历年数列高考题大全答案

合集下载

高考文科数学数列经典大题训练(附答案)

高考文科数学数列经典大题训练(附答案)

1.〔此题总分值14 分〕设数列a的前n项和为S n,且S n4a n3(n1,2,),n〔1〕证明: 数列a n是等比数列;〔2〕假设数列b满足b n1a n b n(n1,2,),b12,求数列b n的通项公n式.2.〔本小题总分值12分〕等比数列a的各项均为正数,且n2 2a3a1,a9aa.123261.求数列a n的通项公式.2.设blogaloga......loga,求数列n31323n 1bn的前项和.3.设数列a满足n2n1 a12,a1a32nn〔1〕求数列a的通项公式;n〔2〕令b n na n,求数列的前n项和S n3.等差数列{a n}的前3项和为6,前8项和为﹣4.〕,求数列{b n}的前n项和S n.〔Ⅰ〕求数列{a n}的通项公式;n﹣1*〔Ⅱ〕设b n=〔4﹣a n〕q〔q≠0,n∈N× 5.数列{a n}满足,,n∈N.〔1〕令b n=a n+1﹣a n,证明:{b n}是等比数列;〔2〕求{a n}的通项公式....4.解:〔1〕证:因为S n4a n3(n1,2,),那么S n14a n13(n2,3,),所以当n2时,a SS14a4a1,nnnnn4整理得aa1.5分nn3由S43,令n1,得a14a13,解得a11.n an所以分a是首项为1,公比为n43的等比数列.7〔2〕解:因为4n1 a(),n3由b1ab(n1,2,),得nnn4n1 bb().9分n1n3由累加得()()()b n bbbbbbb12`132nn14n11()43n1=23()1,〔n2〕,43134n1 当n=1时也满足,所以)1b3(.n35.解:〔Ⅰ〕设数列{a n}的公比为q,由 2a39a2a6得32a39a4所以21q。

有条件9可知a>0,故1q。

311a。

故数列{a n}的通项式为a n=33由2a13a21得2a13a2q1,所以1n。

〔Ⅱ〕b logaloga...logan111111(12...n)n(n1)2故12112() bn(n1)nn1n111111112n ...2((1)()...()) bbb223nn1n1 12n...所以数列1{}bn2n 的前n 项和为n16.解:〔Ⅰ〕由,当n≥1 时,a1[(a1a)(a a1)(a2a1)]a1nnnnn2n12n33(222)222(n1)1。

全国卷数列高考题汇总附答案

全国卷数列高考题汇总附答案

数列专题高考真题(2014·I) 17. (本小题满分12分) 已知数列{}的前项和为,=1,,,其中为常数.(Ⅰ)证明:;(Ⅱ)是否存在,使得{}为等差数列并说明理由.(2014·II) 17.(本小题满分12分) 已知数列满足=1,.(Ⅰ)证明是等比数列,并求的通项公式;(Ⅱ)证明: .(2015·I)(17)(本小题满分12分)为数列的前项和.已知,(Ⅰ)求的通项公式:(Ⅱ)设 ,求数列的前项和。

(2015·I I)(4)等比数列满足,135a a a ++ =21,则357a a a ++= ( )(A )21 (B )42 (C )63 (D )84(2015·I I)(16)设n S 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则n S =________. (2016·I)(3)已知等差数列前9项的和为27,,则(A )100 (B )99 (C )98 (D )97(2016·I)(15)设等比数列满足的最大值为__________。

(2016·II)(17)(本题满分12分)S n 为等差数列的前项和,且=1 ,=28 记,其中表示不超过的最大整数,如.(I )求,,;(II )求数列的前1 000项和.(2016·III)(12)定义“规范01数列”如下:共有项,其中项为0,项为1,且对任意,中0的个数不少于1的个数.若,则不同的“规范01数列”共有 (A )18个(B )16个(C )14个(D )12个(2016·III)(17)(本小题满分12分)已知数列的前项和,其中(I )证明是等比数列,并求其通项公式;(II )若 ,求.(2017·I)4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .8(2017·I)12.几位大学生响应国家的创业号召,开发了一款应用软件。

【2022高考必备】2012-2021十年全国高考数学真题分类汇编 数列大题(原卷版及解析版)

