那么∠1地度数为()A.60°B.50°C.40°D.30°【解答】解:如图,∵∠3=∠1+30°,∵AB∥CD,∴∠2=∠3=60°,∴∠1=∠3﹣30°=60°﹣30°=30°.故选:D.二、填空题(每小题3分,共24分)9.(3分)分解因式:xy2﹣x=x(y﹣1)(y+1).【解答】解:xy2﹣x,=x(y2﹣1),=x(y﹣1)(y+1).故答案为:x(y﹣1)(y+1).10.(3分)不等式组地解集为2<x<6.【解答】解:,由①得,x>2,由②得,x<6,故不等式组地解集为:2<x<6.故答案为:2<x<6.11.(3分)一个正多边形地一个外角等于30°,则这个正多边形地边数为12.【解答】解:依题意,得多边形地边数=360°÷30°=12,故答案为:12.12.(3分)反比例函数y=地图象经过点(2,3),则k=7.【解答】解:∵反比例函数y=地图象经过点(2,3),∴k﹣1=2×3,解得:k=7.故答案为:7.13.(3分)某公司今年4月份营业额为60万元,6月份营业额达到100万元,设该公司5、6两个月营业额地月均增长率为x,则可列方程为60(1+x)2=100.【解答】解:设平均每月地增长率为x,根据题意可得:60(1+x)2=100.故答案为:60(1+x)2=100.14.(3分)观察下列数据:﹣2,,﹣,,﹣,…,它们是按一定规律排列地,依照此规律,第11个数据是﹣.【解答】解:∵﹣2=﹣,,﹣,,﹣,…,∴第11个数据是:﹣=﹣.故答案为:﹣.15.(3分)如图,正方形ABCD边长为3,连接AC,AE平分∠CAD,交BC地延长线于点E,FA⊥AE,交CB延长线于点F,则EF地长为6.【解答】解:∵四边形ABCD为正方形,且边长为3,∴AC=3,∵AE平分∠CAD,∴∠CAE=∠DAE,∵AD∥CE,∴∠DAE=∠E,∴∠CAE=∠E,∴CE=CA=3,∵FA⊥AE,∴∠FAC+∠CAE=90°,∠F+∠E=90°,∴∠FAC=∠F,∴CF=AC=3,∴EF=CF+CE=3=6,故答案为:6.16.(3分)如图,在平面直角坐标系中,A、B两点分别在x轴、y轴上,OA=3,OB=4,连接AB.点P在平面内,若以点P、A、B为顶点地三角形与△AOB全等(点P与点O不重合),则点P地坐标为(3,4)或(,)或(﹣,).【解答】解:如图所示:①∵OA=3,OB=4,∴P1(3,4);②连结OP2,设AB地解析式为y=kx+b,则,解得.故AB地解析式为y=﹣x+4,则OP2地解析式为y=x,联立方程组得,解得,则P2(,);③连结P 2P3,∵(3+0)÷2=1.5,(0+4)÷2=2,∴E(1.5,2),∵1.5×2﹣=﹣,2×2﹣=,∴P3(﹣,).故点P地坐标为(3,4)或(,)或(﹣,).故答案为:(3,4)或(,)或(﹣,).三、解答题(每小题8分,共16分)17.(8分)计算:20160﹣|﹣|+()﹣1+2sin45°【解答】解:20160﹣|﹣|+()﹣1+2sin45°=1﹣+3+2×=4﹣+=418.(8分)在平面直角坐标系中,△ABC地位置如图所示(每个小方格都是边长为1个单位长度地正方形).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到地△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到地△AB2C2,并直接写出点B2、C2地坐标.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△AB2C2即为所求,点B2(4,﹣2),C2(1,﹣3).四、(每小题10分,共20分)19.(10分)为了促进学生多样化发展,某校组织开展了社团活动,分别设置了体育类、艺术类、文学类及其它类社团(要求人人参与社团,每人只能选择一项).为了解学生喜爱哪种社团活动,学校做了一次抽样调查.根据收集到地数据,绘制成如下两幅不完整地统计图,请根据图中提供地信息,完成下列问题:(1)此次共调查了多少人?(2)求文学社团在扇形统计图中所占圆心角地度数;(3)请将条形统计图补充完整;(4)若该校有1500名学生,请估计喜欢体育类社团地学生有多少人?【解答】解:(1)80÷40%=200(人).∴此次共调查200人.(2)×360°=108°.∴文学社团在扇形统计图中所占圆心角地度数为108°.(3)补全如图,(4)1500×40%=600(人).∴估计该校喜欢体育类社团地学生有600人.20.(10分)甲、乙两人进行摸牌游戏.现有三张形状大小完全相同地牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.(1)请用列表法或画树状图地方法,求两人抽取相同数字地概率;(2)若两人抽取地数字和为2地倍数,则甲获胜;若抽取地数字和为5地倍数,则乙获胜.这个游戏公平吗?请用概率地知识加以解释.【解答】解:(1)所有可能出现地结果如图:从表格可以看出,总共有9种结果,每种结果出现地可能性相同,其中两人抽取相同数字地结果有3种,所以两人抽取相同数字地概率为;(2)不公平.从表格可以看出,两人抽取数字和为2地倍数有5种,两人抽取数字和为5地倍数有3种,所以甲获胜地概率为,乙获胜地概率为.∵>,∴甲获胜地概率大,游戏不公平.五、(每小题10分,共20分)21.(10分)某商场购进甲、乙两种商品,乙商品地单价是甲商品单价地2倍,购买240元甲商品地数量比购买300元乙商品地数量多15件,求两种商品单价各为多少元?【解答】解:设甲商品地单价为x元,乙商品地单价为2x元,根据题意,得﹣=15,解这个方程,得x=6,经检验,x=6是所列方程地根,∴2x=2×6=12,答:甲、乙两种商品地单价分别为6元、12元.22.(10分)如图,已知AB是⊙O地弦,半径OA=2,OA和AB地长度是关于x 地一元二次方程x2﹣4x+a=0地两个实数根.(1)求弦AB地长度;;(2)计算S△AOB=S△AOB时,(3)⊙O上一动点P从A点出发,沿逆时针方向运动一周,当S△POA求P点所经过地弧长(不考虑点P与点B重合地情形).【解答】解:(1)由题意知:OA和AB地长度是x2﹣4x+a=0地两个实数根,∴OA+AB=﹣=4,∵OA=2,∴AB=2;(2)过点C作OC⊥AB于点C,∵OA=AB=OB=2,∴△AOB是等边三角形,∴AC=AB=1在Rt△ACO中,由勾股定理可得:OC==AB•OC=×2×=∴S△AOB(3)延长AO交⊙O于点D,由于△AOB与△POA有公共边OA,当S=S△AOB时,△POA∴△AOB与△POA高相等,由(2)可知:等边△AOB地高为,∴点P到直线OA地距离为,这样点共有3个①过点B作BP1∥OA交⊙O于点P1,∴∠BOP1=60°,∴此时点P经过地弧长为:=,②作点P2,使得P1与P2关于直线OA对称,∴∠P2OD=60°,∴此时点P经过地弧长为:=π,③作点P3,使得B与P3关于直线OA对称,∴∠P3OP2=60°,∴此时P经过地弧长为:=,=S△AOB时,P点所经过地弧长分别是、、.综上所述:当S△POA六、(每小题10分,共20分)23.(10分)水果店张阿姨以每斤4元地价格购进某种水果若干斤,然后以每斤6元地价格出售,每天可售出150斤,通过调查发现,这种水果每斤地售价每降低0.1元,每天可多售出30斤,为保证每天至少售出360斤,张阿姨决定降价销售.(1)若将这种水果每斤地售价降低x元,则每天地销售量是150+300x斤(用含x地代数式表示);(2)销售这种水果要想每天盈利450元,张阿姨需将每斤地售价降低多少元?【解答】解:(1)将这种水果每斤地售价降低x元,则每天地销售量是150+×30=150+300x(斤);(2)根据题意得:(6﹣4﹣x)(150+300x)=450,解得:x=或x=1,当x=时,销售量是150+300×=300<360;当x=1时,销售量是150+300=450(斤).∵每天至少售出360斤,∴x=1.答:张阿姨需将每斤地售价降低1元.24.(10分)某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间地距离和每棵树所受光照就会减少,单棵树地产量随之降低.若该果园每棵果树产果y(千克),增种果树x(棵),它们之间地函数关系如图所示.(1)求y与x之间地函数关系式;(2)在投入成本最低地情况下,增种果树多少棵时,果园可以收获果实6750千克?(3)当增种果树多少棵时,果园地总产量w(千克)最大?最大产量是多少?【解答】解:(1)设函数地表达式为y=kx+b,该一次函数过点(12,74),(28,66),得,解得,∴该函数地表达式为y=﹣0.5x+80,(2)根据题意,得,(﹣0.5x+80)(80+x)=6750,解得,x1=10,x2=70∵投入成本最低.∴x2=70不满足题意,舍去.∴增种果树10棵时,果园可以收获果实6750千克.(3)根据题意,得w=(﹣0.5x+80)(80+x)=﹣0.5 x2+40 x+6400=﹣0.5(x﹣40)2+7200∵a=﹣0.5<0,则抛物线开口向下,函数有最大值∴当x=40时,w最大值为7200千克.∴当增种果树40棵时果园地最大产量是7200千克.七、(本题12分)25.(12分)如图,抛物线y1=x2+bx+c与x轴交于点A、B,交y轴于点C(0,﹣2),且抛物线对称轴x=﹣2交x轴于点D,E是抛物线在第3象限内一动点.(1)求抛物线y1地解析式;(2)将△OCD沿CD翻折后,O点对称点O′是否在抛物线y1上?请说明理由.(3)若点E关于直线CD地对称点E′恰好落在x轴上,过E′作x轴地垂线交抛物线y1于点F,①求点F地坐标;②直线CD上是否存在点P,使|PE﹣PF|最大?若存在,试写出|PE﹣PF|最大值.【解答】解:(1)∵抛物线对称轴x=﹣2,∴﹣=﹣2,解得b=2,∵点C(0,﹣2)在抛物线y1=x2+bx+c上,∴c=2,∴抛物线解析式为y1=x2+2x﹣2;(2)O点对称点O′不在抛物线y1上.理由如下:过O′点作O′H⊥x轴于H,如图1,由(1)得D(﹣2,0),C(0,2),在Rt△OCD中,∵OD=2,OC=,∴tan∠ODC==,∴∠ODC=60°,∵△OCD沿CD翻折后,O点对称点O′,∴O′D=OD=2,∠O′DC=∠ODC=60°,∴∠O′DH=60°,在Rt△O′DH中,sin∠O′DH=,∴O′H=2sin60°=,∴DH==1,∴O′(﹣3,﹣),∵当x=﹣3时,y1=x2+2x﹣2=×9+2×(﹣3)﹣2≠﹣,∴O′点不在抛物线y1上;(3)①设E(m,m2+2m﹣2)(m<0),过E作EH⊥x轴于H,连结DE,如图2,则DH=﹣2﹣m,EH=﹣(m2+2m﹣2)=﹣m2﹣2m+2,由(2)得∠ODC=60°,∵点E关于直线CD地对称点E′恰好落在x轴上,∴DC垂直平分EE′,∴DC平分∠EDE′,DE=DE′,∴∠EDE′=120°,∴∠EDH=60°,在Rt△EDH中,∵tan∠EDH=,∴EH=HDtan60°,即﹣m2﹣2m+2=(﹣2﹣m)•,整理得m2+(4+2)m﹣8=0,解得m1=2(舍去),m2=﹣4,∴E(﹣4,﹣2),∴HD=2,EH=2,∴DE==4,∴DE′=4,∴E′(2,0),而E′F⊥x轴,∴F点地横坐标为2,当x=2时,y1=x2+2x﹣2=6﹣2,∴F(2,6﹣2);②∵点E关于直线CD地对称点E′恰好落在x轴,∴PE=PE′,∴|PE′﹣PF|≤E′F(当点P、E′F共线时,取等号),∴直线CD上存在点P,使|PE﹣PF|最大,最大值为6﹣2.八、(本题14分)26.(14分)如图,在Rt△ABC中,∠A=90°,AB=6,AC=8,D,E分别是边AB,AC地中点,点P从点D出发沿DE方向运动,过点P作PQ⊥BC于Q,过点Q作QR∥BA交AC于R,当点Q与点C重合时,点P停止运动.设BQ=x,QR=y.(1)求点D到BC地距离DH地长;(2)求y关于x地函数关系式(不要求写出自变量地取值范围);(3)是否存在点P,使△PQR为等腰三角形?若存在,请求出所有满足要求地x 地值;若不存在,请说明理由.【解答】解:(1)在Rt△ABC中,∵∠A=90°,AB=6,AC=8,∴BC==10.∵∠DHB=∠A=90°,∠B=∠B.∴△BHD∽△BAC,∴=,∴DH=•AC=×8=(3分)(2)∵QR∥AB,∴∠QRC=∠A=90°.∵∠C=∠C,∴△RQC∽△ABC,∴=,∴=,即y关于x地函数关系式为:y=x+6.(6分)(3)存在,分三种情况:①当PQ=PR时,过点P作PM⊥QR于M,则QM=RM.∵∠1+∠2=90°,∠C+∠2=90°,∴∠1=∠C.∴cos∠1=cosC==,∴=,∴=,∴x=.②当PQ=RQ时,﹣x+6=,∴x=6.③作EM⊥BC,RN⊥EM,∴EM∥PQ,当PR=QR时,则R为PQ中垂线上地点,∴EN=MN,∴ER=RC ,∴点R 为EC 地中点,∴CR=CE=AC=2.∵tanC==,∴=, ∴x=.综上所述,当x 为或6或时,△PQR 为等腰三角形. (12分)赠送:初中数学几何模型举例【模型四】 几何最值模型: 图形特征:P ABl运用举例:1. △ABC 中,AB =6,AC =8,BC =10,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为AP 的中点,则MF 的最小值为B2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。

