中频电源主电路设计
中频电源电路设计

摘要随着科学技术的发展以及提高我国国防能力的需要,对军事设施的技术改造已被列为军事技术改造中的重点。
中频电源指输出频率为400Hz的电源,它可以为动力系统及导航与武备系统供电。
传统的400Hz中频电源体积大,输出波形不稳定。
本文所设计的400Hz中频电源通过整流电路、逆变电路、积分电路、放大电路和检波电路及控制其最后的输出电压,实现了电压的稳定输出,具有体积小、功率大和波形无失真等优点,有着广泛的用途和良好的发展前景。
关键词:中频电源,PWM调制,输出变压器电力电子装置及系统课程设计任务书一、课程设计的目的通过电力电子装置及系统的课程设计达到以下几个目的:1、培养学生文献检索的能力,特别是如何利用Internet检索需要的文献资料。
2、培养学生综合分析问题、发现问题和解决问题的能力。
3、培养学生运用知识的能力和工程设计的能力。
4、培养学生运用仿真工具的能力和方法。
5、提高学生课程设计报告撰写水平。
二、课程设计的要求1. 题目题目:中频电源电路设计主要技术数据●输入电压:三相360V~400V,50Hz±5%●输出电压:单相,220V±2%,400Hz±0.5%●输出功率:4kW●输出电流:22A●功率因数:0.8二、课程设计的要求1. 题目题目:中频电源电路设计主要技术数据●输入电压:三相360V~400V,50Hz±5%●输出电压:单相,220V±2%,400Hz±0.5%●输出功率:4kW●输出电流:22A●功率因数:0.8●效率:85%设计内容:●主电路设计和参数选择●控制系统及辅助电源电路设计●电路仿真分析和仿真结果要求学生在教师的指导下,独力完成所设计的系统主电路、控制电路等详细的设计(包括计算和器件选型)。
严禁抄袭,严禁两篇设计报告基本相同,甚至完全一样。
设计报告最后给出设计中所查阅的参考文献最少不能少于5篇,且文中有引用说明,否则也不能得优)。
中频感应加热电源的设计及原理

毕业设计论文
课
题:
中频感应加热电源的设计 机电与交通工程系 电气工程及其自动化 吴 科 虎 020120221 电气工程教研室 何 少 佳 高级实验师
院 (系) : 专 业:
学生姓名: 学 号:
指导教师单位: 姓 职 名: 称:
题目类型: 理论研究
实验研究
工程设计√
工程技术研究
软件开发
1.1 感应加热的工作原理........................................................................................................ 2 1.2 感应加热电源技术发展现状与趋势................................................................................ 3
2ቤተ መጻሕፍቲ ባይዱ
感应加热电源实现方案研究..................................................................................... 5
2.1 串并联谐振电路的比较.................................................................................................... 5 2.2 串联谐振电源工作原理.................................................................................................... 7 2.3 电路的功率调节原理........................................................................................................ 8 2.4 本课题设计思路及主要设计内容.................................................................................... 8
基于DSP与CPLD的400Hz中频电源设计

