凝固过程的基本原理
凝固过程的基本原理

wS
wL
▪ 在平衡凝固过程中,固相和液相中的溶质质量分数wS与wL是由相图的固相线和
液相线确定的。相图只能确定平衡凝固条件下的溶质分配系数。但在实际情况
下,平衡凝固的情况非常罕见。
▪ 一般将合金的凝固过程分为平衡凝固、近平衡凝固和非平衡凝固过程。对应于 上述凝固过程,k的定义和名称也各不相同,分别称为:平衡溶质分配系数k0, 有效溶质分配系数ke, 非平衡溶质分配系数 (也叫实际溶质分配系数) ka 。
1.相图与凝固---多元合金的凝固过程分析
相图计算的基本原理就 是依据热力学原理,计算
收集评估相图与热力学试验数据
系统的相平衡关系及各种
选择各相的吉布斯自由能模型
热力学数据,并绘制出相 图。热力学计算技术不仅
重新评估实验数据
给模型参数赋初值
能获得多元合金的相图信 息如分凝系数、液相线 (面) 斜率等,同时也能够获得
1.相图与凝固---多元合金的凝固过程分析
▪ 多元合金的溶质再分配分析
同样,对于多元合金,一般是从热力学的基本原理出发,对其溶质再分
配规律作出分析。
在研究多元合金的凝固过程时,仅当发生单相析出时,讨论溶质分配系
数才是有意义的。此时,任一组元i在液相和固相j中的化学位为,
L i
(GL wi
)T,P,WCj
1.相图与凝固---二元合金凝固过程的溶质再分配
▪ 溶质再分配是凝固过程的重要伴随现象,对凝固组织有决定性的影响。正是50~ 60年代以来对凝固过程溶质再分配现象的发现和深入研究,推动了现代凝固理 论的形成和发展。
▪ 描述凝固过程溶质再分配的关键参数是溶质分配系数k,它是凝固过程中固相溶
质质量分数wS与液相溶质质量分数wL之比。可写为,
混凝土凝固过程原理

混凝土凝固过程原理一、引言混凝土是一种广泛应用于建筑、道路、桥梁等工程领域的材料,其性能直接影响着工程结构的稳定性和耐久性。
混凝土在施工过程中必须经历从流动状态到硬化状态的过程,这个过程被称为凝固。
混凝土的凝固过程是一个复杂的化学反应过程,涉及到水泥水化反应、温度变化、水分流动等多个因素,本文将对混凝土凝固过程的原理进行详细的分析。
二、混凝土凝固过程的基本原理1.水泥水化反应水泥是混凝土中的主要胶凝材料,当水泥与水混合时,会发生水泥水化反应。
水泥水化反应是混凝土凝固的基础,其反应化学方程式可以表示为:C3S+H→C-S-H+CH。
其中,C3S表示三钙硅酸盐,H表示水,C-S-H表示水化硅酸钙胶凝体,CH表示游离钙氢氧化物。
这个反应过程是放热的,因此混凝土在凝固过程中会释放出热量。
2.水分流动水分在混凝土中的流动是混凝土凝固过程中重要的因素之一。
水分会随着时间的推移逐渐从混凝土表面向内部渗透,同时水泥水化反应也会不断消耗水分。
在混凝土内部,水分的流动会受到多种因素的影响,包括水泥的类型、水灰比、气孔率、温度等。
3.温度变化混凝土的凝固过程中,温度变化是一个重要因素。
水泥水化反应是放热的,因此混凝土在凝固过程中会产生大量的热量,导致温度升高。
同时,混凝土中的水分也会随着温度变化而发生相应的变化。
温度变化对混凝土的性能有着重要的影响,如温度变化会导致混凝土收缩、开裂等问题。
三、混凝土凝固过程的详细分析1.初凝阶段混凝土刚浇筑时,水泥水化反应刚开始进行,混凝土处于流动状态。
在这个阶段,混凝土的流动性能较强,可以通过振捣等方式来加强混凝土的密实性。
2.凝结阶段随着时间的推移,混凝土逐渐从流动状态转变为凝结状态。
在这个阶段,水泥水化反应逐渐加剧,混凝土内部的胶凝体逐渐形成。
同时,混凝土的温度也逐渐升高,水分的流动也逐渐减缓。
在这个阶段,混凝土的强度逐渐增加,但依然较低,需要注意施工过程中的保护。
