沪科版数学九年级下册-随机事件学案
沪科版数学九年级下册26.1《随机事件》教学设计

沪科版数学九年级下册26.1《随机事件》教学设计一. 教材分析《随机事件》是沪科版数学九年级下册第26.1节的内容,主要介绍随机事件的定义、性质和判断方法。
本节内容是学生对概率初步知识的巩固和拓展,也是对实际问题进行数学建模的基础。
教材通过具体的例子引导学生理解随机事件的本质,培养学生的逻辑思维能力和数学应用能力。
二. 学情分析九年级的学生已经掌握了概率的基本概念,对事件有一定的认识。
但是,对于随机事件的定义和判断方法还不够清晰,需要在教学中通过具体例子进行引导和巩固。
此外,学生对于实际问题进行数学建模的能力还有待提高,需要通过实例讲解和练习来培养。
三. 教学目标1.理解随机事件的定义和性质。
2.学会判断随机事件的方法。
3.能够运用随机事件的概念解决实际问题。
四. 教学重难点1.随机事件的定义和性质。
2.判断随机事件的方法。
五. 教学方法采用问题驱动的教学方法,通过具体例子引导学生理解随机事件的本质,培养学生的逻辑思维能力和数学应用能力。
同时,结合实例讲解和练习,提高学生对实际问题进行数学建模的能力。
六. 教学准备1.准备相关的例子和练习题。
2.准备多媒体教学设备。
七. 教学过程1.导入(5分钟)通过一个简单的抽奖游戏引入随机事件的概念,让学生观察和思考游戏中出现的事件是否为随机事件。
2.呈现(15分钟)讲解随机事件的定义和性质,通过具体的例子进行解释和说明。
引导学生理解和掌握随机事件的本质特征。
3.操练(15分钟)给出一些判断题,让学生根据随机事件的定义和性质判断题目中给出的事件是否为随机事件。
通过练习巩固学生对随机事件的判断能力。
4.巩固(10分钟)讲解随机事件的判断方法,引导学生学会如何判断一个事件是否为随机事件。
通过实例分析让学生加深对随机事件判断方法的理解。
5.拓展(10分钟)给出一些实际问题,让学生运用随机事件的概念和方法进行分析和解决。
培养学生的数学应用能力。
6.小结(5分钟)对本节课的内容进行总结,强调随机事件的定义、性质和判断方法。
上海科学技术出版社初中数学九年级下册 随机事件-优秀

随机事件教学设计流洞中学王红燕一、教材分析本章是在小学了解了随机现象发生的可能性基础上,进一步学习事件的概率。
生活中概率大量存在,与我们的生产生活密切相关。
本节主要是了解随机事件和有关概念,教科书中设置了三个问题,通过问题1抽签试验和问题2掷骰子试验,主要让学生感受到,在一定条件下重复进行试验时,有些事件是必然发生,有些事件是不可能发生的,有些事件是有可能发生也有可能不发生的,在这两个具体问题探讨的基础上,提出随机事件等有关概念,要求学生能够在具体的情境中判断一个事情是随机事件还是确定性事件。
问题3是一个抽签试验,主要探讨随机试验发生的可能性。
通过这三个问题,为下一节概率的学习做好铺垫。
二、教学目标1、理解必然发生的事件、不可能发生的事件、随机事件的概念。
2、了解随机事件发生的可能性有大有小,不同的随机事件发生的可能性的大小不同。
3、学生经历体验、操作、观察、归纳、总结的过程,发展学生从纷繁复杂的表象中,提炼出本质特征并加以抽象概括的能力。
4、感受数学与现实生活的联系,积极参与对数学问题的探讨,认识动手操作试验是验证得出结论的好方法。
5、能根据随机事件的特点,辨别哪些事件是随机事件.引领学生感受随机事件就在身边,增强学生珍惜机会,把握机会的意识。
三、教学重点与难点重点:掌握随机事件的特点,会判断现实生活中的随机事件。
