最新信息熵在图像处理特别是图像分割和图像配准中的应用——信息与计算科学毕业
信息熵在图像处理中的应用

信息熵在图像处理中的应用图像处理作为计算机视觉和图像识别领域的重要技术之一,一直是研究和应用的热点。
而信息熵作为一种评估信息量的重要指标,也被广泛应用于图像处理中。
本文将探讨信息熵在图像处理中的应用,并探讨其原理和效果。
信息熵是信息论中的概念,用来描述一组数据中所包含的信息量大小。
在图像处理中,信息熵可以通过计算图像的灰度分布来获得。
通过统计一幅图像中所有像素的灰度级别及其对应的像素数,可以得到一个灰度直方图,进而计算出图像的信息熵。
在图像处理中,信息熵可以用来评估图像的复杂度和信息量大小。
一个高熵的图像意味着图像中包含了大量的信息和细节,而低熵的图像则相反。
通过计算图像的信息熵,可以帮助我们理解一幅图像的特性和内容,从而进行更深入的图像分析和处理。
信息熵在图像处理中有许多应用。
首先,信息熵可以用来评估图像的清晰度。
一幅清晰度高的图像往往包含了丰富的细节和高频信息,因此其信息熵也相对较高。
而模糊或者含有噪声的图像则会导致信息熵的降低。
通过计算图像的信息熵,我们可以客观地评估图像的清晰度,从而进行相应的图像增强或者去噪处理。
其次,信息熵可以用于图像分割和目标检测。
在图像分割中,利用图像的信息熵可以帮助我们找到分割点,对图像进行分割并提取其中的目标区域。
在目标检测和识别中,利用图像的信息熵可以帮助我们提取图像中的关键特征,从而实现对目标的自动检测和识别。
此外,信息熵还可以应用于图像压缩和编码。
在图像压缩中,我们可以利用信息熵来评估图像的冗余程度,从而实现对图像的有损或者无损压缩。
在图像编码中,信息熵可以用来指导编码器的设计,帮助我们更高效地对图像进行编码和解码。
虽然信息熵在图像处理中有着广泛的应用,但是也存在一些限制和挑战。
首先,计算图像的信息熵需要统计图像的灰度分布,这个过程在大规模图像数据处理中可能会面临计算效率的问题。
其次,信息熵只能反映图像中像素级别的信息,而无法捕捉到图像中的结构和上下文信息。
图像熵

OpenMp
(1)、OpenMP只能并行化for循环,它不会并行while和 do-while循环,而且只能并行循环次数在for循环外面就确 定了的for循环。 (2)、循环变量只能是整型和指针类型(不能是浮点型)
OpenMp使用
(3)、循环语句只能是单入口单出口的。循环内部不能改 变index,而且里面不能有goto、break、return。但是可以 使用continue,因为它并不会减少循环次数。另外exit语句 也是可以用的,因为它的能力太大,他一来,程序就结束了。
double Result::result(Mat* Xiang,vector<double>*Rp,vector<double>* Gp,vector<double>* Bp,vector<double>* Ri,vector<double>* Gi,vector<double>* Bi) { double E=0,Er=0,Eg=0,Eb=0; double all=(*Xiang).cols*((*Xiang).rows); int j=0; #pragma omp parallel for for(j;j<256;j++){ pictureData(Xiang, j, Ri, Gi, Bi);} #pragma omp parallel for int k=0; for(k;k<256;k++){ (*Rp).at(k)=(*Ri).at(k)/all; (*Gp).at(k)=(*Gi).at(k)/all; (*Bp).at(k)=(*Bi).at(k)/all; if( (*Rp).at(k)==0) { (*Rp).at(k)=1;} if((*Gp).at(k)==0) { (*Gp).at(k)=1;} if((*Bp).at(k)==0) { (*Bp).at(k)=1;} Er+=(*Rp).at(k)*log((*Rp).at(k)); Eg+=(*Gp).at(k)*log((*Gp).at(k)); Eb+=(*Bp).at(k)*log((*Bp).at(k)); }
信息论在图像处理中的应用研究

信息论在图像处理中的应用研究近年来,随着图像处理技术的迅猛发展,人们对于如何更好地利用信息论方法来优化图像处理过程与结果产生了浓厚的兴趣。
信息论作为一门独特的数学理论,不仅在通信和计算机科学领域发挥了重要作用,也在图像处理中得到了广泛应用。
本文将重点探讨信息论在图像处理中的应用研究,并讨论其在图像压缩、图像增强和图像恢复等方面的具体应用。