3.终凝阶段随着时间的推移,混凝土逐渐从凝结状态转变为终凝状态。
[论述题,2分] 试述血液凝固的基本过程及其原理
![[论述题,2分] 试述血液凝固的基本过程及其原理](https://img.taocdn.com/s3/m/957d4d8f0129bd64783e0912a216147917117e8d.png)
[论述题,2分] 试述血液凝固的基本过程及其原理血液凝固是血液从液态变为固态的一种物理现象,它的发生关乎着人体的正常血液循环,是保护血液和维护血液正常循环的重要机制。
那么,血液凝固的基本过程及其原理是什么呢?血液凝固过程包括三个基本步骤:血小板凝集、凝血因子的活化和凝血酶的活性化。
1、血小板凝集。
当外界因素影响血管壁的组织,使血管壁受损时,血小板便会被活化,由血流中的悬浮状态向血管壁附着,并于血管壁上形成一层薄薄的血小板层,开始凝集。
血小板凝集过程中,血小板之间胞质细胞相互作用,产生一种特殊的凝结素,叫做“凝结素”,该物质可以促进血小板之间胞质细胞的结合,有助于血小板凝集。
2、凝血因子的活化。
在血小板凝集的同时,血液中的凝血因子也会被活化,如凝血酶原、凝血酶、纤维蛋白原、纤维蛋白原酶、血栓素、抗血小板抗体等。
凝血因子的活化主要是通过受到血小板分泌的张力素、凝血素、环磷酰胺等物质的作用而发生的。
凝血因子活化后,可以与血小板凝集形成的凝结素结合起来,形成凝血酶-凝血素复合物,进一步促进血小板凝集的过程。
3、凝血酶的活性化。
凝血酶是血液凝固过程中最重要的物质,它可以将凝血因子活化后形成的凝血酶-凝血素复合物进一步活化,使其变为能够催化血液凝固的凝血酶-凝血因子复合物。
凝血酶的活性化是由血小板分泌的凝血酶原酶活化剂负责的,只有当凝血酶原酶活化剂活化凝血酶原时,才能形成可以催化血液凝固的凝血酶-凝血因子复合物。
血液凝固的原理主要是凝血酶-凝血因子复合物的作用。
当凝血酶-凝血因子复合物活性化后,它可以催化血液凝固的反应,即将血液中的凝血因子(如凝血酶原、凝血酶、纤维蛋白原、纤维蛋白原酶、血栓素、抗血小板抗体等)活化后形成的凝血酶-凝血素复合物,与凝血酶-凝血因子复合物结合,并形成凝血复合物,使血液由液态变为固态,从而完成凝固反应。
血液凝固是一个复杂的过程,它是由血小板凝集、凝血因子活化和凝血酶的活性化三个步骤共同作用完成的,它的原理主要是凝血酶-凝血因子复合物的作用,只有当凝血酶-凝血因子复合物活性化后,它才能催化血液凝固的反应。
机械工程材料的凝固

机械工程材料的凝固概述凝固是指物质由液态向固态转变的过程。
在机械工程中,凝固是材料加工过程中不可或缺的环节。
通过控制材料的凝固过程,可以获得优质的机械工程材料,并影响最终产品的性能和品质。
凝固的基本原理凝固的基本原理是物质在固态结构中的排列有序,原子或分子以某种方式组织起来形成晶体。
在材料加工中,凝固是通过快速冷却或控制冷却速率来实现的。
凝固过程涉及到多个参数,包括温度、压力和化学成分等。
材料凝固的影响因素温度温度是材料凝固过程中最重要的影响因素之一。
在降低温度时,材料分子的热运动减慢,逐渐失去液态特性。
合适的温度控制可以提供理想的凝固速率和晶体结构。
冷却速率冷却速率也是决定材料凝固的关键因素之一。
较快的冷却速率有助于形成细小均匀的晶体结构,从而提高材料的强度和硬度。
慢速冷却可能导致大晶粒和组织不均匀,降低材料的性能。
化学成分化学成分对材料凝固过程和最终结构性质有重要影响。
合适的化学成分可以实现理想的凝固行为,从而获得所需的材料性能。
不合理的化学成分可能导致凝固过程异常或不完全。
压力压力也可以影响材料的凝固过程。
通过施加压力,可以改变材料的凝固温度和凝固速率。
合适的压力控制有助于获得理想的晶体结构和材料性能。