难点:判断现实生活中哪些事件是随机事件.四、教学方法动手试验交流归纳五、教学媒体工具多媒体、扑克牌、骰子六、教学过程(活动一)情境导入1、观看图片回答问题见ppt(活动二)自主探究(问题1)问题1五名同学参加演讲比赛,以抽签方式决定每个人的出场顺序.为了抽签,我们准备了五张背面看上去相同的纸牌,上面分别标有出场顺序的数字1,2,3, 4, 5.把牌充分洗匀后,小军先抽,他在看不到纸牌上数字的情况下从中任意随机抽取一张纸牌请思考以下问题:(1)抽到的数字有几种可能的结果(2)抽到的数字小于6吗(3)抽到的数字会是0吗(4)抽到的数字会是1吗通过简单的推理或试验,可以发现:(1)数字1, 2,3,4,5都有可能抽到,共有5种可能的结果,但是事先无法预料一次抽取会出现哪一种结果;(2)抽到的数字一定小于6;(3)抽到的数字绝对不会是0;(4)抽到的数字可能是1,也可能不是1 ,事先无法确定.在一定条件下,有些事件必然会发生.例如,(1)“抽到的数字小于6”,这样的事件称为必然事件.相反地,有些事件必然不会发生例如,(2)“抽到的数字是0”.这样的事件称为不可能事件.必然事件与不可能事件统称确定性事件.在一定条件下,有些事件有可能发生,也有可能不发生,事先无法确定.例如,(4)“抽到的数字是1”,这个事件是否发生事先不能确定.在一定条件下,可能发生也可能不发生的事件,称为随机事件.教师活动:引导学生自我试验学生活动:积极操作、试验、思考、分析,初步感知事件发生的情况类别。
沪科版数学九年级下册《26.1 随机事件》教学设计3

沪科版数学九年级下册《26.1 随机事件》教学设计3一. 教材分析沪科版数学九年级下册第26.1节“随机事件”是本册教材中的重要内容,主要让学生理解随机事件的定义、性质及随机事件的发生可能性。
本节内容是在学生已经掌握了概率的基本概念和事件的发生可能性基础上进行学习的,对于培养学生的逻辑思维能力、分析问题能力以及解决问题的能力具有重要意义。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于概率的基本概念和事件的发生可能性有一定的了解。
但是,对于随机事件的定义和性质,以及如何判断一个事件是随机事件还是必然事件或不可能事件,可能还存在一定的困难。
因此,在教学过程中,需要引导学生通过实例来理解和掌握随机事件的定义和性质,提高学生的数学思维能力。
三. 教学目标1.了解随机事件的定义、性质和判断方法。
2.能够运用随机事件的性质和判断方法解决实际问题。
3.培养学生的逻辑思维能力、分析问题能力和解决问题的能力。
四. 教学重难点1.随机事件的定义和性质。
2.如何判断一个事件是随机事件、必然事件或不可能事件。
五. 教学方法1.实例教学法:通过具体的实例,引导学生理解和掌握随机事件的定义和性质。
2.问题驱动法:通过提出问题,激发学生的思考,引导学生运用随机事件的性质和判断方法解决实际问题。
3.小组合作学习:学生进行小组讨论,培养学生的团队合作意识和交流沟通能力。
六. 教学准备1.教学PPT:制作相关的教学PPT,展示实例和问题。
2.实例材料:准备一些与生活相关的实例,用于教学演示和练习。
3.练习题:准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用PPT展示一些与生活相关的随机事件,如抛硬币、抽奖等,引导学生思考什么是随机事件,随机事件的特点是什么。
2.呈现(10分钟)利用PPT呈现随机事件的定义和性质,让学生初步了解随机事件的判断方法。
3.操练(10分钟)让学生分组讨论,每组找一个实例,判断这个实例是随机事件、必然事件还是不可能事件,并说明判断的理由。
2024-2025学年沪科版初中数学九年级(下)教案第26章概率初步26.1随机事件

第26章概率初步26.1 随机事件教学反思教学目标1.在实际情景中感受必然事件、不可能事件和随机事件的意义.2.会对随机事件发生的可能性大小的定性分析.3.从大量实例中理解概率的意义,了解概率与现实生活的联系,并会用符号表示概率.教学重难点重点:识别必然事件、不可能事件、随机事件;判断事件发生可能性的大小.难点:理解概率的意义.教学过程导入新课1.三人每次都能摸到红球吗?【尝试】学生根据生活经验回答.可能发生,也可能不发生,必然不会发生,必然会发生.问题:如图,重复抛掷一枚各面上点数分别是1,2,3,4,5,6的均匀骰子,记录每次抛掷后骰子向上一面的点数,回答以下问题:(1)可能出现哪些点数?(2)出现的点数小于7吗?(3)出现的点数会是8吗?