第32卷第1期吉首大学学报(自然科学版)Vol.32No .12011年1月Journ al of Ji shou Universit y (Nat ural Science Edit ion)J an.2011文章编号:1007-2985(2011)01-0071-03基于DSP 与CPLD 的400Hz 中频电源设计*裴素萍,王耕(中原工学院电子信息学院,河南郑州450007)摘要:利用DSP 产生SP WM 波,驱动IGBT 逆变,从而产生纯正弦交流电进行400H z 中频电源的研究与设计.给出了以DSP 为主控芯片的主电路、控制电路以及软件设计的流程.实验结果表明:利用DSP 与CPLD 使得控制电路大为简化,改善了功率因数,减少了谐波影响,从而提高了工作效率.关键词:DSP ;SPWM;逆变;CPLD中图分类号:T N86;TN702文献标志码:A三相400H z/115V 交流电源广泛应用于航天、航空及军用设备的动力系统中.逆变电源车是频率为400Hz 的交流中频电源,它在工业、国防、航海、航空等领域中应用非常广泛.它要求电源的波形是纯正弦,谐波含量不大于5%,工作电压为115V.该电源的频率、相位等参数的精度要求较高,对研制、生产的军用电源的参数需准确测试,使其满足军用标准,提高我国国防装备的科技水平,满足现代化高科技的发展需要.目前,该电源有2种产生方式:利用专用400Hz 发电机组产生;由工频电源经交直交变换,由电子电路控制大功率开关器件,经滤波变压后产生.对于发电机组来讲,由于发电机绕组的不对称性及转速不稳定性,都会使输出的频率及相位有误差.而对于电子方式产生的电源,受大功率器件特性及控制策略的影响,也会产生相移或频率不合要求.另外,电源在带载或三相作为单相运行时,也会引起相位或频率的变化.为了满足输出纯正弦波的要求,采用SPWM 脉宽调制技,该技术是通过一定的规律控制功率半导体器件的通断,获得一组等幅不等宽的矩形脉冲,用作近似正弦波.利用传统的模拟方法,电路复杂,有温飘的现象,限制了系统的性能.数字法则需要按照不同的数学模型用计算机计算出各切换点的时间,即所谓的规则采样,将采集的所有切换点放入内存,然后通过查表及必要的计算再生成SPWM 波,但数字法因受内存影响较大,不能保证系统的精度.[1-3]2种方法都不理想,因此笔者选用DSP 控制,逆变器输出三相正弦交流电,构成了静止式逆变电源.这种方法设计的中频电源具有噪音低、转换效率高、工作可靠、使用方便等优点.1系统结构组成图1系统结构图DSP 控制器选用TI 公司的16位定点TMS320F 2407A,它是一种性价比较高的DSP,集成6路PWM 输出,每个输出都有可编程的死区功能.与单片机相比,单片机的P WM 模块没有死区功能,必须用软件或外接硬件来实现,所以使用DSP 可以提高系统的可靠性.利用DSP 的A/D 可以实现对检测电流、电压的A/D 转换,再通过CPLD 译码送LED,从而显示电压、电流、频率的当前值.在DSP 的指令控制下,产生了SP WM 波,构成控制系统.DSP 不仅可以完成对输出的SPWM 波的脉宽、频率进行控制,还可以完成模拟信号的电压、电流以及交流电频率的检测和显示,当出现过电流、欠电压的异常现象时,能够自动保护、报警.电源车系统结构原理图如图1所示.TMS320F 2407A 还集成了16路A/D 转换通道,最快A/D 转换时间为375ns,可用于对电压和电流进行快速检测.这种DSP 还提供串行接口SPI 和SCI 模块、41个通用I/O 引脚、可编程看门狗定时器、片内集成了2kB 单口RAM 、544字双*收稿日期6作者简介裴素萍(6),女,河南新乡人,中原工学院电子信息学院讲师,硕士,主要从事电气控制与智能电网研究;王耕(6),男,河南郑州人,中原工学院电子信息学院副教授,主要从事电机电器设计与控制研究:2010-10-2:197-197-.口RAM 、32kB flash 程序存储器.TM S320F2407A 的最高工作速度可达40MIPS,高速的运算速度有助于实现先进的控制算法.三相脉宽调制波发生器构成的控制电路,产生SP WM 脉冲,经功率放大后驱动IGBT 功率模块组成的逆变器,生成频率为400H z 的正弦交流电,经变压器输出电压为115V.[4]2系统主电路图2主电路图中频电源车主电路的工作原理如图2所示.三相工频交流经EM I 滤波器滤波后,由整流桥模块整流,再经电容滤波,加至由IGBT 构成的桥式逆变电路,该直流高压经逆变电路逆变为脉宽按正弦波规律变化的高频脉冲波,再由输出滤波器滤掉高频谐波,得到中频正弦波,最后由变压器隔离、变压(升压或降压)后提供给负载.SPWM 脉冲波由主控制电路产生,并根据输出反馈电压和反馈电流来改变脉冲波的宽度,从而保证输出电压的稳定.三相逆变电路是将直流电逆变为400H z 的三相正弦交流电,主开关功率元件选用日本富士公司生产的两单元IGBT 模块(3只),额定容量为75A,每只元件上都另配缓冲保护电路.如图2所示,主电路是典型的AC-DC-AC 逆变电路,将输入的三相交流电经整流、滤波后以直流电供给逆变器.逆变器输出为三相交流电,频率为400H z,再经变压器隔离变压,就变为115V 的交流电.3系统控制电路图3控制电路图系统控制框图如图3所示.控制电路控制逆变电路和电源输出的频率及电压、人机界面、主电路和逆变电路的接通与断开.采用DSP 为系统的控制核心,控制快速准确,使系统具有响应快、运行稳定、可靠的特点.