机械工程中常见的材料凝固方式熔融凝固熔融凝固是指将材料加热至熔点并使其液化,然后通过冷却使其重新固化。
在机械工程中,熔融凝固常用于金属和合金的加工过程。
通过控制熔融凝固的温度和冷却速率,可以获得理想的晶体结构和材料性能。
溶液凝固溶液凝固是指将溶解在溶液中的物质通过冷却或其它方法使其沉淀和固化。
在机械工程中,溶液凝固常用于合金和陶瓷材料的制备。
通过控制溶液的温度、浓度和化学成分等因素,可以获得理想的凝固行为和材料性能。
聚合物凝固聚合物凝固是指将单体分子通过热固化或化学反应固化成高分子聚合物的过程。
在机械工程中,聚合物凝固常用于塑料和橡胶等材料的制备。
通过控制聚合物的温度和化学反应条件,可以获得理想的凝固行为和材料性能。
混凝土凝固过程的原理及影响因素

混凝土凝固过程的原理及影响因素混凝土凝固过程是指混凝土从液态到固态的转变过程。
在这个过程中,混凝土中的水和水泥发生化学反应,形成胶凝体,并逐渐失去流动性,最终变为坚固的固体结构。
混凝土的凝固过程涉及多个因素的相互作用,包括水化反应、温度、湿度、外部环境等。
在本文中,我们将深入探讨混凝土凝固过程的原理及其影响因素。
1. 混凝土凝固过程的原理混凝土凝固的原理可分为两个主要方面:水化反应和水的蒸发。
1.1 水化反应混凝土中的水化反应是混凝土凝固的关键过程之一。
水泥在与水发生反应时产生水化产物,其中最重要的产物是水化硅酸钙胶凝体(C-S-H)和钙水化物(CH)。
C-S-H是混凝土中的主要胶结材料,其形成和发展决定了混凝土的强度和持久性。
水化反应是一个放热反应,也就是说,它会产生热量。
这种发热反应会加速混凝土的凝固过程,并对温度有一定的影响。
1.2 水的蒸发混凝土中的水分会随着时间的推移逐渐蒸发,这也是混凝土凝固的一个重要过程。
水的蒸发会导致混凝土中的溶质浓度升高,从而促进水化反应的进行。
但是,如果水分的蒸发速度过快,可能导致混凝土在凝固过程中产生裂缝和收缩问题。
控制混凝土中水分的蒸发速度对于确保混凝土结构的质量和可靠性非常重要。
2. 影响混凝土凝固过程的因素混凝土凝固过程的速度和质量受多种因素的影响,以下是其中几个重要因素的介绍。
2.1 水胶比水胶比是指混凝土中水的重量与胶凝材料(如水泥)的重量之比。
水胶比越低,混凝土的强度和耐久性越好,因为胶凝材料与水的反应相对充分。
然而,水胶比过低可能导致混凝土的流动性不足和与模板脱水困难。
在设计混凝土配合比时需要权衡水胶比的选择。
2.2 温度温度对混凝土凝固过程有着显著影响。
温度低于5℃时,水化反应的速率会明显降低,甚至会停止。
在低温环境下进行施工时,需要采取措施保持混凝土的温度,如使用加热设备或在混凝土中添加加热剂。
另高温环境下的水化反应速率较快,容易引起混凝土过早的凝固和龟裂。
水的凝固和融化过程

水的凝固和融化过程凝固是指物质从液态转变为固态的过程,而融化则是指物质从固态转变为液态的过程。
在这篇文章中,我们将探讨水的凝固和融化过程的原理及其重要性。
1. 凝固过程凝固是由于物质内部的分子间相互作用力增强而发生的。
对于水而言,当温度降低时,水分子之间的热运动减弱,它们开始组成规则的结构,形成冰晶体。
在凝固过程中,水分子排列成一个稳定的晶格结构,使得水从液态转变为固态。
凝固过程具有以下特点:1.1. 温度变化在凝固过程中,水的温度逐渐降低,直至达到凝固点。
对于纯净的水来说,其凝固点为0摄氏度。
值得注意的是,当我们在冬天里看到冰块形成时,实际上是冷空气将水的温度降低到冰点以下,而不是冰块自己产生冷量。
1.2. 结晶形态水的结晶形态与其凝固速度密切相关。
在快速冷却的情况下,水分子没有足够的时间进行有序排列,形成无定形的冰块。
而在缓慢冷却的条件下,水分子有充分的时间按照规则排列,形成透明的冰晶。