2018吉林省中考数学一模答案

2018吉林省中考数学一模答案

x

m 2
代入
y

( x

m)2

2 中,得
y


m2 4

2
.
∴点 B
的坐标为(
m 2
,
m2 4

2 ).
( 5 分)
由题意可知,当 M 与 x 轴恰好有三个交点时,点 B 一定在 x 轴上.


m2 4

2

0
.
( 6 分)
解得 m 2 2 .
∵ m 0 ,∴ m 2 2 .
( 7 分)
,
0)

M
(1751
,
0)
.
( 8 分)
九年级数学答案 第 4 页 (共 6 页)
吉林市教育学院编制
五、解答题(每小题 10 分,共 20 分)
25.解:(1) 8 x 2 ; 11
(2)当点 G 落在线段 BC 上时,
(2 分)
过点 G 作 GH ⊥ PQ ,点 H 为垂足.
在等腰 Rt △ PQG 中,
∴将点( 0, 0 )代入 y ( x m)2 2 中,
得 0 m2 2 . 解得 m 2 .
(1 分)
∵ m 0 ,∴ m 2 .
( 2 分)
(2)
43 3
或4
.
( 4 分)
(3)∵点 B
是抛物线
y

( x

m)2

2(m

0)
与直线
x

m 2
的交点,
∴把
22.解:(1)等腰直角三角形;△ ABD ≌△ ACE .