一、图像压缩中的信息论应用图像压缩是图像处理领域中的一个重要研究方向。
通过压缩图像数据,可以在仅占用较小存储空间的基础上,实现高质量的图像传输和存储。
信息论方法为图像压缩提供了强有力的理论基础。
首先,我们可以从信息熵的角度来考虑图像压缩。
信息熵是信息论中用来衡量随机变量(如像素值)不确定度的指标。
对于一幅图像而言,其像素分布在各个像素值上可能存在不均匀性。
信息熵的概念可以帮助我们理解这种不均匀性,并借助于有损压缩算法,将图像中信息较低的部分进行舍弃,从而实现图像的压缩。
常见的图像压缩算法,如JPEG压缩算法,利用了信息熵的概念,通过对图像数据的变换和量化来减小图像的信息熵,从而实现图像的有损压缩。
其次,信息论中的编码原理也广泛应用于图像压缩中。
在图像压缩的过程中,编码用来将原始数据转化为紧凑的码字,以减小数据的冗余度。
香农编码是信息论中最为著名的编码方法之一,利用了数据的统计特性,将频繁出现的符号用较短的编码表示,将不经常出现的符号用较长的编码表示。
在图像压缩中,我们可以根据像素值出现的概率来设计自适应的编码方法,使得图像数据可以以更高的压缩比进行存储和传输。
二、图像增强中的信息论应用图像增强是指通过改变图像的外观以改善视觉感知效果的过程。
信息论方法为图像增强提供了一种基于统计学原理的框架,可以用来增强图像的对比度、细节和清晰度等。
在图像增强中,直方图均衡化是一种常用的方法。
该方法通过变换图像的灰度级分布,使其更加均匀,从而增强图像的对比度。
信息论中的信息熵概念被广泛应用于直方图均衡化。
信息熵

信息熵在遥感影像中的应用所谓信息熵,是一个数学上颇为抽象的概念,我们不妨把信息熵理解成某种特定信息的出现概率。
信源各个离散消息的自信息量得数学期望(即概率加权的统计平均值)为信源的平均信息量,一般称为信息源,也叫信源熵或香农熵,有时称为无条件熵或熵函数,简称熵。
一般而言,当一种信息出现概率更高的时候,表明它被传播得更广泛,或者说,被引用的程度更高。
我们可以认为,从信息传播的角度来看,信息熵可以表示信息的价值。
这样子我们就有一个衡量信息价值高低的标准,可以做出关于知识流通问题的更多推论。
利用信息论中的熵模型,计算信息量是一种经典的方法,广泛应用于土地管理,城市扩张以及其他领域。
熵值可以定量的反应信息的分散程度,将其应用于遥感图像的解译中可以定量的描述影像包含的信息量,从而为基于影像的研究提供科学的依据。
利用信息熵方法对遥感影像的光谱特征进行离散化,根据信息熵的准则函数,寻找断点,对属性进行区间分割,以提高数据处理效率。
遥感影像熵值计算大致流程为:遥感影像数据经过图像预处理之后,进行一系列图像配准、校正,图像增强,去除噪声、条带后,进行图像的分类,然后根据研究区域进行数据的提取,结合一些辅助数据对图像进行监督分类后生成新的图像,将新的图像与研究区边界图和方格图生成的熵单元图进行进一步的融合便可得到熵分值图。
1.获得研究区遥感影像以研究区南京市的2009 年6 月的中巴资源二号卫星分辨率20 米得影像为例,影像是有三幅拼接完成。
通过ArGIS9.2 中的选择工具从全国的行政区域图中提取边界矢量图,再通过掩膜工具获得研究区的影像。
分辨率的为90 米得DEM 图有两副影像拼接而得,操作的步骤与获取影像一致,为开展目视解译工作提供参考。
然后依照相关学者的相关研究以及城市建设中的一些法律法规,参照分类标准,开展影像解译工作,对于中巴资源二号影像开展监督分类,以及开展目视解译工作。
2.二值图像的建立将两种解译所得的图像按照一定的标准转化为城镇用地和非城镇用地两种,进一步计算二值图像的熵值。
信息与计算科学的研究方向

信息与计算科学的研究方向信息与计算科学是一门涵盖广泛的学科,研究方向众多且具有重要的理论与应用价值。
本文将从信息与计算科学的几个研究方向入手,介绍其背景、重要性以及相关的研究内容。
第一个研究方向是数据挖掘与机器学习。
在当今信息爆炸的时代,海量的数据被广泛产生与应用。
数据挖掘与机器学习的研究旨在挖掘其中蕴含的有价值信息,并利用这些信息来做出预测、分类和决策。
研究者们通过构建模型,运用统计学、人工智能等方法,对数据进行分析和处理,从而发现数据背后的规律和知识。
这个研究方向在金融、医疗、社交网络等领域有着广泛的应用,如股票价格预测、疾病诊断、推荐系统等。
第二个研究方向是计算机视觉与图像处理。
计算机视觉是指计算机系统对图像和视频进行理解和处理的能力。
图像处理则是对图像进行增强、恢复、分割和识别等操作的过程。