本系统控制器选用TI 公司16位定点T MS320F2407A,其产生载频为20kHz 的SPWM 脉冲信号,由脉宽调制信号输出端口输出,通过驱动电路加到IGBT 的栅极,控制逆变电路正常工作,同时根据电压和电流的反馈值调整SPWM 脉冲信号的脉宽,从而保持输出信号幅度的稳定.4系统软件图系统软件设计流程图系统软件设计流程图如图4所示,包括DSP 初始化、脉宽计算、报警、数值转换子程序、显示扫描程序等.其中按键1表示显示功能,按键2表示停机功能,按键3表示初始化功能.通过初始化命令可以对各参数值进行设定,并实施对主电路的控制,逆变出400H z 的三相交流电.程序流程采用顺序结构,调用子程序简单方便,显示子程序可将电压、电流、频率的数值送LED 分别显示出来.在整个工作过程中,随时对电流、电压进行测量比较,一旦出现过流、欠压可及时报警、严重时可以自动停机.SPWM 波产生的方法主要有3种:自然采样法,对称规则采样法和不对称规则采样法.利用正弦波和等腰三角波的交点时刻来决定开关管的开关模式,从而生成SPWM 波的方法是自然采样法,这种方法生成的SPWM 波的脉宽方程是一个超越方程,求解起来要花费较多的时间,因此自然采样法的数学模型不适合用于实时控制.对称规则采样法是以每个三角波的对称轴(顶点对称轴或底点对称轴)所对应的时间作为采样时刻过三角波的对称轴与正弦波的交点,作72吉首大学学报(自然科学版)第32卷4.平行t 轴的平行线,该平行线与三角波的2个腰的交点作为SP WM 波的开关时刻,这2个交点是对称的,因此称为对称规则采样法.这种方法实际上是用一个阶梯波去逼近正弦波,由于在每个三角波周期中只采样1次,因此计算得以简化,但其形成的阶梯波与正弦波的逼近程度仍存在较大的误差.不对称规则采样法在前2种方法的基础上改进了其不足之处,这种方法既在三角波的顶点对称轴位置采样,又在三角波的底点对称轴位置采样,即每个载波周期采样2次,这样采样所形成的阶梯波与三角波的交点不对称,所形成的阶梯波与正弦波的逼近程度大大提高.正是因为这点,本系统软件设计算法选择的是不对称规则采样法.用单片机作为控制器,软件设计则使用数字法受内存影响较大,不能保证系统的精度,笔者使用DSP 作为控制器可以避免这种缺点,保证系统的精度.5结语系统实验波形如图5所示.图5系统实验波形实践表明,利用DSP 与CPLD 使得控制电路大为简化,器件少、体积小,降低了成本.载波频率高,输出波形为纯正弦.经测试:电压稳定度小于1%,频率稳定度为0.05%,总谐波含量为1%,在200%的负载时,短路保护动作,可立即关闭电源,满足性能指标的要求,提高了系统的控制精度.采用厚膜驱动电路,具有自保护功能,使IGBT 逆变器的工作更加可靠.如果将逆变器作为变频电源使用,用于交流电动机的变频调速系统,只需改变DSP 初始化控制字的设定.改变输出交流电的频率和工作电压是十分方便的,省去了大量的编程工作,还能够做到实时控制,由于其波形是纯正弦,则可以改善功率因数,减少谐波的影响,从而提高工作效率.参考文献:[1]王福瑞.单片微机测控制系统设计大全[M].北京:北京航空航天大学出版社,2006.[2]李宏.电力电子设备用器件与集成电路应用指南[M ].北京:机械工业出版社,2003.[3]王晓明.电动机的DSP 控制[M].北京:北京航空航天大学出版社,2004.[4]冯玉生.单片机控制三相PWM 产生器的逆变电源设计[J].电力电子技术,2005,39(4):21-23.Design of 400Hz Mid Frequency Power SupplyBased on DS P and CPLDPEI Su ping,WANG Geng(Zhongyuan Univer sity of Technology,Zhengzhou 450007,China)Abstr act:The paper proposes a new way to obtain pure sinusoidal based on DSP for the research and de sign of 400H z AC power supply.It gives the main circuit,control circuit and software design flow chart.A prototype is designed using the DSP as the master chip.The experimental result shows that this way not only can simplify the system str ucture by DSP and CPLD,but also can improve the power factor,re duce harmonics and enhance efficiency.Key words:DSP;SPWM;invert;CPLD(责任编辑陈炳权)73第1期裴素萍,等:基于DSP 与CPLD 的400H z 中频电源设计。