吉林省长春市朝阳区2018届中考第一次模拟考试数学试题含答案

2018年朝阳区一模-数学本试卷包括三道大题,共24小题,共6页,全卷满分120分.考试时间为120分钟. 注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内.2.答题前,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效. 一、选择题(每小题3分,共24分)1.在0,-2,2-1这四个数中,最小的数是 (A )0.(B )-2(C )2-(D )1.2.据国家统计局统计,我国2017年全年的棉花总产量约为5490000吨.将5490000这个数用科学计数法表示为 (A )65.4910⨯.(B )654.910⨯.(C )75.4910⨯.(D )70.54910⨯.3.用6个完全相同的小正方体组成如图所示的立体图形,它的俯视图是(第3题) (A ) (B ) (C ) (D )4.6a 可以表示为 (A )6a.(B )23a a ⋅.(C )32()a .(D )122a a ÷.5.小明拿40元钱购买雪糕和矿泉水,已知每瓶矿泉水2元,每支雪糕1.5元,他买了5瓶矿泉水,x 支雪糕,则所列关于x 的不等式正确的是 (A )2 1.5540x +⨯<. (B )2 1.5540x +⨯≤. (C )25 1.540x ⨯+≥.(D )25 1.540x ⨯+≤.6.等腰直角三角尺与直尺按如图位置摆放,且三角尺在直角顶点在直尺的一边上. 若 ∠1=35°,则∠2的度数是 (A )95°(B )100°(C )105°(D )110°(第6题) (第7题)7.如图,直线l 是O 的切线,点A 为切点,B 为直线l 上一点,连接OB 交O 于点C ,D 是优弧AC 上一点,连接AD 、CD.若∠ABO=40°.则∠D 的大小是 (A )50°(B )40°(C )35°(D )25°8.如图,在平面直角坐标系中,正方形OABC 的边OA 在x 轴的正半轴上,OC 在y 轴的正半轴上,一次函数(0)y kx b k =+≠的图象经过点A ,且与边BC 有交点.若正方形的边长为2,则k 的值不可能是(A )-2. (B )32-. (C )-1.(D )12-. 二、填空题(每小题3分,共18分) 9.函数20181y x =-的自变量x 的取值范围是_________. 10.一元二次方程2310x x -+=根的判别式的值为_________.11.如图,AD//BE//CF ,直线1l 、2l 与这三条平行线分别交于点A 、B 、C 和点D 、E 、F.若AB=4.5,BC=3,EF=2,则DE 的长度是_________.(第11题)(第12题)12.如图,在△ABC 中,∠B=70°.将△ABC 绕着点A 顺时针旋转一定角度得到''AB C ∆,使点B 的对应点'B 恰好落在边BC 上.若''AC B C ⊥,则'C ∠的大小是_______度.13.如图,正方形ABCD 内接于O ,Rt △OEF 的直角顶点与圆心O 重合.若2AB =,则图中阴影部分图形的面积和为______(结果保留π).(第8题)(第13题) (第14题)14.如图,在平面直角坐标系中,等腰三角形ABC 的顶点A 在y 轴上,底边AB//x 轴,顶点B 、C 在函数(0)ky x x=>的图象上.若AC A 的纵坐标为1,则k 的值为________. 三、解答题(本大题10小题,共78分)15.(6分)先化简,再求值2(1)2(1)(21)(21)a a a a a ---++-,其中5a =16.(6分)在一个不透明的盒子中装有三张卡片,分别标有数字为1,2,7,这些卡片除数字不同外其余均相同.洗匀后,小强从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片.用画树状图或列表的方法,求两次抽取的卡片上数字之和为偶数的概率.17.(6分)某同学准备购买笔和本子送给农村希望小学的同学,在市场上了解到某种本子的单价比某种笔的单价少4元,且用30元买这种本子的数量与用50元买这种笔的数量相同,求这种笔的单价.18.(7分)为了打通抚松到万良的最近公路,在一座小山的底部打通隧道.甲、乙两施工队按如图所示进行施工,甲施工队沿AC 方向开山修路,乙施工队在这座小山的另一边E 处沿射线CA 方向同时施工.从AC 上的一点B ,取∠ABD=155°,经测得BD=1200m ,∠D=65°,求开挖点E 与点B 之间的距离(结果精确到1m ). 【参考数据:sin 650.906︒=,cos 650.423︒=,tan 65 2.145︒=.】(第18题)19.(7分)为了传承中华优秀传统文化,某校组织八年级学生参加了“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解大赛的成绩分布情况,随机抽取了其中若干名学生的成绩(成绩x 取整数,总分100分)作为样本进行整理,绘制如下不完整的条形统计图. 汉字听写大赛成绩分数段统计表汉字听写大赛成绩分数段条形统计图(1)补全条形统计图.(2)这次抽取的学生成绩的中位数在________的分数段中;这次抽取的学生成绩在6070x ≤<的分数段的人数占抽取人数的百分比是_______.(3)若该校八年级一共有学生350名,成绩在90分以上(含90分)为“优”,则八年级参加这次比赛的学生中成绩“优”等的约有多少人?20.(7分)如图,在ABCD 中,以点A 为圆心,以任意长为半径画圆弧,分别交边AD 、AB 于点M 、N ,再分别以点M 、N 为圆心,以大于12MN 长为半径画圆弧,两弧交于点P ,作射线AP 交边CD 于点E ,过点E 作EF//BC 交AB 于点F.求证:四边形ADEF 是菱形.(第20题)21.(8分)某社区准备进行“为了地球,远离白色污染”的宣传活动,需要制定宣传单,选择社区附近的甲、分数段频数 5060x ≤< 2 6070x ≤< 6 7080x ≤< 9 8090x ≤<18 90100x ≤≤15乙两家印刷社印刷,他们各自制作这种宣传单的费用y(元)与宣传单数量x(张)之间的函数图象如图所示,结合图象解答下列问题:(1)求甲印刷社制作这种宣传单每张的钱数.(2)当x>500时,求乙印刷社所需的费用y与x之间的函数关系式.(3)如果该社区在制作这种宣传单时,第一次印刷了800张宣传单,第二次印刷了1200张宣传单,直接写出该社区两次印刷这种宣传单共花费的最少钱数.(第21题)22.(9分)【感知】如图①,△ABC是等边三角形,CM是外角∠ACD的平分线,E是边BC中点,在CM上截取CF=BE,连接AE、EF、AF.易证:△AEF是等边三角形(不需要证明).【探究】如图②,△ABC是等边三角形,CM是外角∠ACD的平分线,E是边BC上一点(不与点B、C重合),在CM上截取CF=BE,连接AE、EF、AF.求证:△AEF是等边三角形.【应用】将图②中的“E是边BC上一点”改为“E是边BC延长线上一点”,其他条件不变.当四边形ACEF是轴对称图形,且AB=2时,请借助备用图,直接写出四边形ACEF的周长.图①图②备用图(第22题)23.(10分)如图,BD 是□ABCD 的对角线,AB ⊥BD ,BD=8cm ,AD=10cm ,动点P 从点D 出发,以5cm/s 的速度沿DA 运动到终点A ,同时动点Q 从点B 出发,沿折线BD —DC 运动到终点C ,在BD 、DC 上分别以8cm/s 、6cm/s 的速度运动.过点Q 作QM ⊥AB ,交射线AB 于点M ,连接PQ ,以PQ 与QM 为边作□PQMN.设点P 的运动时间为t(s)(t>0),□PQMN 与□ABCD 重叠部分图形的面积为2()S cm . (1)AP=_______cm (同含t 的代数式表示). (2)当点N 落在边AB 上时,求t 的值. (3)求S 与t 之间的函数关系式.(4)连结NQ ,当NQ 与△ABD 的一边平行时,直接写出t 的值.24.(12分)定义:在平面直角坐标系中,过抛物线2(0)y ax bx c a =++≠与y 轴的交点作y 轴的垂线,则称这条垂线是该抛物线的伴随直线.例如:抛物线21y x =+的伴随直线为直线1y =.抛物线212y x m x n =-++的伴随直线l 与该抛物线交于点A 、D (点A 在y 轴上),该抛物线与x 轴的交点为B(-1,0)和C (点C 在点B 的右侧).(1)若直线l 是y=2,求该抛物线对应的函数关系式. (2)求点D 的坐标(用含m 的代数式表示). (3)设抛物线212y x mx n =-++的顶点为M ,作OA 的垂直平分线EF ,交OA 于点E ,交该抛物线的对称轴于点F.①当△ADF 是等腰直角三角形时,求点M 的坐标.②将直线EF 沿直线l 翻折得到直线GH ,当点M 到直线GH 的距离等于点C 到直线EF 的距离时,直接写出m 的值.(第23题)2018年九年级第一次模拟考试测试题·数学答案一、选择题(每小题3分,共24分)1.B 2.A 3.D 4.C 5.D 6.B 7.D 8.D 二、填空题(每小题3分,共18分)9.1x ≠ 10.5 11.3 12.50 13.1142π- 14.4 评分说明:第12题带单位可给分;第13题写成4π-2可得分.三、解答题(本大题10小题,共78分) 15.原式222212241a a a a a =-+-++-(3分) 23a =.(4分) 当5a =23(5)15=⨯=.(6分)16.画出如下树状图:(4分) 第一次 1 2 7第二次 1 2 7 1 2 7 1 2 7 和 2 3 8 3 4 9 8 9 14所以P (两次抽取的卡片上数字之和为偶数)59=.(6分)根据题意,列表如下:(4分)所以P (两次抽取的卡片上数字之和为偶数)59=.(6分) 评分说明:列树状图不写出结果不扣分.17.设这种笔单价为x 元.(1分)由题意,得30504x x =-.(4分) 解得10x =.(5分)经检验10x =是原方程的解,且符合题意.(6分)答:这种笔的单价是10元. 18.∵∠ABD =155°,∠D =65°,∴∠AED =155°-65°=90°.(2分)在Rt △BDE 中,∠BED =90°,sin65BEBD︒=.(5分)∴BE =BD ·sin65°=1 200×0.906=1087.2≈1 087m .(7分)答:开挖点E 离点B 的距离约为1 087m .评分说明:(1)计算过程和结果中写成“=”或“≈”均不扣分.(2)计算过程加单位不扣分,结果不写单位不扣分.19.(1)如图.(2分)人数/人(2)8090x <≤(4分) 12%(5分) (3)1535010550⨯=.(7分)答:该年级参加这次比赛的学生中成绩“优”等的约有105人. 20.∵四边形ABCD 是平行四边形,∴AD BC ,AB CD . (1分) ∴DE AF ,∠AED =∠BAE .(2分)∵EF BC ,∴ADEF .(3分) ∴四边形ADEF 是平行四边形.(4分)∵AE 平分∠BAD ,∴∠DAE =∠BAE . ∴∠AED =∠DAE . ∴AD AE =.(6分) ∴□ADEF 是菱形.(7分)21.(1)755000.15÷=(元). (2分) 答:甲印刷社制作此种宣传单每张0.15元.(2)当500x >时,设乙印刷社所需的费用y 与x 之间的函数关系式为y kx b =+.∵1500.151000÷=,∴直线y kx b =+经过点(1000,150).(3分)由题意,得500100,1000150.k b k b +=⎧⎨+=⎩解得0.1,50.k b =⎧⎨=⎩∴0.150y x =+.(6分) (3)该社区印制两次这种宣传单共花费最少为290元.(8分)22.【探究】∵△ABC 是等边三角形,∴AB =AC ,∠B =∠ACB =60°.(1分)∴∠ACD =120°.∵CM 是外角∠ACD 的平分线, ∴1602ACF ACD ∠=∠=︒.∴∠B =∠ACF =60°.(2分)∵C F =BE ,∴△ABE ≌△ACF .(4分) ∴AE =AF ,∠BAE =∠CAF .(5分)∵∠BAC =60°,∴∠BAE +∠EAC =∠CAF +∠EAC . ∴∠EAF =60°.(6分) ∴△AEF 是等边三角形. (7分) 【应用】434(9分) 23.(1)(10-5t ) (1分)(2)如图①,4(105)85t t -=,∴23t =. (3分)(3)如图②,过点P 作PE ⊥BD 于点E ,则PE =3t .当203t <≤时,23824S t t t =⋅=.如图③,过点P 作PE ⊥BD 于点E ,则PE =3t ,设PN 交AB 于点F ,则4(105)845PF t t =-=-. 当112t <≤时,213(848)6122S t t t t t =⨯-+=+.如图④,当12t <≤时,24213272S t t =-+-. (7分)EN QPD CB (M )AF A B (M )CD PQNE图② 图③ 图④NQP DCBAMFG N QPD CB (M )A 图①(4)25t =, 12t =,2t =.(10分) 24.(1)由题意,得A 的坐标为(0,2).∵抛物线经过点(10)B -,, ∴22,1(1)(1)0.2n m n =⎧⎪⎨-⨯-+⨯-+=⎪⎩(2分) 解得3,22.m n ⎧=⎪⎨⎪=⎩ ∴该抛物线的对应的函数关系式为213222y x x =-++.(3分) (2)∵抛物线经过点(1,0)B -, ∴21(1)(1)02m n -⨯-+⨯-+=. ∴12n m =+. 将该抛物线配方,得22111()222y x m m m =--+++∴对称轴是直线x m =.∴点D 的坐标为1(2,)2m m +.(5分) (3)当0m >,且∠AFD =90°时,则△ADF 是等腰直角三角形.∴AD =2AE . ∴122m m =+. ∴12m =.(6分) ∴当12m =时,211119()22228y =⨯++=.∴点M 的坐标为19(,)28.(7分) 当102m -<<,∠AFD =90°时,则△ADF 是等腰直角三角形.∴AD =2AE . ∴122m m -=+. ∴16m =-.(8分) ∴当16m =-时,2111125()()266272y =⨯-+-+=.∴点M 的坐标为125(,)672-. (9分) 当112m -<-≤时,EF>AE .此时△ADF 不是等腰直角三角形. 综上所述,点M 的坐标为19(,)28或125(,)672-. (4)0m =,12m =+12m =(12分)。

2018年吉林省长春市届初中中考第一次模拟考试数学试题及答案(word版)

(A) (B) (C) (D)2017—2018学年度下学期初三年级第一次模拟(数学)试卷满分120分,时间120分钟注意事项:1. 答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内。