【2022高考必备】2012-2021十年全国高考数学真题分类汇编 数列大题(原卷版及解析版)
6.(2018年高考数学课标Ⅲ卷(理))(12分)等比数列 中, ,
(1)求 的通项公式;
(2)记 为 的前 项和,若 ,求 .
(1) 或 ;(2)
【答案】【官方解析】(1)设 的公比为 ,由题设得
由已知得 ,解得 (舍去), 或
故 或
(2)若 ,则 ,由 ,得 ,此方和没有正整数解
若 ,则 ,由 ,得 ,解得
【答案】解析:(1)设 的公差为 ,由题意得 .
由 得 ,所以 的通项公式为 .
(2)由(1)得 .
所以当 时, 取得最小值,最小值为 .
8.(2016高考数学课标Ⅲ卷理科)已知数列 的前 项和 ,其中 .
(Ⅰ)证明 是等比数列,并求其通项公式;
(Ⅱ)若 ,求 .
【答案】(Ⅰ) ;(Ⅱ) .
【解析】(Ⅰ)由题意得 ,故 , , .
所以数列 是以 为首项,以 为公差等差数列;
(2)由(1)可得,数列 是以 为首项,以 为公差的等差数列,
,
,
当n=1时, ,
当n≥2时, ,显然对于n=1不成立,
∴ .
【点睛】本题考查等差数列的证明,考查数列的前n项和与项的关系,数列的前n项积与项的关系,其中由 ,得到 ,进而得到 是关键一步;要熟练掌握前n项和,积与数列的项的关系,消和(积)得到项(或项的递推关系),或者消项得到和(积)的递推关系是常用的重要的思想方法.
【解析】(1)设 的公比为 , 为 的等差中项,


(2)设 前 项和为 , ,
,①
,②
① ②得,


【点睛】本题考查等比数列通项公式基本量的计算、等差中项的性质,以及错位相减法求和,考查计算求解能力,属于基础题.

近6年来高考数列题分析(以全国卷课标Ⅰ为例)

近6年来高考数列题分析(以全国卷课标Ⅰ为例)

近5年来高考数列题分析(以全国卷课标Ⅰ为例)单的裂项相消法和错位相减法求解数列求和即可。

纵观全国新课标Ⅰ卷、Ⅱ卷的数列试题,我们却发现,新课标卷的数列题更加注重基础,强调双基,讲究解题的通性通法。

尤其在选择、填空更加突出,常常以“找常数”、“找邻居”、“找配对”、“构函数”作为数列问题一大亮点.从2011年至2015年,全国新课标Ⅰ卷理科试题共考查了8道数列题,其中6道都是标准的等差或等比数列,主要考查等差或等比数列的定义、性质、通项、前n项和、某一项的值或某几项的和以及证明等差或等比数列等基础知识。

而文科试题共考查了9道数列题,其中7道也都是标准的等差或等比数列,主要考查数列的性质、求通项、求和、求数列有关基本量以及证明等差或等比数列等基础知识。

1.从试题命制角度看,重视对基础知识、基本技能和基本数学思想方法的考查。

2.从课程标准角度看,要求学生“探索并掌握等差数列、等比数列的通项公式与前n 项和的公式,能在具体问题情境中,发现数列的等差关系或等比关系,并能用有关知识解决相应的问题”。

3.从文理试卷角度看,尊重差异,文理有别,体现了《普通高中数学课程标准(实验)》的基本理念之一“不同的学生在数学上得到不同的发展”。

以全国新课标Ⅰ卷为例,近五年理科的数列试题难度整体上要比文科的难度大一些。

如2012年文科第12题“数列 满足 ,求的前60项和”是一道选择题,但在理科试卷里这道题就命成了一道填空题,对考生的要求自然提高了。

具体来看,全国新课标卷的数列试题呈现以下特点:●小题主要考查等差、等比数列的基本概念和性质以及它们的交叉运用,突出了“小、巧、活”的特点,难度多属中等偏易。

●大题则以数列为引线,与函数、方程、不等式、几何、导数、向量等知识编织综合性强,内涵丰富的能力型试题,考查综合素质,难度多属中等以上,有时甚至是压轴题,难度较大。