该研究方向的目标是使计算机能够模拟人类的视觉系统,并能够从图像中提取有用的信息。
计算机视觉与图像处理在人脸识别、目标检测、智能交通系统等领域有广泛应用,如安防监控、自动驾驶等。
第三个研究方向是自然语言处理。
自然语言处理是指使计算机能够理解和处理人类语言的能力。
研究者们致力于设计算法和模型,使计算机能够自动地理解、生成和翻译自然语言。
自然语言处理的应用非常广泛,包括机器翻译、信息检索、智能助理等。
例如,机器翻译可以将一种语言翻译成另一种语言,使不同语言之间的沟通变得更加便捷。
第四个研究方向是网络与安全。
随着互联网的快速发展,网络安全问题日益突出。
网络与安全的研究旨在保护网络系统免受各种威胁和攻击。
研究者们致力于开发安全的网络协议、加密算法和入侵检测系统,以确保网络的可靠性和安全性。
此外,网络与安全的研究还探索了网络拓扑结构、流量管理等方面的问题,以优化网络的性能和效率。
最后一个研究方向是人机交互与可视化。
人机交互研究旨在设计更加友好和高效的人机界面,使人与计算机之间的交互更加自然和便捷。
研究者们通过运用心理学、人体工程学等方法,研究人类认知和行为特征,以及人机界面的设计原则和技术。
图像熵的概念

图像熵的概念图像熵是信息论中一个重要的概念,在计算机视觉、图像处理和数字信号处理等领域中得到广泛应用。
本文将从熵的概念、原理、计算方法、应用等方面进行阐述。
熵的概念熵(entropy)是信息论中的一个重要概念,它衡量的是一个随机变量的不确定性。
在信息理论中,熵可以被看作是信息量的度量方式,对于一个随机事件,其熵越大,则其不确定性也越大。
熵的单位是比特(bit),它表示每一种状态所需要的信息量。
表达式:H=-\sum_{i=1}^n p_i\log_2p_i其中,H 表示熵,p_i 表示第i 种状态出现的概率。
图像熵的原理在图像处理中,熵的概念可以被应用于图像的亮度分布、灰度直方图、图像纹理、图像边缘等方面。
对于一张图像而言,它的熵可以表示图像的信息量,熵越大,则图像的信息量也就越大,图像也就越复杂。
在计算图像熵时,我们需要统计图像中每一个像素值出现的频率分布,然后利用公式计算出熵的值。
在黑白图像中,每一个像素点都只有一个像素值(0或1),因此图像熵可以表示为:H=-p(0)\log_2p(0)-p(1)\log_2p(1)其中,p(0) 表示黑色像素在图像中出现的概率,p(1) 表示白色像素在图像中出现的概率,\log_2 表示以2为底的对数,表达的是信息量的单位。
图像熵的计算方法计算图像熵的方法一般是通过计算灰度直方图得到的。
灰度直方图表示的是图像中每一个像素值出现的频率分布。
我们可以根据图像矩阵中的像素值分布,统计出每一个像素值所占的比例,并计算出每一个像素值的信息量,从而得到图像的熵。
假设我们有一个大小为n \times m 的灰度图像,一共有L 个灰度级别,其灰度值为[0, 1, ..., L-1]。
那么我们可以计算出每一个像素值i 所占的比例p_i,然后根据熵的公式进行计算:H=-\sum_{i=0}^{L-1} p_i\log_2p_i根据这个公式,可以通过遍历整个图像矩阵来计算图像的熵,并得出图像中每一个像素值的信息量。
信息熵与图像熵的计算

实验一信息熵与图像熵计算一、实验目的1.复习MATLAB 的基本命令,熟悉MATLAB 下的基本函数。
2.复习信息熵基本定义, 能够自学图像熵定义和基本概念。
二、实验仪器、设备1.计算机-系统最低配置 256M 内存、P4 CPU。
2.Matlab 仿真软件- 7.0 / 7.1 / 2006a 等版本Matlab 软件。
三、实验内容与原理(1)内容:1.能够写出MATLAB 源代码,求信源的信息熵。
2.根据图像熵基本知识,综合设计出MATLAB 程序,求出给定图像的图像熵。
(2)原理1. MATLAB 中数据类型、矩阵运算、图像文件输入与输出知识复习。
2.利用信息论中信息熵概念,求出任意一个离散信源的熵(平均自信息量)。
自信息是一个随机变量,它是指某一信源发出某一消息所含有的信息量。
所发出的消息不同,它们所含有的信息量也就不同。
任何一个消息的自信息量都代表不了信源所包含的平均自信息量。
不能作为整个信源的信息测度,因此定义自信息量的数学期望为信源的平均自信息量:信息熵的意义:信源的信息熵H是从整个信源的统计特性来考虑的。
它是从平均意义上来表征信源的总体特性的。
对于某特定的信源,其信息熵只有一个。
不同的信源因统计特性不同,其熵也不同。
3.学习图像熵基本概念,能够求出图像一维熵和二维熵。
图像熵是一种特征的统计形式,它反映了图像中平均信息量的多少。