400Hz中频电源设计

Abta tWi ei eme ief q e c o e p l i tepat a e g er gpoet s h eerhojc, s c : t t tr da e un yp w r u py n h r i l n i e n r e a er ac bet r hh n tr s cc n i j t s
高 可靠 和 高 性 能 的 中频 电源 ( 常 为 4 0H ) 通 0 z 已广泛 应用 于航 空 、 天 、 航 舰船 、 车 、 应加 热 以及 机 感 雷达 、 信交换 机 等 设 备 中. 通 因此 , 此 类 电源 的研 对
4 0H 中频 电源 , 术 先 进 , 所 达 到 的 电性 能 指 0 z 技 其
X N hoy, H i a , UJn I G Z u—iZ U Q— n L u d
( co l f uo ai , ri E gnei n esy H ri 10 0 ,hn ) Sho o t t n Hab nier gU i r t, abn 50 1 C ia A m o n n v i
a s h me o ntr e a e fe u n y p we u p y i d v lp d, i h u iie c o o tol r n ina e e a o c e fi e m dit q e c o rs p l s e eo e wh c tl s mi rc n rle s a d sg lg n r tr r z
g a o h y t m ,n ef c ic tb t e in lg n r tro W M n c o o tol r f8 t e io ain r m ft e s se i tra e cr ui ewe n sg a e e a o fSP a d mir c n r le so 9C51,h s lto
KGPS晶闸管中频电源保护电路的设计

过对 K P G S品 闸 管 中频 电源 产 生 故 障 的原 因 进 行 分析 , 计 了相 应 的保 护 电路, 其在 发 生 故 障 时 能及 时保 护 电源 设 备 。 设 使 关 键 词 : 品 闸管 中 频 电源 过 电压保 护 过 电流保 护
中 图分 类 号 :T 6 文献 标 识 码 :A 文章 编 号 : 17.8 1( 0 8 36 .2 N8 6 24 0 2 0 )0 .20
1 引 言
品 闸管 中频 电源 以其 效 率高 、制造 周 期短 、 安装 维 修方便 、操作 简便 、 占地 面积 小 、容 易 实 现 自动控 制 、环保 等 突 出的优 点,得 到 了越 来越 广泛 的 应用 。然而 ,由于 品闸管 中频 电源装 置 的
工 作受 供 电电 网及 负 载的 影响较 大 ,而且 晶 闸管 元件 的超 载 能力又 较 小 ,故 要使 装置 可靠] 作 ,
3KGP S晶 闸 管 中频 电源 的常 见故 障
K S 品闸管 中频 电源 常见 的故 障类型 有 : GP
保护 电路 。限流 限压 电路设 计如 图 2所 示 ,电流 、 电压 检 测 电路 分别 取 出负载 的 电流 和 电压信 号 , 经过 桥式整 流 电路后 ,分 别从 R 5 R 6 P 和 P 上得 出
缘 被击 穿而造成相 间短 路等等 。在 K S晶闸管 GP
中频 电源装 置 中,整流 桥 的某个 品 闸管若 由于某
必须 要有 完备 的保护措 施 。本 文分析 了 K P G S品 闸管 中频 电源 产 生故 障的 原因 ,设计 了相应 的保 护 电路 , 使其 在发 生故障 时能及 时保护 电源 设备 。
62
维普资讯
中频感应加热电源的设计

中频感应加热电源的设计
1.电源输出功率和频率:根据加热要求确定电源的输出功率和频率。
输出功率一般由加热负荷大小决定,频率一般选择在1kHz~20kHz之间,
根据不同的加热要求进行调整。
2.电源结构设计:电源的结构设计主要包括整流、逆变、振荡等电路
的设计。
整流电路用于将交流电转换成直流电,逆变电路用于将直流电转
换成交流电,振荡电路用于产生中频振荡信号。
3.电源控制系统设计:电源控制系统主要包括开关控制电路、保护电
路和自动控制电路等。
开关控制电路用于控制电源的开关,保护电路用于
保护电源和负载不受损坏,自动控制电路用于实现加热功率的调节和温度
等参数的监测和控制。
4.效率和功率因数:设计中频感应加热电源时,需要考虑电源的效率
和功率因数,以提高电源的能量利用率和减少对电网的电能需求。
5.冷却系统设计:中频感应加热电源在工作过程中会产生大量的热量,需要通过冷却系统将热量排出,以保证电源的正常工作和寿命。
6.控制方式:中频感应加热电源的控制方式有手动控制和自动控制两种。
手动控制方式需要人工操作电源的开关和参数调节,自动控制方式通
过传感器和控制器实现对加热过程的自动控制。