(一)全国新课标卷对数列基本知识的考查侧重点1.考查数列的基本运算,主要涉及等差、等比数列的通项公式与前项和公式。

等差数列等比数列高考历年真题

等差数列等比数列高考历年真题

温馨提示:高考题库为Word 版,请按住Ctrl ,滑动鼠标滚轴,调节合适的观看比例,点击右上角的关闭按钮可返回目录。

【考点16】等差数列、等比数列2009年考题1.(2009安徽高考)已知{}n a 为等差数列,1a +3a +5a =105,246a a a ++=99,以n S 表示{}n a 的前n 项和,则使得n S 达到最大值的n 是( )(A )21 (B )20 (C )19 (D ) 18【解析】选B.由1a +3a +5a =105得33105,a =即335a =,由246a a a ++=99得4399a =即433a = ,∴2d =-,4(4)(2)412n a a n n =+-⨯-=-,由10n n a a +≥⎧⎨<⎩得20n =.2.(2009安徽高考)已知为等差数列,,则等于( )A. -1B. 1C. 3 D .7【解析】选B.∵135105a a a ++=即33105a =∴335a =同理可得433a =∴公差432d a a =-=-. ∴204(204)1a a d =+-⨯=.3.(2009福建高考)等差数列{}n a 的前n 项和为n S ,且3S =6,1a =4, 则公差d 等于( )A .1B 53C.- 2 D 3 【解析】选C.∵31336()2S a a ==+且3112 =4 d=-2a a d a =+∴.4.(2009海南宁夏高考)等差数列{}n a 的前n 项和为n S ,已知2110m m ma a a -++-=,2138m S -=,则m =( )(A )38 (B )20 (C )10 (D )9【解析】选C.因为{}n a 是等差数列,所以,112m m m a a a -++=,由2110m m ma a a -++-=,得:2m a -2m a =0,所以,m a =2,又2138m S -=,即2))(12(121-+-m a a m =38,即(2m -1)×2=38,解得m =10.5.(2009广东高考)已知等比数列{}n a 满足0,1,2,n a n >=,且25252(3)n n a a n -⋅=≥,则当1n ≥时,2123221log log log n a a a -+++= ( )w.w.w.k.s.5.u.c.o.mA. (21)n n -B. 2(1)n +C. 2nD. 2(1)n -【解析】选C.由25252(3)n n a a n -⋅=≥得n n a 222=,0>n a ,则n n a 2=, +⋅⋅⋅++3212log log a a2122)12(31log n n a n =-+⋅⋅⋅++=-.6.(2009广东高考)已知等比数列}{n a 的公比为正数,且3a ·9a =225a ,2a =1,则1a = ( )A. 21B.22C. 2D.2 【解析】选B.设公比为q ,由已知得()22824111a q a q q a q ⋅=,即22q =,因为等比数列}{n a 的公比为正数,所以2q =故21222a a q ===. 7.(2009辽宁高考)设等比数列{ n a }的前n 项和为n S ,若 63S S =3 ,则 69SS =( )(A ) 2 (B ) 73 (C ) 83(D )3【解析】选B.设公比为q ,则36333(1)S q S S S +==1+q 3=3 Þ q 3=2于是63693112471123S q q S q ++++===++. 8.(2009辽宁高考)已知{}n a 为等差数列,且7a -24a =-1, 3a =0,则公差d =( )(A )-2 (B )-12 (C )12(D )2【解析】选B. a 7-2a 4=a 3+4d -2(a 3+d)=2d =-1 Þ d =-12.9.(2009湖南高考)设n S 是等差数列{}n a 的前n 项和,已知23a =,611a =,则7S 等于( ).A .13B .35C .49D . 63 【解析】选C.172677()7()7(311)49.222a a a a S +++====故选C. 或由21161315112a a d a a a d d =+==⎧⎧⇒⎨⎨=+==⎩⎩, 716213.a =+⨯= 所以1777()7(113)49.22a a S ++=== 10.(2009四川高考)等差数列{n a }的公差不为零,首项1a =1,2a 是1a 和5a 的等比中项,则数列的前10项之和是( )A. 90B. 100C. 145D. 190【解析】选B.设公差为d ,则)41(1)1(2d d +⋅=+.∵d ≠0,解得d =2,∴10S =100.11.(2009辽宁高考)等差数列{}n a 的前n 项和为n S ,且53655,S S -=则4a = 【解析】∵S n =na 1+12n(n -1)d ∴S 5=5a 1+10d,S 3=3a 1+3d∴6S 5-5S 3=30a 1+60d -(15a 1+15d)=15a 1+45d =15(a 1+3d)=15a 4 答案:3112.(2009山东高考)在等差数列}{n a 中,6,7253+==a a a ,则____________6=a .【解析】设等差数列}{n a 的公差为d ,则由已知得⎩⎨⎧++=+=+6472111d a d a d a 解得132a d =⎧⎨=⎩,所以61513a a d =+=.答案:13.13.(2009海南宁夏高考)等比数列{n a }的公比0q >, 已知2a =1,216n n n a a a +++=,则{n a }的前4项和4S =【解析】由216n n n a a a +++=得:116-+=+n n n q q q ,即062=-+q q ,0q >,解得q =2,又2a =1,所以,112a =,21)21(2144--=S =152。