图像的一维熵表示图像中灰度分布的聚集特征所包含的信息量,令Pi 表示图像中灰度值为i的像素所占的比例,则定义灰度图像的一元灰度熵为:255log i iip p ==∑H图像的一维熵可以表示图像灰度分布的聚集特征,却不能反映图像灰度分布的空间特征,为了表征这种空间特征,可以在一维熵的基础上引入能够反映灰度分布空间特征的特征量来组成图像的二维熵。
选择图像的邻域灰度均值作为灰度分布的空间特征量,与图像的像素灰度组成特征二元组,记为( i, j ),其中i 表示像素的灰度值(0 <= i <= 255),j 表示邻域灰度(0 <= j <= 255),2(,)/ijP f i j N =上式能反应某像素位置上的灰度值与其周围像素灰度分布的综合特征,其中f(i, j) 为特征二元组(i, j)出现的频数,N 为图像的尺度,定义离散的图像二维熵为:255logij ijip p ==∑H构造的图像二维熵可以在图像所包含信息量的前提下,突出反映图像中像素位置的灰度信息和像素邻域内灰度分布的综合特征.四、实验步骤1.求解信息熵过程:1) 输入一个离散信源,并检查该信源是否是完备集。
前沿技术在图像处理领域应用研究

前沿技术在图像处理领域应用研究图像处理技术是计算机科学和技术领域中的一个重要研究方向,尤其是随着计算机科学和人工智能领域发展的不断深入,图像处理技术在很多领域得到了广泛的应用。
在图像处理领域中,前沿技术一直是研究的重点之一,它们能够提高算法的效率和精度,并且在很多场景中有着广泛的应用前景。
本文将重点介绍一些最新的前沿技术在图像处理领域的应用研究。
一、深度学习模型深度学习作为人工智能算法的代表,具有学习能力和自适应能力,已经成为图像处理领域的重要工具。
在计算机视觉领域,深度学习模型的应用非常广泛,包括图像分类、目标检测、图像分割等方面。
例如,最近关于深度学习在医疗图像处理中的应用非常活跃,如利用深度神经网络进行医学图像分类、病理分析和药物预测等应用。
此外,在视频监控中,深度学习算法可以应用于行人检测、车辆识别、事件识别和场景理解等方面。
二、计算机视觉处理计算机视觉处理是指通过计算机对图像和视频信号进行处理,以实现目标检测、识别、跟踪、三维重建等应用。
在该领域的前沿技术中有很多涉及卷积神经网络、迁移学习、自然语言处理等方面的技术。
例如,现在有很多快速检测算法已经被开发出来,并且可以在GPU上面高效地实现。
此外,迁移学习技术已经成功应用于计算机视觉处理中,例如,可以使用预训练的深度学习模型进行快速特征提取。
三、图像增强技术图像增强技术是指通过算法对图像进行处理,以改善其质量或弥补其缺陷。
图像增强技术被广泛应用于医疗、电影、军事、安全等各个领域。
例如,在图像抗噪声方面,自适应全变分技术能够实现快速、高效的图像抗噪声处理。
此外,图像去雾技术和图像超分辨率技术也得到了很好的应用。
总结在图像处理领域内,前沿技术发展的速度非常快,对于算法效率和精度有着非常高的要求。
深度学习、计算机视觉处理、图像增强技术等技术被广泛应用于图像处理,并且在各种场景下取得了良好的效果。
未来,随着新技术的出现以及算法的不断升级,图像处理领域的应用将会更加广泛,并且会有更多新的应用场景出现,有望进一步推动其发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信息熵在图像处理特别是图像分割和图像配准中的应用——信息与计算科学毕业摘要信息论是人们在长期通信实践活动中,由通信技术与概率论、随机过程、数理统计等学科相结合而逐步发展起来的一门新兴交叉学科。
而熵是信息论中事件出现概率的不确定性的量度,能有效反映事件包含的信息。
随着科学技术,特别是信息技术的迅猛发展,信息理论在通信领域中发挥了越来越重要的作用,由于信息理论解决问题的思路和方法独特、新颖和有效,信息论已渗透到其他科学领域。
随着计算机技术和数学理论的不断发展,人工智能、神经网络、遗传算法、模糊理论的不断完善,信息理论的应用越来越广泛。
在图像处理研究中,信息熵也越来越受到关注。
为了寻找快速有效的图像处理方法,信息理论越来越多地渗透到图像处理技术中。
本文通过进一步探讨概论率中熵的概念,分析其在图像处理中的应用,通过概念的分析理解,详细讨论其在图像处理的各个方面:如图像分割、图像配准、人脸识别,特征检测等的应用。
本文介绍了信息熵在图像处理中的应用,总结了一些基于熵的基本概念,互信息的定义。
并给出了信息熵在图像处理特别是图像分割和图像配准中的应用,最后实现了信息熵在图像配准中的方法。