2. 答题时,考生务必按考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效。

一、选择题(本大题共8小题,每小题3分,共24分)1. 3-的绝对值是(A)3- (B)3 1(C)3- 1(D)32. 下列四个几何体,他们的正视图中与众不同的是3. 2017年长春市机动车约为1890000辆. 1890000这个数用科学记数法表示为(A) (B) (C) (D)51.8()9A 10⨯ 518.()9B 10⨯ 61.8()9C 10⨯ 70.18()9D 10⨯4. 不等式组21,213(1)x x x x ≤+⎧⎨-≥-⎩的解集在数轴上表示正确的是5. 如右图,在ABC ∆中,90C ∠=.按以下步骤操作图:○1一点A 为圆心,小于AC 的长为半径画弧,分别交,AB AC 于点,;E F ○2分别以点,E F 为圆心,大于12EF 的长为半径画弧,两弧相交于点G ; ○3作射线AG 交BC 边于点D . 若1,2,CD AC ==则点D 到AB 的距离是(A)1 (B)2 (C)3 6. 如图,在ABC ∆中,90C ∠=.AC BC >,DE 是线段AB 的垂直平分线,交AB 于点D ,交AC 于点E ,若36A ∠=,则EBC ∠等于(A)18 (B)28 (C)32 (D)54 7. 如图,四边形ABCD 内接于圆O ,若125,B ∠=则AOC ∠的大小是(A)125 (B)110 (C)100(D)958. 如图,在平面直角坐标系中,菱形OABC 的对角线OB 在x 的正半轴上,顶点A 在第一象限并且在函数(0)ky x x=>的图象上.若菱形OABC 面积为12,则k 等于(A)6- (B)6 (C)12- (D)12二、填空题(本大题共6小题,每小题3分,共18分) 9.计算:32254a b b c ⋅=________.10.篮球每个a 元,排球每个b 元,买3个篮球和2个排球共需________元. 11.二次函数232y x x =-+的图象与x 轴的交点个数是________. 12.如图,直线AB // CD // EF ,若34AC CE ==,________.13.如图,在ABC ∆中,90ABC ∠=, 1.BC AC ==把ABC ∆绕点A 逆时针旋转90后得到ADE ∆,则BC 扫过部分的面积(阴影部分)为_______(结果保留π).14.如图,在平面直角坐标系中,抛物线24y x x =-+的顶点为A ,与x 轴分别交与O ,B 两点.过顶点A 分别作AC x ⊥轴于点C ,AD y ⊥轴于点D ,连结BD ,AC 于点E ,则ADE ∆和BCE ∆的面积和为________.三、解答题(本大题共10小题,共78分)15.(6分) 先化简,再求值:()()2232121a a a -+--,其中13a =.16.(6分)在一个不透明的口袋里装有2个红球、1个白球,小球除颜色外其余均相同.从口袋中随机摸出一个小球,记下颜色后不放回,再随机摸出一个小球.请你用画树状图(或列表)的方法,求两次摸出的小球颜色不同的概率.17.(6分)某校英语考试采取网上阅卷的形式,已知该校甲、乙两名教师各阅卷200张,甲教师的阅卷速度是乙教师的2倍,结果甲教师比乙教师提前2个小时完成阅卷工作.求甲、乙两名教师每小时批阅学生试卷的张数.18.(7分)如图,已知AC 是矩形ABCD 的对角线,过AC 的中点O 的直线EF ,交BC 于点F ,交AD 于点E ,连接,.AF CE(1)求证:;O AOE C F ∆∆≌,试判断四边形AFCE是什么特殊四边形?请证明你的结(2)若EF AC论.19.(7分)某校为了解“书香校园”活动的开展情况,随机抽取了n名学生,调查他们一周阅读课外书籍的时间(单位:时),并将所得数据绘制成如下的统计图表.(1)求n 的值,并补全频数分布直方图.(2)这组数据的中位数落在频数分布表中的哪个时间段?(3)根据上述调查结果,估计该校2400名学生中一周阅读课外书籍时间在6小时以上 的人数.20.(7分)如图,某游乐园有一个滑梯AB ,高度AC 为5.1米,C ∠是直角,倾斜角度为58°.为了改善滑梯AB 的安全性能,把倾斜角由58°减至30°,调整后的滑梯AD 比调整前滑梯AB 长多少米?(精确到0.1米) (参考数据:580.85sin ︒≈,580.53cos ︒≈,58 1.60tan ︒≈)21.(8分)甲、乙两车分别从,A B 两地同时出发.甲车匀速前往B 地,到达B 地立即以另一速度按原路匀速返回到A 地;乙车匀速前往A 地.设甲乙两车距A 地的路程为y (千米),甲乙两车行驶的时间为x (时),y 与x 之间的函数图象如图所示.(1)求甲车从A 地到达B 地的行驶时间.(2)求甲车返回时y 与x 之间的函数关系式,并写出自变量x 的取值范围. (3)当乙车到达A 地时,直接写出甲车距A 地的路程为_________千米.22.(9分)(问题原型)学完旋转变换之后,老师给同学们留了这样一个问题:“如图1,在等边ABC 内有一点P ,连接,PA PB PC ,,若345PC PB PA ===,,,求CPB ∠的度数”,思考求CPB ∠度数的方法,解决下面问题:(问题探究)如图2,小明在做这道题时,将BPC ∆绕着点C 顺时针旋转,使得点B 的对应点与点A 重合,得到',AP C ∆连结'PP ,从而求出了CPB ∠的度数,请你写出小明的解答过程.(方法推广)小明解决完上述问题后,提出了一个新的问题:若果将原题中的等边ABC ∆改为等腰直角ABC ∆,90ACB ∠=,12AC BC PC PB ===,,,则PA 等于多少时?135CPB ∠=.请你直接写出答案.23.(10分)如图,在平行四边形ABCD 中,42AB AD ==,,60A ∠=.动点P 从点A 出发,沿AB 以每秒1个单位长度的速度向终点B 运动,过点P作PQ AB ⊥交折线AD DC -于点Q ,以PQ 为边在PQ 右侧作等边三角形PQN .将PQN ∆绕QN 的中点旋转180得到MNQ ∆.设四边形PQMN 与平行四边形ABCD 重叠部分图形的面积为S (平方单位),点P 的运动时间为t (s )(04t ≤≤)(1)当点N 在边BC 上时,则t 的值是______.(2)当MN 经过点C 时,求t 的值.(3)当点Q 在CD 边上,且四边形PQMN 与平行四边形ABCD 重叠部分图形是四边形时,求S 与t 之间的函数关系式. (4)设平行四边形ABCD 和四边形PQMN 的对角线的交点分别是点O ,'O .当'OO 最短时,直接写出t的值.24.(12分)如图○1,若抛物线1L 的顶点A 在抛物线2L 上,抛物线2L 的顶点B 在抛物线1L 上(点A 与点B 不重合),我们把这样的两条抛物线1L 、2L 互称为“伴随抛物线”,可见一条抛物线的“伴随抛物线”可以有多条. (1)抛物线1L :243y x x =-+-与抛物线2L 是“伴随抛物线”,且抛物线2L 的顶点B 的横坐标为4,则抛物线2L 的解析式是__________________; (2)若抛物线21()y a x m n =-+的任意一条“伴随抛物线”的解析式为22()y a x h k =-+,求出1a 与2a 的关系式,并说明理由;(3)在图○2中,已知抛物线21:23(0)L y mx mx m m =-->与y 轴相交于C ,它的“伴随抛物线”为2L ,抛物线2L 与y 轴相交于D ,若4CD m =,求抛物线2L 的对称轴.答案:1. B2. D3. C4. B5. A6. A7. B8. B9. 3420a b c 10. 32a b + 11. 2 12.37 13. 14π 14. 4 15. 化简结果 1a - 当13a =时,原式=23-16.17.解:设乙阅卷速度为每小时x 张,则甲为2x 根据题意得20020022x x-= 解得 x =50 经检验,x =50是原方程的解,且符合题意. 所以 甲速度为2x =2x50=100答:甲速度每小时100张 乙速度每小时50张18.()2=3P 两次摸出的小球颜色不同(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠EAO=∠FCO,∵O是AC的中点,∴AO=CO,在△AOE和△COF中,,∴△AOE≌△COF(ASA);(2)解:四边形AFCE是菱形;理由如下:理由是:由(1)△AOE≌△COF得:OE=OF 又∵OA=OC,∴四边形AFCE是平行四边形,又∵EF⊥AC ∴平行四边形AFCE是菱形.19.解:(1)根据题意可得:;(2)根据中位数的求法,将200名学生的时间从小到大排列可得,200名学生的中位数应是第100个和第101个同学时间的平均数;读图可得第100个和第101个同学时间都在之间;故这组数据的中位数落在频数分布表中的第三个时间段,即为;(3)在样本中,有人一周阅读课外书籍时间在6小时以上,该校2 400名学生中一周阅读课外书籍时间在6小时以上的有人.即该校2 400名学生中一周阅读课外书籍时间在6小时以上有840人.20.解:Rt△ACD中,∵∠ADB=30°,AC=5.1米,∴AD=2AC=10.2(m)∵在Rt△ABC中,AB=AC÷sin58°≈6m,∴AD﹣AB=10.2-6≈4.2(m).∴调整后的滑梯AD比原滑梯AB增加4.2米21.(1)由图可知,甲车从地到达地的速度为:(千米/小时),所以甲车从地到达地的行驶时间为:(小时)。