数列高考试题及答案

数列高考试题及答案

数列高考试题及答案数列是高考数学中的重要内容,也是学生们常常遇到的难点之一。

下面将介绍几道典型的数列高考试题及答案,帮助学生们更好地理解和掌握数列的相关知识。

一、选择题1. 设数列{an}满足an = 2n,若数列{bn}为数列{an}的前20项之和,则b20 = ()。

A. 400B. 420C. 440D. 460答案:C解析:首先利用数列的前n项和公式Sn = n(a1 + an)/2,可以求得数列{an}的前20项之和为S20 = 420。

而题目中要求的是数列{bn}的第20项,根据题意可知{bn}的第n项为数列{an}的前n项之和,因此b20 = S20 = 420。

2. 已知数列{an}的通项公式为an = 3n^2 - 2n,若数列{bn}满足bn =2an - 1,则数列{bn}的前5项依次为()。

A. 17, 44, 83, 134, 197B. 23, 50, 89, 140, 203C. 17, 46, 87, 140, 205D. 23, 44, 87, 142, 209答案:C解析:首先计算数列{an}的前5项为a1 = 1, a2 = 10, a3 = 25, a4 = 46, a5 = 73。

然后利用数列{bn}的通项公式bn = 2an - 1,可以求得数列{bn}的前5项为b1 = 1, b2 = 19, b3 = 49, b4 = 91, b5 = 145。

因此选项C为正确答案。

二、填空题1. 设数列{an}满足a1 = 2,a2 = 5,an = an-1 + an-2(n ≥ 3),则a4 = ()。

答案:11解析:根据数列的通项公式an = an-1 + an-2,可以依次计算出数列的前4项为a1 = 2, a2 = 5, a3 = 7, a4 = 12。

因此a4 = 12。

三、解答题1. 已知数列{an}的通项公式为an = n^3 + n,计算数列{an}的前4项及前n项之和。

高考数学数列大题训练50题含答案解析

高考数学数列大题训练50题含答案解析

高考数学《数列》大题训练50题1 .数列{n a }的前n 项和为n S ,且满足11a =,2(1)n n S n a =+.(1)求{n a }的通项公式; (2)求和T n =1211123(1)na a n a ++++.2 .已知数列}{n a ,a 1=1,点*))(2,(1N n a a P n n ∈+在直线0121=+-y x 上. (1)求数列}{n a 的通项公式;(2)函数)2*,(1111)(321≥∈++++++++=n N n a n a n a n a n n f n且 ,求函数)(n f 最小值. 3 .已知函数xab x f =)( (a ,b 为常数)的图象经过点P (1,81)和Q (4,8)(1) 求函数)(x f 的解析式;(2) 记a n =log 2)(n f ,n 是正整数,n S 是数列{a n }的前n 项和,求n S 的最小值。