关键词:信息熵,互信息,图像分割,图像配准AbstractInformation theory is a new interdisciplinary subject developed in people long-term communication practice, combining with communication technology, theory of probability, stochastic processes, and mathematical statistics. Entropy is a measure of the uncertainty the probability of the occurrence of the event in the information theory, it can effectively reflect the information event contains. With the development of science and technology, especially the rapid development of information technology, information theory has played a more and more important role in the communication field, because the ideas and methods to solve the problem of information theory is unique, novel and effective, information theory has penetrated into other areas of science. With the development of computer technology and mathematical theory, continuous improvement of artificial intelligence, neural network, genetic algorithm, fuzzy theory, there are more and more extensive applications of information theory. In the research of image processing, the information entropy has attracted more and more attention. In order to find the fast and effective image processing method, information theory is used more and more frequently in the image processing technology. In this paper, through the further discussion on concept of entropy, analyzes its application in image processing, such as image segmentation, image registration, face recognition, feature detection etc.This paper introduces the application of information entropy in image processing, summarizes some basic concepts based on the definition of entropy, mutual information. And the information entropy of image processing especially for image segmentation and image registration. Finally realize the information entropy in image registration.Keywords: Information entropy, Mutual information, Image segmentation,Image registration目录ABSTRACT (2)目录 (3)1 引言 (3)3 信息熵在图像分割中的应用 (9)4.5基于互信息的图像配准 (30)4.5.2直方图 (32)4.5.4灰度级插值技术 (33)4.5.5优化搜索算法及结论 (34)1 引言1.1.信息熵的概念1948年,美国科学家香农(C .E .Shannon)发表了一篇著名的论文《通信的数学理论》。