(4)抛掷一次,出现的点数会是6吗?从抛掷结果可以发现:(1)每次抛掷的结果不一定相同,可能出现的点数共有6种,分别是1,2,3,4,5,6;(2)出现的点数一定小于7;(3)出现的点数一定不是8;(4)抛掷一次,出现的点数可能是6,也可能不是6,无法预先确定.探究新知1.事件的类型可以事先知道其一定会发生的事件叫做必然事件.一定不会发生的事件叫做不可能事件.⎫⎪⎬⎪⎭必然事件确定性事件不可能事件师生活动:(小组讨论)1.将2个黑球,3个白球,4个红球放入一个不透明的袋子里,从中摸出1个球,恰好摸到的球是绿球,是 事件.2.将2个黑球,3个白球,4个红球放入一个不透明的袋子里,从中摸出8个球,恰好红球、白球、黑球都摸到,这个事件是 事件.答案:1.不可能 2.必然 师生活动:(小组讨论)下列事件一定能发生吗? (1)掷一枚硬币,有国徽的一面朝上. (2)买一张彩票,恰好中奖.(3)办公室老师从我们班选一个人去打水,你被选中. (4)守株待兔. 【归纳总结】(老师点评总结)无法事先确定在一次试验中会不会发生的事件叫做随机事件.确定性事件和随机事件统称为事件.事件一般用大写字母A ,B ,C ,…表示.例1 判断下列事件是必然事件、不可能事件还是随机事件: (1)乘公交车到十字路口,遇到红灯; (2)把铁块扔到水中,铁块浮起;(3)任选13个人,至少有两人的出生月份相同; (4)从上海到北京的D314次动车明天正点到达北京. 【解】(1)随机事件;(2)不可能事件;(3)必然事件;(4)随机事件. 2.随机事件发生的可能性问题:袋中装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,即除颜色外无其他差别.在看不到球的条件下,随机从袋子中摸出一个球.(1)这个球是白球还是黑球? (2)如果两种球都有可能被摸出,那么摸出黑球和摸出白球的可能性一样大吗? 【归纳总结】(老师点评总结)由于两种球的数量不等,所以“摸出黑球”和“摸出白球”的可能性的大小是不一样的,且“摸出黑球”的可能性大于“摸出白球”的可能性.【思考】随机事件发生的可能性的大小相同的条件在一定条件下,要使随机事件出现的可能性相同,则需要使机会均等.练一练:能否通过上题改变袋子中某种颜色的球的数量,使“摸出黑球”和“摸出白球”的可能性大小相同?可以.例如:白球个数不变,拿出2个黑球或黑球个数不变,加入2个白球. 【新知应用】例2 下列事件中,哪些事件发生的可能性是一样的?哪些不一样? (1)掷一枚均匀的骰子,出现2点朝上或6点朝上的可能性;(2)从装有4个红球,3个白球的袋中任取一球,取出红球或白球的可能性; (3)从一副扑克牌中任意取一张,取到小王或黑桃3的可能性. 【解】(1)出现2点朝上或6点朝上的可能性一样. (2)取出红球或白球的可能性不一样; 取出红球的可能性大于取出白球的可能性.教学反思(3)取到小王或黑桃3的可能性一样.问题:小伟掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.掷一枚骰子,向上一面的点数有几种可能?每种点数出现的可能性大小是多少?答案:6种;1 6 .【归纳总结】1.事先不能预料事件是否发生,即事件的发生具有不确定性;2.随机事件发生的可能性是有大小的.3.概率的定义一般地,表示一个随机事件A发生的可能性大小的数,叫做这个事件发生的概率,记作P(A).【归纳总结】试验有两个共同的特点:(1)每一次试验中,可能出现的结果只有有限个;(2)每一次试验中,各种结果出现的可能性相等.在这些试验中出现的事件为等可能事件.问题:任意取一枚均匀的硬币随机抛掷一次,观察落地时这枚硬币朝向的结果,正面向上的概率是多少?由于硬币是均匀的,出现正面向上或反面向上的可能性是完全相等的(各占一半),即等可能性,即正面或反面出现的可能性为一半.又因为正面向上的可能性是1种,正面向上的可能性占总可能性的比值为12,所以正面向上的概率为12,即P(正面)=12.