4 .已知y =f (x )为一次函数,且f (2)、f (5)、f (4)成等比数列,f (8)=15.求n S =f (1)+f (2)+…+f (n )的表达式.5 .设数列{}n a 的前n 项和为n S ,且1n n S c ca =+-,其中c 是不等于1-和0的实常数.(1)求证: {}n a 为等比数列;(2)设数列{}n a 的公比()q f c =,数列{}n b 满足()()111,,23n n b b f b n N n -==∈≥,试写出1n b ⎧⎫⎨⎬⎩⎭的通项公式,并求12231n n b b b b b b -+++的结果.6 .在平面直角坐标系中,已知A n (n,a n )、B n (n,b n )、C n (n -1,0)(n ∈N *),满足向量1+n n A A 与向量n n C B 共线,且点B n (n,b n ) (n ∈N *)都在斜率为6的同一条直线上. (1)试用a 1,b 1与n 来表示a n ;(2)设a 1=a ,b 1=-a ,且12<a ≤15,求数列{a n }中的最小项.7 .已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且212322a a a +++ (1)2n n a -+8n =对任意的∈n N*都成立,数列1{}n n b b +-是等差数列.(1)求数列{}n a 与{}n b 的通项公式;(2)问是否存在k ∈N *,使得(0,1)k k b a -∈?请说明理由.8 .已知数列),3,2(1335,}{11 =-+==-n a a a a nn n n 且中(I )试求a 2,a 3的值;(II )若存在实数}3{,nn a λλ+使得为等差数列,试求λ的值. 9 .已知数列{}n a 的前n 项和为n S ,若()1,211++=⋅=+n n S a n a n n ,(1)求数列{}n a 的通项公式;(2)令n nn S T 2=,∈当n 为何正整数值时,1+>n n T T :∈若对一切正整数n ,总有m T n ≤,求m 的取值范围。

全国卷数列高考题汇总附答案完整版

全国卷数列高考题汇总附答案完整版

全国卷数列高考题汇总附答案Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】数列专题高考真题(2014·I) 17. (本小题满分12分)已知数列{a a}的前a项和为a a,a1=1,a a≠0,a a a a+1=aa a−1,其中a为常数.(Ⅰ)证明:a a+2−a a=a;(Ⅱ)是否存在a,使得{a a}为等差数列并说明理由.(2014·II) 17.(本小题满分12分)已知数列{a a}满足a1=1,a a+1=3a a+1.(Ⅰ)证明{a a+12}是等比数列,并求{a a}的通项公式;(Ⅱ)证明:1a1+1a2+⋯+1a a<32.(2015·I)(17)(本小题满分12分)a a为数列{a a}的前a项和.已知a a>0,a a2+2a a=4a a+3,(Ⅰ)求{a a}的通项公式:(Ⅱ)设a a=1a a a a+1,求数列{a a}的前a项和。

(2015·I I)(4)等比数列{a a}满足a1=3(A)21 (B)42 (C)63 (D)84(2015·I I)(16n.(2016·I)(3)已知等差数列{a a}前9项的和为27,a10=8,则a100=(A)100 (B)99 (C)98 (D)97(2016·I)(15)设等比数列{a a}满足a1+a3=10,a2+a4=5,则a1a2…a a的最大值为__________。

(2016·II)(17)(本题满分12分)S为等差数列{a a}的前a项和,且a1=1 ,a7=28 记a a=[aaa a a],其中n[a]表示不超过a的最大整数,如[0.9]=0,[aa99]=1.(I)求a1,a11,a101;(II)求数列{a a}的前1 000项和.(2016·III)(12)定义“规范01数列”{a a}如下:{a a}共有2a项,其中a项为0,a项为1,且对任意a≤2a,a1,a2,,a a中0的个数不少于1的个数.若a=4,则不同的“规范01数列”共有(A)18个(B)16个(C)14个(D)12个(2016·III)(17)(本小题满分12分)已知数列{a n}的前a项和S n=1+aa a,其中a≠0(I)证明{a n}是等比数列,并求其通项公式;,求a.(II)若S n=3132(2017·I)4A.1 B.2 C.4D.8(2017·I)12.几位大学生响应国家的创业号召,开发了一款应用软件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

历年数列高考题大全答案Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】历年高考《数列》真题汇编1、(2011年新课标卷文) 已知等比数列{}n a 中,113a =,公比13q =.(I )n S 为{}n a 的前n 项和,证明:12nn a S -=(II )设31323log log log n n b a a a =+++,求数列{}n b 的通项公式.解:(Ⅰ)因为.31)31(311n n n a =⨯=-,2311311)311(31nn n S -=--= 所以,21nn a S --(Ⅱ)n n a a a b 32313log log log +++= ).......21(n +++-= 2)1(+-=n n所以}{n b 的通项公式为.2)1(+-=n n b n 2、(2011全国新课标卷理)等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +== (1)求数列{}n a 的通项公式.(2)设 31323log log ......log ,n n b a a a =+++求数列1n b ⎧⎫⎨⎬⎩⎭的前项和.解:(Ⅰ)设数列{a n }的公比为q ,由23269a a a =得32349a a =所以219q =。