【名师推荐-新课标】2018年吉林省长春市中考数学第一次模拟试题及答案解析

吉林省长春市2018年中考数学一模试卷(解析版)一、选择题(本大题共8小题,每小题3分,共24分)1.﹣6的相反数是()A.6 B.﹣6 C.D.2.地球绕太阳每小时转动经过的路程约为110000米,将110000用科学记数法表示为()A.11×104B.0.11×107C.1.1×106 D.1.1×1053.如图是由四个相同的小正方体组成的立体图形,它的俯视图为()A.B.C. D.4.一个关于x的一元一次不等式组的解集在数轴上表示如图,则该不等式组的解集是()A.﹣2<x<1 B.﹣2<x≤1 C.﹣2≤x<1 D.﹣2≤x≤15.如图,AB∥CD,EF与AB,CD分别交于点E,F,EG⊥EF,与∠EFC的平分线FG 交于点G.若∠EFG=25°,则∠AEG的大小为()A.30°B.40°C.50°D.60°6.如图,在平面直角坐标系中,Rt△AOB的直角顶点与原点O重合,顶点A的坐标为(﹣1,1),∠ABO=30°,若顶点B在第一象限,则点B的坐标为()A.(1,1)B.(,)C.(,)D.(2,2)7.如图,AB为⊙O的直径,C,D为⊙O上两点,若∠BCD=40°,则∠ABD的大小为()A.20°B.40°C.50°D.60°8.如图,在平面直角坐标系中,菱形OABC的顶点A在y轴的正半轴上,点B在函数y=(x>0)的图象上,若点C的坐标为(4,3),则k的值为()A.12 B.20 C.24 D.32二、填空题(本大题共6小题,每小题3分,共18分)9.分解因式:x2﹣4=______.10.某种电视机每台定价为m元,商店在节日期间搞促销活动,这种电视机每台降价20%,促销期间这种电视机每台的实际售价为______元.(用含m的代数式表示)11.一元二次方程3x2+5x+1=0______实数根.(填“有”或“没有”)12.如图,在Rt△ABC中,∠ACB=90°,∠A=65°,以点C为圆心,CA长为半径作弧交边AB于点D,则∠BCD的大小为______度.13.如图,在⊙O中,AB是弦,过点A的切线交BO的延长线于点C,若⊙O的半径为3,∠C=20°,则的长为______.14.如图,在平面直角坐标系中,抛物线y=x2﹣2x+2交y轴于点A,直线AB交x轴正半轴于点B,交抛物线的对称轴于点C,若OB=2OA,则点C的坐标为______.三、解答题(本大题共10小题,共78分)15.先化简,再求值:a(a﹣2b)+(a+b)2,其中a=﹣1,b=.16.一个不透明的口袋中有3个小球,上面分别标有数字1,2,3,每个小球除数字外其他都相同,甲先从口袋中随机摸出一个小球,记下数字后放回;乙再从口袋中随机摸出一个小球记下数字,用画树状图(或列表)的方法,求摸出的两个小球上的数字之和为偶数的概率.17.在“母亲节”前夕,某花店用16000元购进第一批礼盒鲜花,上市后很快预售一空.根据市场需求情况,该花店又用7500元购进第二批礼盒鲜花.已知第二批所购鲜花的盒数是第一批所购鲜花的,且每盒鲜花的进价比第一批的进价少10元.问第二批鲜花每盒的进价是多少元?18.如图,延长▱ABCD的边AB到点E,使BE=BC,延长CD到点F,使DF=DA,连结AF,CE,求证:四边形AECF是平行四边形.19.如图,这是一把可调节座椅的侧面示意图,已知头枕上的点A到调节器点O处的距离为80cm,AO与地面垂直,现调整靠背,把OA绕点O顺时针旋转35°到OA′处,此时点A′到OA的距离为线段A′B的长,求调整后点A′比调整前点A降低的高度AB.(结果取整数)【参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70】20.在“全民读书月”活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的条形统计图,请根据相关信息,解答下列问题:(1)这次调查获取的样本数据的众数是______元;(2)这次调查获取的样本数据的中位数是______元;(3)根据样本数据,估计该校1200名学生中本学期计划购买课外书花费50元的学生人数.21.甲、乙两人从学校出发沿同一路线步行到距学校1500米处的图书馆看书,甲与乙在行进过程中以各自的速度匀速行走,甲比乙先出发5分钟,乙比甲先到达图书馆,甲、乙两人间的距离y(米)与甲的行走时间x(分)之间的函数图象如图所示.(1)求甲、乙两人行走的速度;(2)当乙到达图书馆时,求甲、乙两人间的距离;(3)求线段BC所在直线对应的函数表达式.22.如图,在Rt△ABC中,∠ACB=90°,D是边BC上一点,DE⊥AB于点E,点F是线段AD上一点,连接EF,CF.(1)若AD平分∠BAC,求证:EF=CF.(2)若点F是线段AD的中点,试猜想线段EF与CF的大小关系,并加以证明.(3)在(2)的条件下,若∠BAC=45°,AD=6,直接写出C,E两点间的距离.23.(10分)(2016•宽城区一模)如图,在平面直角坐标系中,边长为1的正方形ABCD 的顶点A在直线y=2x+4上,点B在第二象限,C,D两点均在x轴上,且点C在点D 的左侧,抛物线y=﹣(x﹣m)2+n的顶点P在直线y=2x+4上运动,且这条抛物线交y 轴于点E.(1)写出A,C两点的坐标;(2)当抛物线y=﹣(x﹣m)2+n经过点C时,求抛物线所对应的函数表达式;(3)当点E在AC所在直线上时,求m的值;(4)当点E在x轴上方时,连接CE,DE,当△CDE的面积随m的增大而增大时,直接写出m的取值范围.24.(12分)(2016•宽城区一模)如图,在矩形ABCD中,AB=6,BC=8,点P从点B出发以每秒2个单位长度的速度向终点C运动,点P不与点B重合,以BP为边在BC 上方作正方形BPEF,设正方形BPEF与△ABC的重叠部分图形的面积为S(平方单位),点P的运动时间为t(秒).(1)用含t的代数式表示线段PC的长;(2)当点E落在线段AC上时,求t的值;(3)在点P运动的过程中,求S与t之间的函数关系式;(4)设边BC的中点为O,点C关于点P的对称点为C′,以OC′为边在BC上方作正方形OC′MN,当正方形OC′MN与△ACD重叠部分图形为三角形时,直接写出t的取值范围.参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.﹣6的相反数是()A.6 B.﹣6 C.D.【考点】相反数.【分析】根据相反数的定义,即可解答.【解答】解:﹣6的相反数是6,故选:A.【点评】本题考查了相反数,解决本题的关键是熟记相反数的定义.2.地球绕太阳每小时转动经过的路程约为110000米,将110000用科学记数法表示为()A.11×104B.0.11×107C.1.1×106 D.1.1×105【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:110000=1.1×105,故选:D.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图是由四个相同的小正方体组成的立体图形,它的俯视图为()A.B.C. D.【考点】简单组合体的三视图.【分析】根据俯视图是从上边看得到的图形,可得答案.【解答】解:从上边看从上边看第一层是一个小正方形,第二层是第一层正上一个小正方形,右边一个小正方形,故选:D.【点评】本题考查了简单组合体的三视图,俯视图是从上边看得到的图形.4.一个关于x的一元一次不等式组的解集在数轴上表示如图,则该不等式组的解集是()A.﹣2<x<1 B.﹣2<x≤1 C.﹣2≤x<1 D.﹣2≤x≤1【考点】在数轴上表示不等式的解集.【分析】根据不等式解集的表示方法即可判断.【解答】解:该不等式组的解集是:﹣2≤x<1.故选C.【点评】本题考查了不等式组的解集的表示,不等式的解集在数轴上表示出来的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.5.如图,AB∥CD,EF与AB,CD分别交于点E,F,EG⊥EF,与∠EFC的平分线FG 交于点G.若∠EFG=25°,则∠AEG的大小为()A.30°B.40°C.50°D.60°【考点】平行线的性质.【分析】先根据角平分线的性质求出∠EFC的度数,再由平行线的性质得出∠AEF的度数,根据EG⊥EF得出∠GEF=90°,进而可得出结论.【解答】解:∵FG是∠EFC的平分线,∠EFG=25°,∴∠EFC=2∠EFG=50°.∵AB∥CD,∴∠AEF=180°﹣∠EFC=180°﹣50°=130°.∵EG⊥EF,∴∠GEF=90°,∴∠AEG=∠AEF﹣∠GEF=130°﹣90°=40°.故选B.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.6.如图,在平面直角坐标系中,Rt△AOB的直角顶点与原点O重合,顶点A的坐标为(﹣1,1),∠ABO=30°,若顶点B在第一象限,则点B的坐标为()A.(1,1)B.(,)C.(,)D.(2,2)【考点】相似三角形的判定与性质;坐标与图形性质.【分析】根据勾股定理得到OA==,解直角三角形得到OB=,过B作BC ⊥x轴于C,根据等腰直角三角形的性质得到OC=BC,根据勾股定理即可得到结论.【解答】解:∵A的坐标为(﹣1,1),∴OA==,∵Rt△AOB,∠ABO=30°,∴=tan30°,∴OB=,过B作BC⊥x轴于C,∵A的坐标为(﹣1,1),∴x轴负半轴与OA的夹角为45°,∵∠AOB=90°,∴∠BOC=45°,∴OC=BC,∴2OC2=OB2=()2=6,OC=BC=,∴B的坐标为(,),故选C.【点评】本题考查了勾股定理,解直角三角形,等腰直角三角形的性质,正确的作出辅助线构造直角三角形是解题的关键.7.