7.安全性设计:中频感应加热电源设计中需要考虑安全性问题,包括
过载、短路、过流、过热等保护措施的设计,以及对电源和负载的绝缘和
接地等安全措施的实施。
综上所述,中频感应加热电源的设计需要考虑输出功率和频率、电源结构、电源控制系统、效率和功率因数、冷却系统、控制方式、安全性等方面的因素。
通过合理的设计和选择,可以提高电源的性能和工作效率,满足不同加热需求的要求。
中频发电机电源变换装置中DSP控制电路的设计
第2卷第3期2009年9月上海电气技术JOURNAL OF SH ANGH A I ELECT RIC T ECH N OLOGYVo l.2No.3Sep.2009收稿日期3作者简介贺俊(5),男,工学硕士,主要从事中频电源、中频发电机、稀土电机的研究及自动化项目的管理,j 5@y 文章编号:1674540X(2009)0302205中频发电机电源变换装置中DSP控制电路的设计贺俊(上海巨风实业有限公司,上海200331)摘要:为实现直流母线电压前馈控制策略,采用具有高速处理能力的DSP 芯片T MS320LF2407为控制芯片,设计整个系统的控制电路。
主要介绍T MS320LF2407的特点以及以TMS320LF2407为主的控制电路的设计。
并提供实验室数据。
关键词:DSP 控制电路;控制策略;硬件平台;应用数据中图分类号:T M 354.02文献标识码:AThe Design of a DSP Control Circuit U se d in Powe r Transformation Devices for M e dium Frequency GeneratorsH E J un(Shanghai Jufeng Indust ry Co.,Ltd.,Shanghai 200331,China)Abstract:U sing T MS320LF2407a DSP chip w ith high speed processing capacity as themain contr olling chip,a system -wide control circuit is developed to control A.C.voltage on the bus bar through a front -end feedback control appr oach.T his article describes the char acteristics of the T MS320LF2407chip and the design of a control circuit with T MS320LF2407as the main chip.Key words:DSP control cir cuit;control str ategy;hardware platform;application data中频发电机具有体积小、供电效率高、便于携带等特点,给野外作业提供了良好的电源。
全数字中频感应加热电源设计
本设计是全数字中频感应加热电源, 采用串联谐振电路。
主电路整流部分采用了三相全控整流电路,逆变电路采用了单相逆变桥。
串联逆变器的输入电压恒定,近似为恒压源,逆变元件采用IGBT,利用单片机控制其开关,控制部分采用PIC16F877单片机,实现对中频电源的控制。
其中使用了IGBT专用驱动芯片。
本设计完成了中频感应电源控制系统的硬件和软件设计任务,实现了负载频率的自动跟踪。
控制电路简单可靠,方案合理。
关键词:整流;逆变;可控硅;IGBT;单片机。
This design is the entire digital mid-frequency induction heating power source. The main circuit rectification part with transported three-phase in this design has all controlled the leveling circuit, inverted the electric circuit to use the single item inversion electric circuit sine pulse width to modulate (SPWM), the load is a antiresonance circuit. This paper introduces a new inversion and three phase bridge rectification control circuit based on PIC16F877 microcontroller for thyristor medium frequency power supply. Meanwhile the hardware and software designs are