有条件可知a>0,故13q =。

由12231a a +=得12231a a q +=,所以113a =。

故数列{a n }的通项式为a n =13n 。

(Ⅱ?)111111log log ...log n b a a a =+++ 故12112()(1)1n b n n n n =-=--++ 所以数列1{}n b 的前n 项和为21nn -+3、(2010新课标卷理)设数列{}n a 满足21112,32n n n a a a -+=-=(1) 求数列{}n a 的通项公式; (2) 令n n b na =,求数列的前n 项和n S解(Ⅰ)由已知,当n ≥1时,111211[()()()]n n n n n a a a a a a a a ++-=-+-++-+21233(222)2n n --=++++2(1)12n +-=。

而 12,a =所以数列{n a }的通项公式为212n n a -=。

(Ⅱ)由212n n n b na n -==⋅知35211222322n n S n -=⋅+⋅+⋅++⋅ ①从而 23572121222322n n S n +⋅=⋅+⋅+⋅++⋅ ② ①-②得 2352121(12)22222n n n S n -+-⋅=++++-⋅ 。

即 211[(31)22]9n n S n +=-+4、(20I0年全国新课标卷文) 设等差数列{}n a 满足35a =,109a =-。

(Ⅰ)求{}n a 的通项公式;(Ⅱ)求{}n a 的前n 项和n S 及使得n S 最大的序号n 的值。

解:(1)由a m = a 1 +(n-1)d 及a 1=5,a 10=-9得解得192{a d ==-数列{a n }的通项公式为a n =11-2n 。

……..6分(2)由(1) 知S n =na 1+(1)2n n -d=10n-n 2。

因为S n =-(n-5)2+25.所以n=5时,S n 取得最大值。

5、(2011年全国卷)设等差数列{}n a 的前N 项和为n S ,已知26,a =12630,a a +=求n a 和n S 6、( 2011辽宁卷)已知等差数列{a n }满足a 2=0,a 6+a 8=-10 (I )求数列{a n }的通项公式; (II )求数列⎭⎬⎫⎩⎨⎧-12n n a 的前n 项和.解:(I )设等差数列{}n a 的公差为d ,由已知条件可得110,21210,a d a d +=⎧⎨+=-⎩解得11,1.a d =⎧⎨=-⎩故数列{}n a 的通项公式为2.n a n =- ………………5分 (II )设数列1{}2n n n a n S -的前项和为,即2111,122nn n a a S a S -=+++=故, 所以,当1n >时,=.2n n 所以1.2n n n S -= 综上,数列11{}.22n n n n a nn S --=的前项和 7、(2010年陕西省)已知{a n }是公差不为零的等差数列,a 1=1,且a 1,a 3,a 9成等比数列.(Ⅰ)求数列{a n }的通项; (Ⅱ)求数列{2an }的前n 项和S n . 解 (Ⅰ)由题设知公差d ≠0,由a 1=1,a 1,a 3,a 9成等比数列得121d +=1812dd++,解得d =1,d =0(舍去), 故{a n }的通项a n =1+(n -1)×1=n . (Ⅱ)由(Ⅰ)知2ma =2n,由等比数列前n 项和公式得S n =2+22+23+ (2)=2(12)12n --=2n+1-28、(2009年全国卷)设等差数列{n a }的前n 项和为n s ,公比是正数的等比数列{n b }的前n 项和为n T ,已知1133331,3,17,12,},{}n n a b a b T S b ==+=-=求{a 的通项公式。

解: 设{}n a 的公差为d ,{}n b 的公比为q由3317a b +=得212317d q ++= ① 由3312T S -=得24q q d +-= ② 由①②及0q >解得 2,2q d ==故所求的通项公式为 121,32n n n a n b -=-=⨯ 9、(2011福建卷)已知等差数列{a n }中,a 1=1,a 3=-3.(I )求数列{a n }的通项公式;(II )若数列{a n }的前k 项和S k =-35,求k 的值. 10、(2011重庆卷)设是公比为正数的等比数列,,.(Ⅰ)求的通项公式。