【归纳总结】概率可以从数量上刻画一个随机事件发生的可能性大小;概率一般用某事件的可能性占总可能性的比值刻画.课堂练习1.下列语句描述的事件中,是随机事件的为()A.水到渠成B.只手遮天C.瓜熟蒂落D.心想事成2.如图,转动如图所示的一些可以自由转动的转盘,当转盘停止时,猜想指针落在黑色区域内的可能性大小,将转盘的序号按可能性从小到大的顺序排列为.第2题图3.下列结论:①如果一件事发生的机会只有十万分之一,那么它就不可能发生;②某公司生产的降落伞合格率达99.9%,则使用该公司的降落伞不会发生危险;③如果一件事不是必然发生的,那么它就不可能发生;④从1,2,3,4,5中任取一个数,是奇数的可能性要大于是偶数的可能性.其中,正确的结论是.(填序号)4.投掷一枚骰子,出现点数不超过4的概率约是.5.一次抽奖活动中,印发奖券10 000张,其中一等奖一名,奖金5 000元,那么第一位抽奖者,(仅买一张)中奖概率为.教学反思6.在一个不透明的口袋中装有大小、外形一模一样的5是必然事件.(1)从口袋中一次任意取出一个球,是白球;(2)从口袋中一次任取5个球,全是蓝球;(3)从口袋中一次任取5(4)从口袋中一次任意取出67.获胜;如果朝上的数字不是6,那么乙获胜.为什么?8.从6名男生和4名女生中选5名(n为正整数).(1)当n为何值时,女生中的小芳被选中是必然事件?(2)当n为何值时,女生中的小芳被选中是不可能事件?(3)当n为何值时,女生中的小芳被选中是随机事件?9.随意抛一粒豆子,恰好落在如图所示的圆内,在正方形里面的可能性大还是落在正方形外面的可能性大?参考答案1.D2.④①②③3.④4.235.1100006.解:(1)随机事件;(2)不可能事件;(3)随机事件;(4)随机事件.7.解:乙获胜的可能性大,因为骰子朝上的数字不是6可能性大.8.解:(1)当n=1时,女生中的小芳被选中是必然事件;(2)当n=5时,女生中的小芳被选中是不可能事件;(3)当n=2或3或4时,女生中的小芳被选中是随机事件.9.解:设圆的半径为1圆的面积为πr2=π,正方形的面积为22=,因为2>π-2,所以这粒豆子落在正方形里面的可能性大.课堂小结⎧⎧⎪⎪⎨⎪⎨⎩⎪⎩必然事件(一定会发生)确定性事件事件不可能事件(一定不会发生)随机事件(发生的可能性有大有小)根据随机事件发生的可能性大小,帮助我们做出合理的决策.特别注意:不可能事件是确定性事件.概率可以从数量上刻画一个随机事件发生的可能性大小;概率一般用某事件的可能性占总可能性的比值刻画.布置作业教材第93页习题26.1板书设计26.1随机事件1.⎧⎧⎪⎪⎨⎪⎨⎩⎪⎩必然事件:可以事先知道其一定会发生的事件.确定性事件事件不可能事件:在一定条件下,一定不会发生的事件.随机事件:无法事先确定在一次试验中会不会发生的事件.2.随机事件发生的可能性是有大小的.3.一般地,表示一个随机事件A发生的可能性大小的数,叫做这个随机事件发生的概率,记作P(A).教学反思。
最新沪科版初中数学九年级下册精品【学案】 随机事件

随机事件【学习目标】1、通过对生活中各种事件的判断,归纳出必然事件,不可能事件和随机事件的特点,并根据这些特点对有关事件作出准确判断;2、通过实验操作体会随机事件发生的可能性是有大小的。
【学习过程】一、问题引入:俗话说:“天有不测风云”,也就是说世界上有很多事情具有偶然性,人们不能事先判定这些事情是否会发生。
试根据事件发生可能性的不同,把下面的8个事件分类:(1)某人的体温是100℃; (2) a2+b2=-1(其中a,b都是实数);(3)太阳从西边下山; (4)经过城市中某一有交通信号灯的路口,遇到红灯;(5) 一元二次方程x2+2x+3=0无实数解; (6)掷一枚骰子,向上的一面是6点;(7) 人离开水可以正常生活100天; (8)篮球队员在罚线上投篮一次,未投中。
一定条件下必然会发生的事件有一定条件下不可能发生的事件有一定条件下可能发生也可能不发生的事件有二、自主学习:自学课本,体会随机事件的含义。