also provided. It is approved by analysing the experimental results that the circuit softly starts the power supply in the way of sweeping-frequency and zero-voltage, and well tracks the tank resonant frequency in normal working. The power adjustment can be made by adopting SPWM control technology in the system. Series resonance and frequency follow technology are used. The IGBT, as the switch device, can work between 10Hz to 10kHz frequency channel, and based on the principle of the effects . Key Words: inverter; induction;IGBT; single chip computer; rectification.目录第一章全数字中频感应加热电源设计背景 (4)1.1 感应加热的基本原理 (4)1.2 全数字中频感应电源简介 (5)第二章主电路的设计 (9)2.1 可控硅工作原理 (9)2.2 可控硅触发导通 (9)2.3 整流电路的介绍 (9)2.3.1 基本工作原理 (11)2.3.2 电阻负载时三相桥式全控整流特性 (13)2.4 逆变电路的介绍 (16)2.5 负载电路的介绍 (21)2.5.1 电流过零点检测 (21)2.6 主电路的保护介绍 (22)2.6.1 闸管的保护 (22)2.7 主电路的计算及其器件选型 (25)2.7.1 主电路计算部分 (25)第三章控制电路的设计 (26)3.1 PIC单片机介绍 (26)3.2 LM339介绍 (31)第四章软件部分设计 (33)4.1 程序清单 (33)4.2流程图 (59)总结 (63)参考文献 (64)外文翻译 (65)A 外文原文 (65)B 外文译文 (76)致谢 (81)附录 (82)附录一元件明细表 (82)第一章全数字中频感应加热电源设计背景1.1 感应加热的基本原理感应加热是靠感应线圈把电能传递给要加热的金属,然后电能在金属内部转变为热能。
功率可调中频感应加热电源控制系统的设计
功率可调中频感应加热电源控制系统的设计中频感应加热电源是一种高效、节能和安全可靠的加热设备,被广泛应用于金属加热、淬火、硬化、熔炼等领域中。
其中,功率可调中频感应加热电源是一类集节能、可靠性、自动控制于一体的中频感应加热设备,可以根据不同需要实现功率的调整和控制。
本文提出一种基于单片机控制的功率可调中频感应加热电源控制系统的设计方案。
该方案主要包括硬件设计和软件设计两个方面。
硬件设计:1.电源电路设计:整个系统采用三相交流电源。
电源电路包括整流、滤波、逆变和输出控制等功能,通过滤波电容的设计,保证电源输出的稳定性和滤波效果。
2.中频谐振电路设计:中频感应加热电源需要产生一定频率的中频信号,用来激励感应加热线圈。
中频谐振电路可以采用LC谐振电路或者串/并联谐振电路,根据实际需要选择。
3.功率控制模块设计:采用功率芯片进行功率输出控制。
根据用户需求,可采用PID控制算法或者其他控制算法对输出功率进行控制。
4.保护电路设计:系统应包括短路保护、过流保护、过压保护等保护电路,以保证系统的稳定性和安全性。
软件设计:1.中频信号控制程序设计:根据实际需要,设计中频信号的输出和控制程序,通过控制中频信号的频率和幅值,实现功率的调整和控制。
2.功率控制算法设计:根据系统的实际需要,选择合适的功率控制算法,例如PID控制算法,通过调整算法参数,实现功率输出的控制。
3.保护程序设计:针对各种保护电路,编写保护程序,实时检测各项保护电路的工作状态,保证系统的安全稳定运行。
在实际工程应用中,中频感应加热电源控制系统设计还需要结合各种实际工况和用户需求,进行相应的优化和调整,以实现最优化的功率调节和控制效果。
IGBT中频电源原理
IGBT 中频电源的原理工频加热技术与其它各种物理加热技术相比,确实具有较高的效率,但存在一些明显的不足。
在现代工业的金属熔炼、热处理、焊接等过程中,感应加热被广泛应用。
感应加热是根据电磁感应原理,利用工件中涡流产生的热量进行加热的,它加热效率高、速度快、可控性好,易于实现高温和局部加热[1]。
随着电力电子技术的不断 成熟,感应加热技术得到了迅速发展。
本文设计的70KW /500HZ 中频感应加热电源采用IGBT 串联谐振式逆变电路,能够实现频率自动,电路结构简单,高效节能。