(Ⅱ)设是首项为1,公差为2的等差数列,求数列的前项和.11、(2011浙江卷)已知公差不为0的等差数列}{n a 的首项为)(R a a ∈,且11a ,21a ,41a 成等比数列. (Ⅰ)求数列}{n a 的通项公式; (Ⅱ)对*N n ∈,试比较n a a a a 2322221...111++++与11a 的大小. 解:设等差数列{}n a 的公差为d ,由题意可知2214111()a a a =⋅ 即2111()(3)a d a a d +=+,从而21a d d = 因为10,.d d a a ≠==所以故通项公式.n a na =(Ⅱ)解:记22222111,2n nn n T a a a a a =+++=因为所以211(1())111111122()[1()]1222212n n n n T a a a -=+++=⋅=--从而,当0a >时,11n T a <;当110,.n a T a <>时 12、(2011湖北卷)成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{}n b 中的b 、b 、b 。

(I) 求数列{}n b 的通项公式;(II) 数列{}n b 的前n 项和为n S ,求证:数列54n S ⎧⎫+⎨⎬⎩⎭是等比数列。

13、(2010年山东卷)已知等差数列{}n a 满足:73=a ,2675=+a a ,{}n a 的前n 项和为n S (Ⅰ)求n a 及n S ; (Ⅱ)令112-=n n a b (*N n ∈),求数列{}n b 的前n 项和为n T 。

解:(Ⅰ)设等差数列{}n a 的首项为1a ,公差为d ,由于73=a ,2675=+a a ,所以721=+d a ,261021=+d a , 解得31=a ,2=d ,由于d n a a n )1(1-+=,2)(1n n a a n S += , 所以12+=n a n ,)2(+=n n S n(Ⅱ)因为12+=n a n ,所以)1(412+=-n n a n因此)111(41)1(41+-=+=n n n n b n故n n b b b T +++= 21)1113121211(41+-++-+-=n n )111(41+-=n )1(4+=n n 所以数列{}n b 的前n 项和)1(4+=n n T n14、(2010陕西卷)已知{a n }是公差不为零的等差数列,a 1=1,且a 1,a 3,a 9成等比数列.(Ⅰ)求数列{a n }的通项; (Ⅱ)求数列{2an }的前n 项和S n . 解 (Ⅰ)由题设知公差d ≠0,由a 1=1,a 1,a 3,a 9成等比数列得121d +=1812dd++,解得d =1,d =0(舍去), 故{a n }的通项a n =1+(n -1)×1=n . (Ⅱ)由(Ⅰ)知2ma =2n ,由等比数列前n 项和公式得S m =2+22+23+ (2)=2(12)12n --=2n+1-2.、15、(2010重庆卷)已知{}n a 是首项为19,公差为-2的等差数列,n S 为{}n a 的前n 项和. (Ⅰ)求通项n a 及n S ;(Ⅱ)设{}n n b a -是首项为1,公比为3的等比数列,求数列{}n b 的通项公式及其前n 项和n T . 16、(2010北京卷)已知||n a 为等差数列,且36a =-,60a =。

(Ⅰ)求||n a 的通项公式;(Ⅱ)若等差数列||n b 满足18b =-,2123b a a a =++,求||n b 的前n 项和公式 解:(Ⅰ)设等差数列{}n a 的公差d 。

因为366,0a a =-= 所以112650a d a d +=-⎧⎨+=⎩ 解得110,2a d =-=所以10(1)2212n a n n =-+-⋅=-(Ⅱ)设等比数列{}n b 的公比为q 因为212324,8b a a a b =++=-=-所以824q -=- 即q =3所以{}n b 的前n 项和公式为1(1)4(13)1n n n b q S q-==-- 17、(2010浙江卷)设a 1,d 为实数,首项为a 1,公差为d 的等差数{a n }的前n 项和为S n ,满足S 2S 6+15=0. (Ⅰ)若S 5=S .求S n 及a 1; (Ⅱ)求d 的取值范围. 解:(Ⅰ)由题意知S 0=5-15S -3,a =S -S =-8 所以11105,58.Sa d a d +=⎧⎨-=-⎩解得a 1=7所以S =-3,a 1=7(Ⅱ)因为SS +15=0,所以(5a 1+10d )(6a 1+15d )+15=0,即2a 12+9da 1+10d 2+1=0. 故(4a 1+9d )2=d 2-8. 所以d 2≥8.故d 的取值范围为d ≤-22 18、(2010四川卷) 已知等差数列{}n a 的前3项和为6,前8项和为-4。

相关文档
最新文档