如图,AB为⊙O的直径,C,D为⊙O上两点,若∠BCD=40°,则∠ABD的大小为()A.20°B.40°C.50°D.60°【考点】圆周角定理.【分析】连接AD,先根据圆周角定理得出∠A及∠ADB的度数,再由直角三角形的性质即可得出结论.【解答】解:连接AD,∵AB为⊙O的直径,∴∠ADB=90°.∵∠BCD=40°,∴∠A=∠BCD=40°,∴∠ABD=90°﹣40°=50°.故选C.【点评】本题考查的是圆周角定理,根据题意作出辅助线,构造出圆周角是解答此题的关键.8.如图,在平面直角坐标系中,菱形OABC的顶点A在y轴的正半轴上,点B在函数y=(x>0)的图象上,若点C的坐标为(4,3),则k的值为()A.12 B.20 C.24 D.32【考点】菱形的性质;反比例函数图象上点的坐标特征.【分析】延长BC交x轴于D,则BD⊥OD,根据菱形的性质以及勾股定理得出BC=OC=OA=5,即可得出B点坐标,进而求出k的值即可.【解答】解:延长BC交x轴于D,如图所示:则BD⊥OD,∵C的坐标为(4,3),∴OD=4,CD=3,∴OC==5,∵四边形OABC是菱形,∴BC=OA=OC=5,∴BD=5+3=8,∴点B的坐标为(4,8),把B(4,8)代入函数y=(x>0)得:k=4×8=32;故选:D.【点评】此题主要考查了菱形的性质、勾股定理和反比例函数图象上点的坐标性质;得出B 点坐标是解题关键.二、填空题(本大题共6小题,每小题3分,共18分)9.分解因式:x2﹣4= (x+2)(x﹣2).【考点】因式分解-运用公式法.【分析】直接利用平方差公式进行因式分解即可.【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.10.某种电视机每台定价为m元,商店在节日期间搞促销活动,这种电视机每台降价20%,促销期间这种电视机每台的实际售价为0.8m 元.(用含m的代数式表示)【考点】列代数式.【分析】用原售价减去降低的价格得出实际售价即可.【解答】解:∵电视机每台定价为m元,每台降价20%,∴每台降价20%m元,则电视机每台的实际售价为:m﹣20%m=0.8m元.故答案为:0.8m.【点评】此题考查列代数式,找出题目蕴含的数量关系是解决问题的关键.11.一元二次方程3x2+5x+1=0 有实数根.(填“有”或“没有”)【考点】根的判别式.【分析】根据方程计算出△=b2﹣4ac的值,即可知方程根的情况.【解答】解:∵b2﹣4ac=52﹣4×3×1=13>0,∴方程有两个不相等实数根,故答案为:有.【点评】此题考查了根的判别式,掌握一元二次方程根的情况与判别式△的关系:△>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数根;△<0⇔方程没有实数根是本题的关键.12.如图,在Rt△ABC中,∠ACB=90°,∠A=65°,以点C为圆心,CA长为半径作弧交边AB于点D,则∠BCD的大小为40 度.【考点】等腰三角形的性质.【分析】先求出∠ACD的度数,根据∠BCD=90°﹣∠ACD即可解决问题.【解答】解:∵CA=CD,∴∠A=∠CDA=65°,∴∠ACD=180°﹣∠A﹣∠ADC=180°﹣65°﹣65°=50°,∵∠ACB=90°,∴∠BCD=90°﹣∠ACD=40°,故答案为40【点评】本题考查等腰三角形的性质.直角三角形的性质等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.13.如图,在⊙O中,AB是弦,过点A的切线交BO的延长线于点C,若⊙O的半径为3,∠C=20°,则的长为.【考点】切线的性质;弧长的计算.【分析】由AC是⊙O的切线推出OA⊥AC,由∠C=20°,得到∠COA=70°,进而推出圆心角∠AOB=110°,代入弧长公式即可得到结论.【解答】解:连接OA,∵AC是⊙O的切线,∴OA⊥AC,∵∠C=20°,∴∠COA=70°,∴∠AOB=110°,∴的长为=π.故答案为π.【点评】本题考查了切线的性质,直角三角形的性质,弧长公式,本题关键是求得圆心角∠AOB的度数.14.如图,在平面直角坐标系中,抛物线y=x2﹣2x+2交y轴于点A,直线AB交x轴正半轴于点B,交抛物线的对称轴于点C,若OB=2OA,则点C的坐标为(1,).【考点】二次函数的性质.【分析】由抛物线的解析式求得A(0,2)和对称轴x=1,进而求得B的坐标,然后根据待定系数法求得直线AB的解析式,把x=1代入即可求得.【解答】解:由抛物线y=x2﹣2x+2=(x﹣1)2+1可知A(0,2),对称轴为x=1,∴OA=2,∵OB=2OA,∴B(4,0),设直线AB的解析式为y=kx+b,∴,解得,∴直线AB为y=﹣x+2,当x=1时,y=,∴C(1,).【点评】本题考查了二次函数的性质以及待定系数法求一次函数的解析式,利用抛物线的解析式求A的坐标和对称轴是解题的关键.三、解答题(本大题共10小题,共78分)15.先化简,再求值:a(a﹣2b)+(a+b)2,其中a=﹣1,b=.【考点】整式的混合运算—化简求值.【分析】原式利用单项式乘以多项式,以及完全平方公式化简,去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=a2﹣2ab+a2+2ab+b2=2a2+b2,当a=﹣1,b=时,原式=2+2=4.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.16.一个不透明的口袋中有3个小球,上面分别标有数字1,2,3,每个小球除数字外其他都相同,甲先从口袋中随机摸出一个小球,记下数字后放回;乙再从口袋中随机摸出一个小球记下数字,用画树状图(或列表)的方法,求摸出的两个小球上的数字之和为偶数的概率.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与摸出的两个小球上的数字之和为偶数的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有9种等可能的结果,摸出的两个小球上的数字之和为偶数的有5种情况,∴摸出的两个小球上的数字之和为偶数的概率为:.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.17.在“母亲节”前夕,某花店用16000元购进第一批礼盒鲜花,上市后很快预售一空.根据市场需求情况,该花店又用7500元购进第二批礼盒鲜花.已知第二批所购鲜花的盒数是第一批所购鲜花的,且每盒鲜花的进价比第一批的进价少10元.问第二批鲜花每盒的进价是多少元?【考点】分式方程的应用.【分析】可设第二批鲜花每盒的进价是x元,根据等量关系:第二批所购鲜花的盒数是第一批所购鲜花的,列出方程求解即可.【解答】解:设第二批鲜花每盒的进价是x元,依题意有=×,解得x=150,经检验:x=150是原方程的解.故第二批鲜花每盒的进价是150元.【点评】考查了分式方程的应用,列方程解应用题的关键是正确确定题目中的相等关系,根据相等关系确定所设的未知数,列方程.18.如图,延长▱ABCD的边AB到点E,使BE=BC,延长CD到点F,使DF=DA,连结AF,CE,求证:四边形AECF是平行四边形.【考点】平行四边形的判定与性质.【分析】根据平行四边形性质得出AB∥CD,且AB=CD,AD=BC,推出CF∥AE,AE=CF,根据平行四边形的判定推出即可.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,且AB=CD,AD=BC,∴CF∥AE,∵BE=BC,DF=DA,∴BE=DF,∴AE=CF,∴四边形AECF是平行四边形.【点评】本题考查了平行四边形的性质和判定的应用,注意:平行四边形的对边平行且相等,有一组对边平行且相等的四边形是平行四边形.19.如图,这是一把可调节座椅的侧面示意图,已知头枕上的点A到调节器点O处的距离为80cm,AO与地面垂直,现调整靠背,把OA绕点O顺时针旋转35°到OA′处,此时点A′到OA的距离为线段A′B的长,求调整后点A′比调整前点A降低的高度AB.(结果取整数)【参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70】【考点】解直角三角形的应用.【分析】作A′B⊥AO于B,通过解余弦函数求得OB,然后根据AB=OA﹣OB求得即可.【解答】解:如图,根据题意OA=OA′=80cm,∠AOA′=35°,作A′B⊥AO于B,∴OB=OA′•cos35°=80×0.82≈65.6,∴AB=OA﹣OB=80﹣65.6=14cm.答:调整后点A′比调整前点A的高度降低了14厘米.【点评】此题主要考查了解直角三角形的应用,熟练应用锐角三角函数关系是解题关键.20.在“全民读书月”活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的条形统计图,请根据相关信息,解答下列问题:(1)这次调查获取的样本数据的众数是30 元;(2)这次调查获取的样本数据的中位数是50 元;(3)根据样本数据,估计该校1200名学生中本学期计划购买课外书花费50元的学生人数.【考点】条形统计图;用样本估计总体;中位数;众数.【分析】(1)众数就是出现次数最多的数,据此即可判断;(2)中位数就是大小处于中间位置的数,根据定义判断;(3)求得调查的总人数,然后利用1200乘以本学期计划购买课外书花费50元的学生所占的比例即可求解.【解答】解:(1)这组数据中30元出现次数最多,故众数是:30元;(2)40个数据中位数是第20个数据50元与第21个数据50元的平均数,故中位数是:50元;(3)调查的总人数是:6+12+10+8+4=40(人),×1200=300(人).