1.3. 液体与固体的体积水的凝固过程是伴随着体积变化的。
一般情况下,液态水会在凝固时膨胀。
然而,水在凝固过程中却出现了特殊的现象:当水温降至0摄氏度以下时,其体积会缩小,直到达到冰点时体积最小。
这意味着,当我们在冰柜中冷却一瓶水时,如果不充分留出空间,水会冻结后破裂。
2. 融化过程融化是由于物质内部分子间相互作用力减弱而发生的。
对于固体的水(冰)而言,当温度升高时,冰晶体继续吸收热量,水分子间的相互吸引力逐渐减弱,直到冰晶体内部的结构被破坏,而转变为液态水的过程即为融化。
融化过程具有以下特点:2.1. 温度变化在融化过程中,水的温度逐渐升高,直至达到融点。
对于纯净的冰而言,其融点也是0摄氏度。
2.2. 固体与液体的体积与凝固过程不同的是,融化过程中物质的体积会增大。
当固态的水融化成液态时,其体积会增加约9%。
这使得冰块融化后形成的水会比冰块的体积要大。
因此,当我们将一块冰放入容器中,随着融化,容器可能溢出。
凝固与熔化知识点总结

凝固与熔化知识点总结凝固与熔化的知识点主要包括两方面:凝固与熔化的原理和影响凝固与熔化的因素。
下面将对这两方面的知识点进行详细的总结。
一、凝固与熔化的原理1. 凝固的原理凝固是指物质由液态转变为固态的过程。
当物质处于液态时,分子间的距离较远,分子自由运动,形成无规则的分子排列;当物质受到外界条件的影响,如降温或加压,使得分子间的相互作用增强,使得分子排列开始有序,在一定条件下,形成规则的晶体结构,从而凝固成为固体。
凝固的原理可以通过凝固点和熔点来解释,凝固点是指在一定的温度下,物质由液态转变为固态,而熔点则是指在一定的温度下,物质由固态转变为液态。
不同物质的凝固点和熔点是不同的,这是由于物质的分子结构和相互作用力的不同而产生的。
2. 熔化的原理熔化是指物质由固态转变为液态的过程。
当物质处于固态时,分子间的距离较近,分子只能进行局部振动,形成有序排列的晶体结构;当物质受到外界条件的影响,如升温或减压,使得分子间的相互作用减弱,晶体结构破坏,分子开始自由移动,从而形成液态。
熔化的原理同样可以通过熔点和凝固点来解释,当物质的温度达到熔点时,固体开始熔化成为液体;而当物质的温度降低到熔点以下时,液体开始凝固成为固体。
二、影响凝固与熔化的因素1. 温度温度是影响物质凝固与熔化的最主要因素。
一般情况下,当温度升高时,物质的凝固点会升高,而熔点会降低;相反,当温度降低时,物质的凝固点会降低,而熔点会升高。
2. 压力压力也是影响物质凝固与熔化的因素之一。
在一定的温度下,增加压力会使得物质的凝固点升高,而熔点降低;减小压力则会使得物质的凝固点降低,而熔点升高。
3. 物质的性质物质的性质也会影响其凝固与熔化的过程。
比如,晶体结构的稳定程度、分子间的相互作用力强弱等因素,都会影响物质的凝固点和熔点。
4. 外界条件的影响外界条件,比如溶质的存在、溶剂的性质、晶体生长的速度等,都会影响物质的凝固和熔化过程。
总之,凝固与熔化是物质的两种状态,其原理和影响因素是非常重要的物理化学知识。
凝固过程的基本原理

其平衡的熔点温度越低。
12
(2)压力的影响 系统压力改变而引起的液, 固相自由能的变化:
GL VLP SLTp GS VS P SS Tp
△Tp-----因压力改变引起的平衡熔点的变化。
Tp TmV
p
H m
通常金属(VS-VL)=△V<0,则压力升高,平衡熔点上升.而△V>0,的金属 Sb,Bi压力升高,平衡熔点降低.通常压力改变时,熔点的变化很小, 10-2℃/大气压,故生产中靠改变压力来提高过冷度细化晶粒是很困难的。 熔体中导入超声波,产生空化作用,空穴破灭时,产生很大压力,使熔点上升 几十度.