2.1 整流电路的设计中频电源采用三相全控桥式整流电路,它的输出电压调节范围大而移相控制角的变化范围小,有利于系统的自动调节,输出电压的脉动频率较高可以减轻直流滤波环节的负担[2]。
根据设计要求:额定输出功率P =70KW ,输出频率f =500HZ ,进线电压U IN =380V ,取逆变器的变换效率η=0.9。
1) 确定电压额定值U RRM考虑到其峰值、波动、雷击等因I T(AV)=0.368×I d额定电压1600V ,额定电流200A 的整流模块。
2.2 逆变电路的设计逆变电路是由全控器件IGBT 构 成的串联谐振式逆变器,两组全控器件V 1、V 4和V 2、V 3交替导通,输出所需要的交流电压。
IGBT 的主要参数有最高集射极电压(额定电压)、集射极电流等[3]。
1) 确定电压额定值U CEPIGBT 的输入端与电容相并联,起到了缓冲波动和干扰的作用,因此安全系数不必取得很大,一般取安全系数α=1.1平波后的直流电压:E d =380V ×2×α=590V关断时的峰值电压:U CESP =(590×1.15+150)×α=912V式中1.15为电压保护系数, 150为L t i d d 引起的尖峰电压。
令U CEP ≥U CESP ,并向上靠拢IGBT 等级,取U CEP =1200V 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
引言
晶闸管交流功率控制器是国际电工委员会(IEC)命名的“半导体交流功率控制器”
(Semiconductor AC Power Controller)的一种,它以晶闸管(可控硅SCR或双向可控硅TRIAC)为开关元件,是一种可以快速、精确地控制合闸时间的无触点开关,是自动控制温度系统高精度及高动态指标必不可少的功率终端控制设备。
晶闸管交流调功器是在一个固定周期或变动周期里,以控制导通的交流电周波数来控制输出功率的大小。
晶闸管在正弦波过零时导通,在过零时关断,输出为完整的正弦波。
晶闸管交流调功器主要用于各种电阻炉、电加热器、扩散炉、恒温槽、烘箱、熔炉等电热设备的温度自动、手动控制。
目录
1.课程设计目的 (1)
2.课程设计题目描述和要求 (1)
2.1.课程设计题目描述 (1)
2.2.课程设计题目要求及技术指标 (2)
3. 课程设计报告内容 (3)
3.1 设计方案的选定与说明 (3)
3.2论述方案的各部分工作原理及计算 (4)
3.3设计方案图表及其电路图 (6)
4.总结 (9)
5.参考书目 (10)
任务书
一设计题目
中频电源主电路设计
二设计目的
通过电力电子变流技术的课程设计达到以下几个目的:
1、培养学生文献检索的能力,特别是如何利用Internet检索需要的文献资料。
2、培养学生综合分析问题、发现问题和解决问题的能力。
3、培养学生运用知识的能力和工程设计的能力。
4、培养学生运用仿真工具的能力和方法。
5、提高学生课程设计报告撰写水平。
三设计数据
(1)额定中频电源输出功率PH=100kW,极限中频电源输出功率PHM=1.1PH=110kW;
(2)电源额定频率f =1kHz;
(3)逆变电路效率η=95%
(4)逆变电路功率因数:cosϕ =0.81,ϕ=36º;
(5)整流电路最小控制角αmin =15º;
(6)无整流变压器,电网线电压UL=380V;
(7)电网波动系数A=0.95~1.10。
四设计内容
直流电动机选择
根据被控对象的特点和技术要求,综合设计题目给出的参数选用电动机。
主电路的选择
五设计要求
(1)画出中频感应加热电源主电路原理图;
(2)完成整流侧电参数计算;
(3)完成逆变侧电参数计算。
六课程设计报告格式要求
课程设计用纸和格式统一,要求图表规范,文字通顺,逻辑性强。
设计报告不少于20页。
1. 设计的基本要求(给出所要设计的装置的主要技术数据和设计装置要达到的要求(包括性能指标),最好简述所设计装置的主要用途)
2. 总体方案的确定(包括调制方式,PWM控制方法,主电路形式确定等)
3. 具体电路设计(主电路设计、控制电路设计以及参数计算等)
4. 附录(电路图,仿真结果图等)
5. 参考文献
设计思想及内容
1.设计思想
中频电源装置的基本工作原理,就是通过一个整流电路把中频交流电变为直流电,经过直流电抗器最后经逆变器变为单相中频交流电供给负载,所以中频电源装置实际上是交流电-直流电-交流电-负载。
2.设计内容:
一.整流电路的设计
1.整流电路的选择:
本设计不用整流变压器而直接由380V三相交流接入再整流为直流电源。
常用的三相可控整流的电路有○1三相半波○2三相半控桥○3三相全控桥○4双反星形等。
三相全控桥整流电压脉动小,脉动频率高,基波频率为300Hz,所以串入的平波电抗器电感量小,动态响应快,系统调整及时,并且三相全控桥电路可以实现有源逆变,把能量回送电网或者采用触发脉冲快速后移至逆变区,使电路瞬间进入有源逆变状态进行过电流保护。