答:该校1200名学生中本学期计划购买课外书花费50元的学生人数约为300人.故答案为:(1)30;(2)50.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.甲、乙两人从学校出发沿同一路线步行到距学校1500米处的图书馆看书,甲与乙在行进过程中以各自的速度匀速行走,甲比乙先出发5分钟,乙比甲先到达图书馆,甲、乙两人间的距离y(米)与甲的行走时间x(分)之间的函数图象如图所示.(1)求甲、乙两人行走的速度;(2)当乙到达图书馆时,求甲、乙两人间的距离;(3)求线段BC所在直线对应的函数表达式.【考点】一次函数的应用.【分析】(1)根据速度=,即可解决问题.(2)用总路程减去甲走的路程即可.(3)设解析式为y=kx+b,把C、B两点代入即可.【解答】解:(1)V甲==30(米/分),V乙==50米/分.(2)1500﹣30×35=450米.则当乙到达图书馆时,甲、乙两人间的距离为350米.(3)设线段BC所在直线对应的函数表达式为y=kx+b.由题意点B坐标(12.5,0),将(12.5,0),(35,450)代入y=kx+b得,解得,故线段BC所在直线对应的函数表达式为y=20x﹣250.【点评】本题考查一次函数的应用,解题的关键是熟练掌握路程、速度、时间的关系,学会用待定系数法确定函数解析式,属于中考常考题型.22.如图,在Rt△ABC中,∠ACB=90°,D是边BC上一点,DE⊥AB于点E,点F是线段AD上一点,连接EF,CF.(1)若AD平分∠BAC,求证:EF=CF.(2)若点F是线段AD的中点,试猜想线段EF与CF的大小关系,并加以证明.(3)在(2)的条件下,若∠BAC=45°,AD=6,直接写出C,E两点间的距离.【考点】全等三角形的判定与性质.【分析】(1)先证明Rt△AED≌Rt△ACD,得到∠ADE=∠ADC,再证明△EDF≌△CDF,根据全等三角形的对应边相等即可解答;(2)根据直角三角形中斜边的中线等于斜边的一半,即可解答;(3)根据∠AED=90°,∠ACD=90°,可得点A,E,D,C四点共圆,所以求出∠EFC=2∠BAC=90°,由(2)可知,EF=CF=AD=3,再根据勾股定理,即可解答.【解答】解:(1)∵AD平分∠BAC,∠ACB=90°,DE⊥AB于点E,∴DE=DC,在Rt△AED和Rt△ACD中,∴Rt△AED≌Rt△ACD,∴∠ADE=∠ADC,在△EDF和△CDF中,∴△EDF≌△CDF,∴EF=CF.(2)EF=CF,在Rt△AED和Rt△ACD中,∵点F是线段AD的中点,∴EF=AD,CF=AD,∴EF=CF.(3)连接CE,如图,∵∠AED=90°,∠ACD=90°,∴点A,E,D,C四点共圆,∴AD为圆的直径,∵点F是线段AD的中点,∴点F为圆心,∴∠EFC=2∠BAC=90°,由(2)可知,EF=CF=AD=3,∴CE=.【点评】本题考查了全等三角形的性质定理与判定定理,解决本题的关键是证明三角形全等.23.(10分)(2016•宽城区一模)如图,在平面直角坐标系中,边长为1的正方形ABCD 的顶点A在直线y=2x+4上,点B在第二象限,C,D两点均在x轴上,且点C在点D的左侧,抛物线y=﹣(x﹣m)2+n的顶点P在直线y=2x+4上运动,且这条抛物线交y 轴于点E.(1)写出A,C两点的坐标;(2)当抛物线y=﹣(x﹣m)2+n经过点C时,求抛物线所对应的函数表达式;(3)当点E在AC所在直线上时,求m的值;(4)当点E在x轴上方时,连接CE,DE,当△CDE的面积随m的增大而增大时,直接写出m的取值范围.【考点】二次函数综合题.【分析】(1)由正方形的边长为1可求得点A的纵坐标,将点A的纵坐标代入代入y=2x+4可求得点A的横坐标,由点A的坐标可求得点C的坐标;(2)由抛物线y=﹣(x﹣m)2+n的顶点P在直线y=2x+4上运动,可得到n=2m+4.再将点C的坐标代入抛物线的解析式可求得m、n的值,从而可求得抛物线的解析式;(3)由n与m的关系可将抛物线的解析式转为y=﹣(x﹣m)2+2m+4.然后将点E的坐标(用含m的式子表示),接下来,在求得AC的解析式,最后将点E的坐标代入AC 的解析式可求得m的值;(4)由S△CDE=DC•EO可得到△CDE的面积与m的函数关系式,依据二次函数的增减性和点E在x的上方可求得m的取值范围.【解答】解:(1)∵正方形的边长为1,∴点A的纵坐标为1.∵将y=1代入y=2x+4得:2x+4=1,解得;x=﹣,∴A(﹣,1).∴D(﹣,0)∵CD=1,∴C(,0)(2)∵抛物线y=﹣(x﹣m)2+n的顶点P在直线y=2x+4上运动,∴n=2m+4.∴抛物线的解析式为y=﹣(x﹣m)2+2m+4.∵抛物线经过点C(﹣,0),∴(﹣﹣m)2+2m+4=0.解得:m1=m2=﹣.∴n=2×(﹣)+4=1.∴抛物线的解析式为y=﹣(x+)2+1(y=﹣x2﹣3x﹣).(3)∵抛物线y=﹣(x﹣m)2+n的顶点P在直线y=2x+4上运动,∴n=2m+4.∴抛物线的解析式为y=﹣(x﹣m)2+2m+4.∵将x=0代入得:y=﹣m2+2m+4.∴E(0,﹣m2+2m+4).设直线AC的解析式为y=kx+b.∵将A(﹣,1、C(,0)代入得:,解得k=1,b=,∴直线AC的解析式为y=x+.∵点E在直线AC上,∴﹣m2+2m+4=.解得:m1=1﹣,m2=1+.(4)S△CDE=DC•EO=﹣m2+m+2,∵m=﹣=1,a=﹣<0,∴当m≤1时,y随x的增大而增大.令﹣m2+m+2=0,解得:m1=1﹣,m2=1+(舍去).∵点E在x轴的上方,∴m>1﹣.∴m的范围是1﹣<m≤1.【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数、二次函数的解析式、二次函数的图形与性质,依据二次函数的增减性确定出m的取值范围是解题的关键.24.(12分)(2016•宽城区一模)如图,在矩形ABCD中,AB=6,BC=8,点P从点B出发以每秒2个单位长度的速度向终点C运动,点P不与点B重合,以BP为边在BC 上方作正方形BPEF,设正方形BPEF与△ABC的重叠部分图形的面积为S(平方单位),点P的运动时间为t(秒).(1)用含t的代数式表示线段PC的长;(2)当点E落在线段AC上时,求t的值;(3)在点P运动的过程中,求S与t之间的函数关系式;(4)设边BC的中点为O,点C关于点P的对称点为C′,以OC′为边在BC上方作正方形OC′MN,当正方形OC′MN与△ACD重叠部分图形为三角形时,直接写出t的取值范围.【考点】四边形综合题.【分析】(1)根据PC=BC﹣BP可得出PC长度关于t的表达式,结合PC≥0即可得出t 的取值范围;(2)当点P落在线段AC上时,由正方形的性质可得知EP∥AB,由此得出△CPE∽△CBA,根据相似三角形的相似比即可得出结论;(3)随着点P的运动,按正方形BPEF与△ABC的重叠部分图形的形状不同分情况考虑:①为正方形时,结合(2)结论可得知此时t的取值范围,由正方形的面积公式即可得出S 关于t的函数关系式;②为五边形时,由F点在线段AB上可得出此时t的取值范围,根据S=大三角形面积﹣2个小三角形的面积即可得出S关于t的函数关系式;③为梯形时,t为值域内剩下的部分,根据S=大三角形面积﹣小三角形面积即可得出S关于t的函数关系式;(4)按运动的过程寻找,找出几个临界点,求出此时的t值,结合实际情况即可得出结论.【解答】解:(1)BP=2t,PC=BC﹣BP=8﹣2t,∵,∴0<t≤4.故PC=﹣2t+8(0<t≤4).(2)当点P落在线段AC上时,∵EP∥AB,∴△CPE∽△CBA,∴,即,解得:t=.(3)按P点运动的过程中正方形BPEF与△ABC的重叠部分图形的形状不同分3种情况考虑:①当0<t≤时,如图1所示.此时S=BP2=(2t)2=4t2;②当<t≤3时,如图2所示.此时BF=BP=2t,PC=8﹣2t,AF=6﹣2t,∵NP∥AB,FM∥BC,∴△CNP∽△CAB∽△MAF,∴,∴NP=PC=6﹣t,FM=AF=8﹣t.S=BC•AB﹣PC•NP﹣FM•AF=×6×8﹣(8﹣2t)(6﹣t)﹣(8﹣t)(6﹣2t)=﹣+28t﹣24;③当3<t≤4时,如图3所示.∵PQ∥AB,∴△CPQ∽△CBA,∴,∴PQ=PC=6﹣t.S=BC•AB﹣PC•PQ=×8×6﹣(8﹣2t)(6﹣t)=﹣t2+12t.(4)根据P点的运动,画出正方形OC′MN与△ACD重叠部分图形为三角形时的临界点.①当P点开始往右移动时,正方形OC′MN与△ACD重叠部分图形为三角形,达到图4所示情况时不再为三角形.此时:OC′=ON,∵点O为线段BC的中点,ON∥AB,∴ON为△CAB的中位线,∴OC′=ON=AB=3,CC′=OC′+OC=3+4=7,∴PC=CC′==8﹣2t,解得:t=.即0<t<;②当P点运动到图5所示情况时,正方形OC′MN与△ACD重叠部分图形开始为三角形.此时MC′=CC′=OC′,OC=OC′+CC′=4,∴MC′=,CC′=,∴PC=CC′==8﹣2t,解得:t=;③当P点运动到图6所示情况,正方形OC′MN与△ACD重叠部分图形为三角形,P再运动一点时不再为三角形.此时OC′=ON=AB=3,CC′=OC﹣OC′=4﹣3=1,∴PC=CC′==8﹣2t,解得:t=.综上知:当正方形OC′MN与△ACD重叠部分图形为三角形时,t的取值范围为0<t<和<t≤.【点评】本题考查了相似三角形的判定及性质、解一元一次方程、一元一次不等式组以及三角形的面积公式,解题的关键是:(1)根据不等式组找出t的取值范围;(2)找出比例关系;(3)根据重合图形的不同分类讨论;(4)按P点的运动过程寻找临界点.本题属于中档题,难度不小,题中出现大量图形,深刻的体现了数形结合的重要性.。