他从研究通信系统传输的实质出发,对信息做了科学的定义,并进行了定性和定量的描述。
他指出,信息是事物运动状态或存在方式的不确定性的描述。
其通信系统的模型如下所示:图1.1 信息的传播信息的基本作用就是消除人们对事物的不确定性。
信息熵是信息论中用于度量信息量的一个概念。
假定X 是随机变量χ的集合,)(x P 表示其概率密度,计算此随机变量的信息熵)(x H 的公式是:∑-=xx p x p X H )(log )()(),(y x P 表示一对随机变量的联合密度函数,他们的联合熵),(y x H 可以表示为:),(log ),(),(Y X p y x p Y X H Yy x ∑∑∈∈-=χ信息熵描述的是信源的不确定性,是信源中所有目标的平均信息量。
信息量是信息论的中心概念,将熵作为一个随机事件的不确定性或信息量的量度,它奠定了现代信息论的科学理论基础,如果一条信息是由n 个字符连成的字符串组成,并且每个字符有m 种可能,那么这条信息就有n m 种不同的排列情况,那么可以用n m 度量信息量,但这时的信息量随着消息的长度n 按指数增加,为了使信息量的度量值按线性增加,Hartley 给出了取对数的信息量的定义:m n m H n 22log log == (1.1)由上式可以看出,信息量随着消息的可能性组合m 增多而增多,如果消息只有一种可能性时即事件为必然事件时,那么消息中包含的信息量为零01log 2=。
因此可以看出,可能收到的不同消息越多,对收到哪条消息的不确定性就越大;相反,收到只有一种可能性的消息,不确定性为零,Hartley 对消息的度量实际是对不确定性的度量。
Hartley 度量方法的不足之处是他所定义信息量是假定所有符号发生的概率相同,但实际情况各符号并不一定都等概发生,为此,Shannon 用概率加权来衡量消息出现的可能性,对Hartley 的度量方法做出改进。
干 扰设某一随机过程中有k 种可能的情况,每种情况发生的概率分别是1P ,2P ,…,k P ,Shannon 给出了熵的如下定义:∑∑-==i i ii p p p p H 22log 1log (1.2) 当所有可能的事件均以相等的概率发生时,上式就成了Hartley 定 义的熵,并且这时熵取得最大值,即∑∑==-=nn n nn m m m m m H 222log log 11log 1 (1.3) 所以,Hartley 熵是,Shannon 熵的特殊情形,而Shannon 更具有一般性。
Shannon 熵包含三种含义:第一种含义是度量信息量,事件发生概率与获得的信息量成反比,即概率越大,信息量越少,又由式(1.3)知,概率越大,信息量越少,熵越小,所以可用熵的大小来度量信息量,熵越大,信息量越大;第二是度量事件概率分布的分散度,概率集中分布时熵值小,分散性越强,熵越大;三含义是度量事件发生的不确定性,概率越大,事件的不确定性越小,熵越小。
利用上面第三个含义,可以用Shannon 熵,来度量图像包含的信息量,图像灰度值的概率分布是每灰度值出现的次数除以图像中所有灰度值出现的总次数,此时图像的信息量可依据这个概率分布来计算,一幅图像中不同的灰度值较少,各灰度值出现的概率较高,则对应的灰度值较低,意味着这幅图像含有的信息量很少。
反之,如果一幅图像中含有很多不同的灰度值,且各灰度值发生的概率又基本一致,则它的熵值会很高,那么这幅图像包含的信息量很大。
1.2信息熵的基本性质及证明1.2.1单峰性信息熵的单峰性可表述为:先考察由1X 、2X 两个事件构成的概率系统,其产生的概率分别为P 和P -1则该系统的信息)).1(log )1(log (22P P P P H --+-=通过求极限 0log lim 20=→x x x 不难证明:(1) 当0=P 时,.0))01(log )01(log 0(22=--+-=H 这是一种1X 产生的概率为0,2X 产生的概率为1 的确定系统。
(2) 当1=P 时.0))11(log )11(1log 1(22=--+-=H 这是一种1X 产生的概率为1,2X 产生的概率为0 的确定系统。
(3) 对函数)).1(log )1(log (22P P P P H --+-=可以通过求导数的方式寻找其极值点。
该函数的一阶导数为.)1(log 2P P dP dH -=令0=dP dH 则有PP )1(log 2-0=,求得21=P 为该函数的驻点。