试举出现实生活中存在的必然事件、不可能事件、随机事件的例子:三、练习:1、指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件?(1)通常加热到100°C时,水沸腾;(2)度量三角形的内角和,结果是360°;(3)正月十五雪打灯;(4)掷100次硬币,每次都是正面朝上;2、掷两枚骰子,你能说出一个必然事件,一个不可能事件,一个随机事件吗?3、李宁运动品牌打出的口号是“一切皆有可能”,请你谈谈对这句话的理解.四、探究:把4橙2白6个乒乓球球放入袋中,在看不到球的条件下,随机地从袋子中摸出一个球。
1、这个球是橙色的还是白色的?2、你能说出一个必然事件,一个不可能事件,一个随机事件吗?3、猜测从袋中摸球一次,摸出哪种颜色的球的可能性比较大?4、在袋中摸球数次,统计摸球结果,验证猜测的结论是否正确。
5、由此可以得出结论。
6、你能改变袋子中某种颜色的球的数量,使“摸出黑球”与“摸出白球”的可能性相同吗?若使“摸出黑球”的可能性小于“摸出白球”的可能性,可以如何操作?建议:1、限于条件,实验可以只由老师准备一套道具,摸球时让几位学生上台去摸。
九年级数学下册 26 概率初步 课题 随机事件学案 (新版)沪科版

课题:随机事件【学习目标】1.理解必然事件、不可能事件和随机事件的特点,并对有关事件作出准确判断.2.历经实验操作、观察思考和总结、归纳出三种事件各自的本质属性,并抽象成数学概念.【学习重点】随机事件的特点.【学习难点】对生活中随机事件作出准确判断.行为提示:创景设疑,帮助学生知道本节课学什么.行为提示:教会学生看书,自学时对于书中的问题一定要认真探究,书写答案,教会学生落实重点.方法指导:认真领会“必然事件”“不可能事件”“随机事件”的概念,看在一次试验中是否可事先知道.若事先知道,是否一定发生或一定不会发生,则为必然事件或不可能事件;若不能事先知道,有可能发生也有可能不发生,则为随机事件.情景导入生成问题情景导入:问题情境:下列问题哪些是必然发生的?哪些是不可能发生的?(1)太阳从西边下山;(2)某人的体温是100℃;(3)a2+b2=-1(其中a,b都是实数);(4)水往低处流;(5)酸和碱反应生成盐和水;(6)三个人性别各不相同;(7)一元二次方程x2+2x+3=0无实数解.答:(1)(4)(5)(7)必然发生;(2)(3)(6)不可能发生.自学互研生成能力知识模块一确定性事件与随机事件阅读教材P91~P92,完成以下问题:1.什么是必然事件?什么是不可能事件?答:每次试验中,可以事先知道其一定会发生的事件叫必然事件,一定不会发生的事件叫做不可能事件.2.什么是确定性事件?什么是随机事件,两者统称什么?答:必然事件和不可能事件统称确定性事件.无法事先确定一次试验中会不会发生的事件叫做随机事件.确定性事件和随机事件统称事件.范例1:(龙岩中考)下列事件中,属于随机事件的是( B)A.63的值比8大B.购买一张彩票,中奖C.地球自转的同时也绕太阳公转D.袋中只有5个黄球,摸出一个球是白球仿例1:(怀化中考)下列事件是必然事件的是( A)A.地球绕着太阳转B.抛一枚硬币,正面朝上C.明天会下雨D.打开电视,正在播放新闻仿例2:(福建中考)在一个不透明的盒子里装有3个黑球和1个白球,每个球除颜色外都相同,从中任意摸出2个球,下列事件中,不可能事件是( A)A.摸出的2个球都是白球B.摸出的2个球有一个是白球C.摸出的2个球都是黑球D.摸出的2个球有一个黑球知识链接:概率为一事件发生的可能性大小的数.概率为99%,既可能发生也可能不发生,只是说发生的可能性较大而已.行为提示:积极发表自己的不同看法和解法,大胆质疑,认真倾听,做每步运算都要有理有据,避免知识上的混淆及符号等错误.知识模块二概率什么是概率?答:一般地,表示一个随机事件A发生的可能性大小的数叫做这个事件发生的概率,记作P(A).范例2:(柳州中考)小张抛一枚质地均匀的硬币,出现正面朝上的可能性是( B)A.25% B.50% C.75% D.85%仿例1:“明天下雨的概率为80%”这句话指的是( C)A.明天一定下雨B.明天80%的地区下雨,20%的地区不下雨C.