三相全控桥式可控整流电路与三相半波电路相比,若要求输出电压相同,则三相桥式整流电路对晶闸管最大正反向电电压的要求降低一半;若输入电压相同,则输出电压比三相半波可控整流是高一倍。
而且三相全控桥式可控整流电路在一个周期中变压器绕组不但提高了导电时间,而且也无直流流过,克服了三相半波可控整流电路存在直流磁化和变压器利用率低的缺点。
从以上比较中可看到:三相桥是可控整流电路从技术性能和经济性能两方面综合指标考虑比其他可控整流电路有优势,故本次设计确定选择三相桥式可控的整流电路。
因为电源额定频率f 为1KHZ,所以三相桥式可控整流电路中的晶闸管选择快速晶闸管。
2. 整流侧参数计算:
(1)直流侧最大输出功率:
P dm =HM P η=1.1H
P η=1.1×1000.95
=115.79Kw (2)整压:
U d =1.35U L cos α=1.35×380×cos15°=495.52V
(3)整流侧输出电流:
流侧输出电I d = dm d
P U =115.79×1000495.52 =233.67A (4)晶闸管额定电压:
U TN =(1+10%)×380
2=1182.28V
(5)晶闸管额定电流:
I TN =2
×d I 1.57
=171.87A
3.整流侧电路图:
三相桥式全控整流电路是三相半波共阴极组与共阳极组整流电路的串联,在任何时刻都必须有两个晶闸管导通才能形成导通回路,其中一个晶闸管是共阴极组,另一个晶闸管是共阳极组。
六个晶闸管导通顺序为
VT1-VT2-VT3-VT4-VT5-VT6,每隔60°一个晶闸管换相。
为了保证在任意时刻都必须有两个晶闸管导通,采用了双脉冲触发电路,在一个周期内对每个晶闸管连续触发两次,两次脉冲前沿的间隔为60°。
电路图如下:
二.逆变电路的设计
逆变电路也称逆变器,它与整流相对应,把直流电变成交流电,本次设计采用电流型逆变电路,主要由滤波电容、晶闸管、换相电容、换
相电感组成。
整流电路的输出电压作为逆变电路的直流侧输入电压,且本次设计不考虑换相过程。
整流之后的直流电压相当于逆变电路的电源,经过大电感的滤波,使得流经电路的电流的方向不变,大小恒定。
因为电感反馈无功能量时直流电流并不反向,因此不需要并联反馈二极管。
1.逆变侧参数计算:
(1)直流电压:
因为整流电路的输出电压为逆变电路的直流电压,所以
U d =495.52V
(2)负载两端基波电压有效值:
U o =1.11 d U cos ϕ
=679.05V (3)负载电流基波有效值:
I o =0.9I d =210.30A
(4)晶闸管额定电压:
U TN =2o =2679.05=1920.35V
(5)晶闸管额定电流:
I TN =2×
T I
1.57 =2 =210.52
2. 逆变侧电路图
三.保护系统
由于晶闸管中频电源装置的工作受供电电网及负载的影响较大,而且晶闸管元件的超载能力又较小,故要使电路可靠工作,必须要有完善的保护措施。
当整流桥输出失控或逆变桥输出发生短路以及外界的其他因素,会使电路中的电压和电流在极短时间内上升到极大值,,故需要设计过电压过电流保护电路。
消除过电压现象通常可以采用阻容吸收电路,其实
质是将引起过电压的磁场能量变成电场能量储存在电容器中,然后电容器通过电阻放电,把能量逐渐消耗在电阻中。
1.整流侧晶闸管过电压保护:
(1)RC吸收电路电容:
Cs =(2.5~5)×10-3×I
T(AV)=2.5×10-3×I
TN
=0.53µF
Cs的交流耐压:U
csm =1.5U
TN
=1773.15V
(2)RC吸收电路电阻:Rs =10~30( )
电阻的功率:P
R =fC(U
m
)2×10-6=1000×0.19×(2.45×U
d
)2×10-6=279.3W
2.逆变侧晶闸管过电压保护:
(1)RC 吸收电路电容:
Cs=(2.5~5)×10-3×I TN = 2.5×10-3×210.52=0.53μF
(2)RC 吸收电路电阻:
Rs=10~30(Ω)
电阻的功率:P R =fC(U m )2×10-6=1000×0.29×U d )2×10-6=142.1W
三、主电路原理图
图示:中频感应加热电源主电路原理图
四、元器件清单
五、设计总结与心得
在这次电力电子技术的课程设计中,我可以及时掌握和巩固所学的基本知识,了解中频电源的工作原理,学会分析电路和设计电路的方法和步骤,同时培养我们一定的制图能力。
PROTEL是PORTEL公司在80年代末推出的EDA软件,在电子行业的CAD绘图软件中,它当之无愧地排在众多EDA软件的前面,是电子设计者的首选软件,使用它来进行电路图的绘制既方便又美观准确。
另外,在编辑公式时我还使用了公式编辑器,进行整流侧和逆变侧的计算。
同时,我们还设计了过电流保护,来让我们的设计更完美。
总之,我们在这次设计中加强了实践能力,知识得到了巩固。
参考文献
1.王兆安刘进军《电力电子技术》(第五版)机械工程出版社。