5
二、晶体生长的热力学与动力学 (一)晶体生长的热力学 (二)均质形核 (三)非均质形核
6
(一)晶体生长的热力学 1. 相变驱动力 2. 压力、曲率对熔点的影响 3. 溶质平衡分配系数
7
1. 相变驱动力
系统的自由能随温度的变化关系: 系统的自由焓(G)可表示为:
G=H-TS
H----热焓,S----熵,T----绝对温度
一定的过冷度也会有一定的晶胚尺寸(或晶胚表面曲度)与之对应,比 该曲度大的晶胚(曲率半径小)将熔化消失,而比该曲度小的晶胚(曲
率半径大)将继续长大,此即临界晶核。
10
当恒压下金属有多种晶体结构时, 各自在其对应的熔点温度下与液 相平衡Δ无熔点只能由气相形成. 热力学上,只有α相能在平衡温度 下形成而βγ不能.但是在连续冷 却条件下的较低温度下是析出稳 定相α,还是介稳相Β,γ将取决 于体积自有能,界面能和异质形核 的条件. .
即:△G =GL-GS=0, 两相处于平衡状态。
当T<Tm时,GL>GS,固相稳定;
当T>Tm时,GL<GS,液相稳定; 当温度高于熔点或低于熔点时,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当恒压下金属有多种晶体结构时, 各自在其对应的熔点温度下与液 相平衡Δ无熔点只能由气相形成. 热力学上,只有α相能在平衡温度 下形成而βγ不能.但是在连续冷 却条件下的较低温度下是析出稳 定相α,还是介稳相Β,γ将取决 于体积自有能,界面能和异质形核 的条件. .
10
2. 压力、曲率对熔点的影响
4
二、晶体生长的热力学与动力学 (一)晶体生长的热力学 (二)均质形核 (三)非均质形核
5
(一)晶体生长的热力学 1. 相变驱动力 2. 压力、曲率对熔点的影响 3. 溶质平衡分配系数
6
1. 相变驱动力
系统的自由能随温度的变化关系: 系统的自由焓(G)可表示为: G=H-TS H----热焓,S----熵,T----绝对温度 自由焓 G也称等压位,而对应的为自由能F,也称等容位, F = u- TS,又:G = H-TS = u + PV- TS, 当pV很小时,G =u –TS=F,故有时粗略地将自由焓称为自由能 由G= u+PV-TS 可得:dG = du-TdS -SdT+ PdV + VdP du =δ q -δ A q:系统从外界吸收的热量,A: 系统对外界所做的功。 恒温下:δ q = TdS,而只有膨胀功时,δ A = PdV 故 du=TdS-PdV 则有: dG=-TdS +VdP dG S 在恒压条件下dp=0,故:dG=-SdT ,即:
1 1 GS VS r r 2 1 S S Tr
设k为平均界面曲率: 固液两相平衡时:
1 1 1 k 2 r 1 r2
GS 2VS k S S Tr
Tr 2VS k 2TmVS k S m H m
3
2. 多元合金的凝固
多元合金的凝固过程复杂得多,并且仅三元系有较成熟的相图可以 借鉴。 三元相的三个边由二元相图 构成,成分位于液相面特殊 点,如多相反应点上的合金 在平衡凝固过程中将会发生 两个以上的相同时析出的过 程,且凝固在恒温下进行。 成分位于线上的合金也将发 生多相凝固,但析出固相和 液相的成分是变化的。
一. 相图与凝固 1. 二元合金的凝固
工程合金通常是多组元的。
凝固中各组元的形态:单质、固溶体、化合物析出。
单组元,纯物质。 (相当于二元系在 溶质质量分数趋于 零的情况)
二元合金系是研 究凝固过程基本 原理的基础。