明天下雨的可能性是80%D.明天80%的时间下雨,20%的时间不下雨仿例2:抛出一枚骰子,在下面的几个事件中,可能性最大的是( D)A.朝上点数是偶数B.朝上的点数大于3C.朝上的点数为6 D.朝上的点数不是1仿例3:某商场为促销开展抽奖活动,让顾客转动一次转盘,当转盘停止后,只有指针指向阴影区域时,顾客才能获得奖品.下列有四个大小相同的转盘可供选择,使顾客获得奖品可能性最大的是( A)交流展示生成新知1.将阅读教材时生成的新问题和通过“自学互研”得出的结论展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一确定性事件与随机事件知识模块二概率检测反馈达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思查漏补缺1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________________。
最新沪科版初中数学九年级下册精品【教案】 随机事件

随机事件
(一)教学目标
(1)知识与技能:了解必然发生的事件、不可能发生的事件、随机事件的特点。
(2)过程与方法:经历体验、操作、观察、归纳、总结的过程,发展从纷繁复杂的表象中,提炼出本质特征并加以抽象概括的能力。
(3)情感、态度与价值观:学生通过亲身体验、亲自演示,感受数学就在身边,使学生乐于亲近数学,感受数学,喜欢数学,体会数学的应用价值。
(二)重点、难点分析
重点:随机事件的特点。
难点:判断现实生活中哪些事件是随机事件。
(四)教学过程
(五)教学设计说明
本节是“概率初步”一章的第一节课,教学中,首先列举了学生在实际生活中所熟悉的、生动的、鲜活的实例,让学生初步感受必然事件,不可能事件,随机事件的意义。
然后,通过演示试验,小组讨论,逐步形成对随机事件的特点及定义的理性认识,这样从易到难,从简单到复杂,逐渐深入地引入随机事件的概念的安排,显得自然而又流畅。
本节课,没有纠缠在概念的具体文字上,而是通过经典的随机事件的例子,使学生准确的理解和把握随机事件的有关概念。
沪科版(2012)初中数学九年级下册26.1随机事件教案

26.1随机事件教学目标:知识技能:了解必然事件、不可能事件和随机事件的特点,并能根据这些特点对有关事件做出准确判断;对随机事件发生的可能性大小做定性的分析,了解影响随机事件发生的可能性大小的因素。
数学思考:经历试验操作、观察、思考和总结,归纳出三种事件各自的本质属性,并抽象成数学概念;感受随机事件发生的可能性是有大小的。
问题解决:能根据随机事件的特点,辨别哪些事件是随机事件;总结出随机事件发生的可能性大小的特点。
情感态度:学生通过亲身体验,亲自演示,感受数学就在身边,激发学生的学习兴趣,让学生感受到数学的科学性及生活中丰富的数学现象。
教学重点:能对必然事件、不可能事件、随机事件做出正确判断。
教学难点:能正确判断现实生活中哪些事件是随机事件。
教学过程:一、创设情境,导入新课1、一休得罪了幕府将军,将军决定处罚一休,幸得安国寺长老和百姓们的求情,将军终于同意让一休用自己的聪明才智来决定自己的命运。
(1)方法是将军写下两张签,一张罚,一张免,让一休抽签,抽中罚则罚,抽中免则免;(2)将军一心想处罚一休,将军会在写签时怎么写呢?原来将军在两张签上都写上了“罚”.一休不论抽到哪一张都一样要罚。
问:爱动脑筋的一休早就料到了这一点.一休会用什么办法应对狡诈的幕府将军呢?2、守株待兔的故事告诉了我们什么道理?二、实践探究,交流新知探究1:认识确定性事件和随机事件活动1 掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.请思考以下问题:掷一次骰子,在骰子向上的一面:(1)可能出现哪些点数?(2)出现的点数是7,可能发生吗?(3)出现的点数大于0,可能发生吗?(4)出现的点数是4,可能发生吗?师生活动:学生根据题意完成操作,针对问题,小组内讨论解答,教师进行提问,订正答案后,进行总结。