★试卷3套精选★吉林省名校2018年中考数学第一次阶段模拟试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.小华在做解方程作业时,不小心将方程中的一个常数弄脏了而看不清楚,被弄脏的方程是 11()1323x x x ▲---+=-, 这该怎么办呢?他想了一想,然后看了一下书后面的答案,知道此方程的解是x =5,于是,他很快便补好了这个常数,并迅速地做完了作业。

同学们,你能补出这个常数吗?它应该是( )A .2B .3C .4D .5 【答案】D【解析】设这个数是a ,把x=1代入方程得出一个关于a 的方程,求出方程的解即可.【详解】设这个数是a ,把x=1代入得:13(-2+1)=1-5a 3-, ∴1=1-5a 3-, 解得:a=1.故选:D .【点睛】本题主要考查对解一元一次方程,等式的性质,一元一次方程的解等知识点的理解和掌握,能得出一个关于a 的方程是解此题的关键.2.如图所示,ABC △的顶点是正方形网格的格点,则sin A 的值为( )A .12B 5C 25D .1010【答案】B【解析】连接CD ,求出CD ⊥AB ,根据勾股定理求出AC ,在Rt △ADC 中,根据锐角三角函数定义求出即可.【详解】解:连接CD (如图所示),设小正方形的边长为1,∵2211+2,∠DBC=∠DCB=45°,∴CD AB ⊥,在Rt △ADC 中,10AC =,2CD =,则25sin 10CD A AC ===.故选B .【点睛】本题考查了勾股定理,锐角三角形函数的定义,等腰三角形的性质,直角三角形的判定的应用,关键是构造直角三角形.3.计算(ab 2)3的结果是( )A .ab 5B .ab 6C .a 3b 5D .a 3b 6 【答案】D【解析】试题分析:根据积的乘方的性质进行计算,然后直接选取答案即可.试题解析:(ab 2)3=a 3•(b 2)3=a 3b 1.故选D .考点:幂的乘方与积的乘方.4.如图,平行四边形 ABCD 中, E 为 BC 边上一点,以 AE 为边作正方形AEFG ,若 40BAE ∠=︒,15CEF ∠=︒,则 D ∠的度数是A .65︒B .55︒C .70︒D .75︒【答案】A 【解析】分析:首先求出∠AEB ,再利用三角形内角和定理求出∠B ,最后利用平行四边形的性质得∠D=∠B 即可解决问题.详解:∵四边形ABCD 是正方形,∴∠AEF=90°,∵∠CEF=15°,∴∠AEB=180°-90°-15°=75°,∵∠B=180°-∠BAE-∠AEB=180°-40°-75°=65°,∵四边形ABCD 是平行四边形,∴∠D=∠B=65°故选A .点睛:本题考查正方形的性质、平行四边形的性质、三角形内角和定理等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.5.如图,在菱形ABCD 中,M ,N 分别在AB ,CD 上,且AM =CN ,MN 与AC 交于点O ,连接BO .若∠DAC =26°,则∠OBC 的度数为()A .54°B .64°C .74°D .26°【答案】B 【解析】根据菱形的性质以及AM =CN ,利用ASA 可得△AMO ≌△CNO ,可得AO =CO ,然后可得BO ⊥AC ,继而可求得∠OBC 的度数.【详解】∵四边形ABCD 为菱形,∴AB ∥CD ,AB =BC ,∴∠MAO =∠NCO ,∠AMO =∠CNO ,在△AMO 和△CNO 中,MAO NCO AM CNAMO CNO ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AMO ≌△CNO(ASA),∴AO =CO ,∵AB =BC ,∴BO ⊥AC ,∴∠BOC =90°,∵∠DAC =26°,∴∠BCA =∠DAC =26°,∴∠OBC =90°﹣26°=64°.故选B .【点睛】本题考查了菱形的性质和全等三角形的判定和性质,注意掌握菱形对边平行以及对角线相互垂直的性质.6.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( )A .12B .14C .16D .112【答案】C【解析】画树状图求出共有12种等可能结果,符合题意得有2种,从而求解.【详解】解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是:21126.故答案为C.【点睛】本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键.7.若抛物线y=x2﹣3x+c与y轴的交点为(0,2),则下列说法正确的是()A.抛物线开口向下B.抛物线与x轴的交点为(﹣1,0),(3,0)C.当x=1时,y有最大值为0D.抛物线的对称轴是直线x=3 2【答案】D【解析】A、由a=1>0,可得出抛物线开口向上,A选项错误;B、由抛物线与y轴的交点坐标可得出c值,进而可得出抛物线的解析式,令y=0求出x值,由此可得出抛物线与x轴的交点为(1,0)、(1,0),B选项错误;C、由抛物线开口向上,可得出y无最大值,C选项错误;D、由抛物线的解析式利用二次函数的性质,即可求出抛物线的对称轴为直线x=-32,D选项正确.综上即可得出结论.【详解】解:A、∵a=1>0,∴抛物线开口向上,A选项错误;B、∵抛物线y=x1-3x+c与y轴的交点为(0,1),∴c=1,∴抛物线的解析式为y=x1-3x+1.当y=0时,有x1-3x+1=0,解得:x1=1,x1=1,∴抛物线与x轴的交点为(1,0)、(1,0),B选项错误;C、∵抛物线开口向上,∴y无最大值,C选项错误;D、∵抛物线的解析式为y=x1-3x+1,∴抛物线的对称轴为直线x=-b2a =-321=32,D选项正确.故选D.【点睛】本题考查了抛物线与x轴的交点、二次函数的性质、二次函数的最值以及二次函数图象上点的坐标特征,利用二次函数的性质及二次函数图象上点的坐标特征逐一分析四个选项的正误是解题的关键.8.函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>1;②b+c+1=1;③3b+c+6=1;④当1<x<3时,x2+(b﹣1)x+c<1.其中正确的个数为A.1 B.2 C.3 D.4【答案】B【解析】分析:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4c<1;故①错误。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5 cos 40°
B . 5cos40 ° C . 5sin40 °
2. 在 ABC 中, C 900 ,若 cosB= 3 ,则 sinA 的值为 2
()
A. 3
B.
3
C.
3
2
3
D. 1 2
3. 对于函数 y 5x2 ,下列结论正确的是
()
A. y 随 x 的增大而增大
B
.图象开口向下
C.图象关于 y 轴对称
吉林省实验中学 2018 年上学期初三年级第一次模拟
—— 数学试卷 —— (满分 120 分 限时 120 分钟)
命题人:张楠 审题人:马玉春 一、选择题:(共 24 分,每小题 3 分)
1.在 Rt ABC 中, C 90 °, B 40°, AB=5,则 BC的长为
()
A. 5tan40 °
D.
13
22. (8 分)腾飞中学在教学楼前新建了一座“腾飞”雕塑(如图①) . 为
了测量雕塑的高度,
小明在二楼找到一点 C,利用三角板测得雕塑顶
端 A 点的仰角为 30°,底部 B 点的俯角为 45°,
小华在五楼找到一点 D,利用三角板测得 A 点的
俯角为
60°(如图②) . 若已知 CD为 10 米,请求出雕塑
则 y1 , y2 , y3 的大小关系是 ________________. (用“ ”连接)
11. △ ABC 中, C 90 , tan A 4 ,则 sin A cos A _________. 3
12. 如图,四边形 ABCD中,点 P是对角线 BD的中点, 点 E,F 分别是 AB,
CD的中点, AD=BC,∠ PEF=35°,则∠ PFE的度数是 _________° .
13. 如果某人在的位置比原来 的位置升高
了 _______米.
14. 已知在 ABC 中, BC=6, AC=6 3 , A=30°,则 AB的长是
________________. 三、解答题:(共 78 分) 15. 计算:(8 分)
(1) 2cos60 2009 π tan 45
D. b a d c
7. 如图,在 Rt △ABC中,∠ A=30°, BC= 1,点 D,E 分别是直角边 BC,
AC的中点,则 DE的长为
(
)
A.1
B
.2
C.
3
D
. 1+ 3
8. 如图,菱形 ABCD的周长为 20cm,DE⊥ AB,垂足 为 E, cos A 下列结论中:
4 ,则 5
① DE=3cm; ② EB=1cm; ③ S菱形 ABCD 15cm2 .正确的个数为

) A. 等腰三角形 B. 等腰直角三角形 C. 直角三角形 D.锐角三角形 6. 如图,四个二次函数的图象中, 分别对应的是: ① y ax 2 ;② y bx 2 ; ③ y cx2 ; ④ y dx 2 ,则 a,b,c, d 的大小关系为 ()
A. a b c d
B. a b d c C. b a c d
( 2)
2sin 60 3tan 30 2sin 45 2 . 16. (6 分)如图,在边长均为 1 的小正方形网格纸中,△ OAB的顶点 O,
A, B均在格点上,且 O是直角坐标系的原点,点 A 在 x 轴上. (1) 以 O为位似中心,将△ OAB放大,使得放大后 的△ OA1B1 与△ OAB对应线段的比为 2∶1,画出△ OA1B1 ( 所画△ OA1B1 与△ OAB在原点两侧 ) ; (2) 直接写出点 A1、 B1 的坐标 ______________________. (3)直接写出 tan OA 1 B1 ____________.
17. (6 分) 如图 , 一段河坝的断面为梯形 ABCD试, 根 据图中数据 , 求出坡角 和坝底宽 AD.(结果保 留根号)
18. (7 分) 如图, M是△ ABC的边 BC的中点, AN 平分∠ BAC,BN⊥ AN于点 N,延长 BN交 AC于点 D,已知 AB =10,BC=15,MN= 3. (1) 求证: BN=DN; (2) 直接写出△ ABC的周长是 ______________.
(2)探究 : 如图② , 点 P 在矩形 ABCD的边 AD上( 点 P 不与点 A、D 重合 ), 连接 PE,过点 E作 EF PE , 交 BC于点 F, 连接 PF.求 证: PDE和 ECF 相似 ;
AB的
高度.(结果精确到 0.1 米,参考数据 3 1.73 ).
23. (8 分) 在矩形 ABCD中,AD=3, CD=4,点 E 在边 CD上, 且 DE=1.
(1) 感 连接 AE, EF AE , 交 BC于点 F, 连接 AF,易证 : ADE 明);
ECF
知 : 如图① , 过点 E 作 ( 不需要证
19.( 7 分)如图,直线 y x 2 过 x 轴上的点 A(2,0) ,且与抛物线 y ax2
交于 B, C 两点,点 B 坐标为 (1 ,1) .
(1) 求抛物线的函数表达式;
(2) 连结 OC,求出 AOC 的面积 . 20. (8 分) 如图,在矩形 ABCD中,DE⊥AC于 E,cos ADE
D
.无论 x 取何值, y 的值
总是正的
4. 如图, D 、 E 分别是 AB 、 AC 的中点,则 S△ ADE : S△ ABC
() A. 1 ∶2
D. 2 ∶ 3
B
.1∶3
C
. 1∶ 4
5. 在 ABC 中, A, B 都是锐角, tanA=1,sinB= 2 , 你认为 ABC 最 2 确 切 的 判 断 是
( 1)求 AD的值 .
3 ,AB=3, 5
( 2)直接写出 S DEC 的值是 _____________.
21. (8 分) 如图,在 ABC 中, AD是 BC边上的高,
tanB cos DAC 。
(1)求证: AC=BD
(2)若 sin C
12 , BC
34 ,直接写出 AD的长是 __________.


A.0 个 第7题
B.1 个
C.2 个 第8题
D.3 个
第 12 题
二、填空:(共 18 分,每小题 3 分)
9. 若 y ( m 2)xm2 2 3x 2 是二次函数,则 m 的值是 ________.
10. 已知点 A(-3, y1 ) , B(-1, y2 ) , C(2, y3 ) 在抛物线 y 2 x2 上, 3
相关文档
最新文档