多元系的凝固(可 用二元系的凝固特 征分析)
因此,对凝固过程基本原理的研究通常以二元系为对象。 在实验和计算的基础上建立了大量的二元相图,为凝固 分析奠定了基础
1
所有二元相图都是由共晶、偏晶、包晶及固溶体四种基本相 图所构成的
单相合金凝固是最典型的, 除共晶点和偏晶点外,其它成分 合金在开始凝固时仅有一个相析 出。 最常见的多相合金凝固是共晶凝 固:L→α+β
2
偏晶凝固:
与共晶凝固相似,析出相之一为 液相:L1→α+L2
包晶凝固:
LP + β → α
(1)固相界面曲率的影响 固相曲率可引入固相的压力,此压力使固相的自由能升高,而使系统的 熔点降低。固-液两相的自由能的变化为:
GL VL P S L Tr S L Tr
p 0
GS VS p S S Tr
---Tr 因固相曲率而造成的温差,△P-----由于曲率而造成的固相附加压力
GS GL ,
当曲率k为正时,△Tr为正,此时平衡熔点下降,且曲率半径越小, 其平衡的熔点温度越低。
11
(2)压力的影响 系统压力改变而引起的液, 固相自由能的变化:
GL VL P SL Tp
Tp p
GS VS P SS Tp
Tm V H m
△Tp-----因压力改变引起的平衡熔点的变化。
12
3. Байду номын сангаас元合金凝固过程的溶再分配
(1)溶再分配的概念 (2)平衡溶质分配系数k0 (3)有效溶质分配系数
一个小晶胚的固-液平衡温度要低于大晶胚的平衡温度,凝固过程总是从 小晶胚开始的,因此凝固过程总是在过冷的液相中发生,即有 一定的过冷度。 一定的过冷度也会有一定的晶胚尺寸(或晶胚表面曲度)与之对应,比 该曲度大的晶胚(曲率半径小)将熔化消失,而比该曲度小的晶胚(曲 率半径大)将继续长大,此即临界晶核。
GV
Tm
8
过冷度 是影响相变驱动力的决定性因素。 r 为什么相变要过冷度? S S-L平衡时,原子双向跳动的速度相等,方向相反; 晶胚越小,表面曲度越大,稳定度越小: △P=2σ/r 一定温度下,r越小,熔化速度越快,而凝固速度越慢; r一定时,温度越低,S-L自由能差越大,熔化速度越小,而凝固速度越 大; 因此,凝固速度与熔化速度相等的温度随晶胚尺寸的减小而降低。
dT
表明:在通常的压力一定条件下,温度升高时,自由能是下降的。
7
相变的驱动力 △G 在熔点Tm时: 液相自由能=固相自由能, 即:△G =GL-GS=0, 两相处于平衡状态。 当T<Tm时,GL>GS,固相稳定; 当T>Tm时,GL<GS,液相稳定; △T 当温度高于熔点或低于熔点时, △G即为相变的驱动力, 过冷度 在Tm以下温度时:一克分子物质由液相转变为固相自由能(焓)的变化为: △GV = GS-GL=(HS-TSS)-(HL-TSL) = ( HS - HL)-T(SS-SL) = △H-T△S △H、△S均为固、液两相的克分子焓和克分子熵的差额,温度的函数, △H≈结晶潜热(△Hm),△S ≈熔融熵(△Sm) 在Tm温度时, -△Hm+Tm△Sm=0, 即:△Sm=△Hm/Tm 因此: H m T △T---即为过冷度。
通常金属(VS-VL)=△V<0,则压力升高,平衡熔点上升.而△V>0,的金属 Sb,Bi压力升高,平衡熔点降低.通常压力改变时,熔点的变化很小, 10-2℃/大气压,故生产中靠改变压力来提高过冷度细化晶粒是很困难的。 熔体中导入超声波,产生空化作用,空穴破灭时,产生很大压力,使熔点上升 几十度.