活动2:提出问题,探索概念展示问题:(1)什么是必然事件,什么是不可能事件,什么是随机事件?(2)怎样的事件称为随机事件呢?(3)必然事件和不可能事件的区别在哪里?师生活动:学生用自己的语言进行描述,教师给予充分的肯定和鼓励,师生共同总结。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随机事件
【学习目标】
1、通过对生活中各种事件的判断,归纳出必然事件,不可能事件和随机事件的特点,并根据这些特点对有关事件作出准确判断;
2、通过实验操作体会随机事件发生的可能性是有大小的。
【学习过程】
一、问题引入:
俗话说:“天有不测风云”,也就是说世界上有很多事情具有偶然性,人们不能事先判定这些事情是否会发生。
试根据事件发生可能性的不同,把下面的8个事件分类:
(1)某人的体温是100℃; (2) a2+b2=-1(其中a,b都是实数);
(3)太阳从西边下山; (4)经过城市中某一有交通信号灯的路口,遇到红灯;
(5) 一元二次方程x2+2x+3=0无实数解; (6)掷一枚骰子,向上的一面是6点;
(7) 人离开水可以正常生活100天; (8)篮球队员在罚线上投篮一次,未投中。
一定条件下必然会发生的事件有
一定条件下不可能发生的事件有
一定条件下可能发生也可能不发生的事件有
二、自主学习:
自学课本,体会随机事件的含义。
试举出现实生活中存在的必然事件、不可能事件、随机事件的例子:
三、练习:
1、指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件?
(1)通常加热到100°C时,水沸腾;
(2)度量三角形的内角和,结果是360°;
(3)正月十五雪打灯;
(4)掷100次硬币,每次都是正面朝上;
2、掷两枚骰子,你能说出一个必然事件,一个不可能事件,一个随机事件吗?
3、李宁运动品牌打出的口号是“一切皆有可能”,请你谈谈对这句话的理解.
四、探究:
把4橙2白6个乒乓球球放入袋中,在看不到球的条件下,随机地从袋子中摸出一个球。
1、这个球是橙色的还是白色的?
2、你能说出一个必然事件,一个不可能事件,一个随机事件吗?
3、猜测从袋中摸球一次,摸出哪种颜色的球的可能性比较大?
4、在袋中摸球数次,统计摸球结果,验证猜测的结论是否正确。
5、由此可以得出结论。
6、你能改变袋子中某种颜色的球的数量,使“摸出黑球”与“摸出白球”的可能性相同吗?若使“摸出黑球”的可能性小于“摸出白球”的可能性,可以如何操作?
建议:
1、限于条件,实验可以只由老师准备一套道具,摸球时让几位学生上台去摸。
2、第5题学生可能只回答针对本题的一些结论,如摸到橙色球的可能性大于摸到白色球,应要求学生把实验的结论推广,最终得出课本139页的结论。
3、提醒学生:事件发生的可能性要注意一定的条件。
条件改变了,三类事件可以互相转化。
五、练习:
1、一个袋子里装有20个形状、质地、大小一样的球,其中4个白球,2个红球,
3个黑球,其它都是黄球,从中任摸一个,摸中哪种球的可能性最大?
2、已知地球表面陆地面积与海洋面积的比均为3:7。
如果宇宙中飞来一块陨石
落在地球上,“落在海洋里”与“落在陆地上”哪个可能性更大?
六、总结反思:
【达标检测】
1、指出下列事件中哪些是必然事件,哪些是不可能事件,哪些是随机事件?(1)温度降到0℃以下,纯净的水结冰;(2)物体在重力的作用下自由下落;(3)打靶命中靶心;(4)随意翻到一本书的某页,这页的页码是奇数;(5)测量某天的最低气温,结果为-150℃;(6)购买一张彩票,中奖;
(7)汽车累积行驶1万公里,从未出现故障;
(8)地面发射一枚导弹,未击中空中目标。
2、在北京举办的29届奥运会女子乒乓球单打比赛中,我国运动员张怡宁、王楠经过奋力拼搏,一路过关斩将,会师最后决赛,那么,在比赛开始前,下列事件发生的可能性如何?
(1)冠军属于中国;(2)冠军属于外国选手;(3)冠军属于王楠。
3、袋子中有2个红球,3个绿球和4个蓝球,它们只有颜色上的区别,从袋子
中随机地取出一个球:。