函数的概念及其表示方法练习题
函数的概念及表示(习题及答案)

函数的概念及表示(习题) 1.若函数(3)f x +的定义域为[52]--,,则()(1)(1)F x f x f x =++-的定义域为______________.2.求下列函数的值域.(1)()12f x x x =-++____________________(2)()23f x x x =+-_____________________(3)223()1x x f x x x -+=-+_____________________3.函数228()21kx f x kx kx -=++的定义域为R ,则k 的取值范围是___________.4.已知函数2()68f x mx mx m =-++的定义域为R ,则m 的取值范围是____________.5.设2()1ax b f x x +=+(0a >)的值域为[-1,4],则a ,b 的值为_________.6.已知2121()1 11x x f x x x ⎧--⎪=⎨>⎪+⎩≤()(),则1(())2f f =()A .12B .413C .95-D .25417.已知3 10()((5))10x x f x f f x x -⎧=⎨+<⎩≥()(),则(6)f =________.8.设2()()[)x x a f x x x a ∈-∞⎧=⎨∈+∞⎩,,,,,若(2)4f =,则a 的取值范围是_______________.9.已知函数342()2 21x x f x x x ⎧-⎪=⎨>⎪-⎩≤()(),则当()1f x ≥时,自变量x 的取值范围是()A .5[1]3,B .5[3]3,C .5(1)[)3-∞+∞ ,,D .5(1][3]3-∞ ,,10.若函数2()2g x x =-,()4()()()()g x x x g x f x g x x x g x <++⎧=⎨-⎩≥,,,则()f x 的值域是()A .9[0](2)4-+∞ ,,B .[0,+∞)C .9[0]4-,D .9[0](1)4-+∞ ,,11.若函数110()101x x f x x x ---<⎧=⎨-+<⎩≤≤()(),则()()1f x f x -->-的解集为___________________.12.已知函数2(1) 1()411x x f x x x ⎧+<⎪=⎨--⎪⎩≥()(),则使得()1f x ≥的自变量x 的取值范围是_____________________.13.已知1 0()10x f x x ⎧=⎨-<⎩≥()(),则不等式(2)(2)5x x f x +++≤的解集是________________.14.(1)已知(1)2f x x x +=+,则()f x =__________.(2)定义域为R 的函数)(x f 满足()2()21f x f x x +-=+,则()f x =_________.(3)已知21()2()345f x f x x x+=++,则()f x =_______________.15.已知函数()f x ,()g x 满足:()()()()()g x y g x g y f x f y -=+,(1)1f -=-,(0)0f =,(1)1f =,求g (0),g (1),g (2)的值.16.设()f=,且对于任意的f x是定义在R上的函数,满足(1)0x,y,等式()()(21)f x的解+-=++恒成立,求()f x y f y x x y析式.【参考答案】1.[10]-,2.(1)()[3)f x ∈+∞,;(2)3()[)2f x ∈+∞,;(3)11()(1]3f x ∈,3.[01),4.[01],5.a =4,b =36.B 7.78.(2]-∞,9.D10.A 11.1[1)(01]2-- ,,12.(2][010]-∞- ,,13.3(]2-∞,14.(1)2()1f x x =-(2)1()23f x x =-+(3)222845()333f x x x x x =+--+15.(0)1(1)0(2)1g g g ===-,,;16.2()2f x x x =+-。
高考数学专题《函数的概念及其表示》习题含答案解析

专题3.1 函数的概念及其表示1.(2021·四川达州市·高三二模(文))已知定义在R 上的函数()f x 满足,2(1)2()1f x f x x -+=+,则(1)f =( )A .1-B .1C .13-D .13【答案】B 【解析】当0x =时,f (1)2(0)1f +=①;当1x =时,(0)2f f +(1)2=②,由此进行计算能求出f (1)的值.【详解】定义在R 上的函数()f x 满足,2(1)2()1f x f x x -+=+,∴当0x =时,f (1)2(0)1f +=,①当1x =时,(0)2f f +(1)2=,②②2⨯-①,得3f (1)3=,解得f (1)1=.故选:B2.(2021·浙江高一期末)已知231,1,()3,1,x x f x x x +⎧=⎨+>⎩…则(3)f =( )A .7B .2C .10D .12【答案】D 【解析】根据分段函数的定义计算.【详解】由题意2(3)3312f =+=.故选:D .3.(2021·全国高一课时练习)设3,10()(5),10x x f x f x x +>⎧=⎨+≤⎩,则(5)f 的值为( )A .16B .18C .21D .24练基础【解析】根据分段函数解析式直接求解.【详解】因为3,10()(5),10x x f x f x x +>⎧=⎨+≤⎩,所以(5)(10)(15)15318f f f ===+=.故选:B.4.(2021·浙江湖州市·湖州中学高一开学考试)若函数213()22f x x x =-+的定义域和值域都是[1,]b ,则b =( )A .1B .3C .3-D .1或3【答案】B 【解析】根据函数213()22f x x x =-+在[1,]b 上为增函数,求出其值域,结合已知值域可求出结果.【详解】因为函数213()22f x x x =-+21(1)12x =-+在[1,]b 上为增函数,且定义域和值域都是[1,]b ,所以min ()(1)f x f =1=,2max 13()()22f x f b b b b ==-+=,解得3b =或1b =(舍),故选:B5.(上海高考真题)若是的最小值,则的取值范围为( ).A .[-1,2]B .[-1,0]C .[1,2]D .[0,2]【答案】D 【详解】由于当0x >时,1()f x x a x=++在1x =时取得最小值2a +,由题意当0x ≤时,2()()f x x a =-应该是递减的,则0a ≥,此时最小值为2(0)f a =,因此22a a ≤+,解得02a ≤≤,选D .6.(广东高考真题)函数()f x =的定义域是______.【答案】[)()1,00,∞-⋃+由根式内部的代数式大于等于0且分式的分母不等于0联立不等式组求解x 的取值集合得答案.【详解】由{100x x +≥≠,得1x ≥-且0x ≠.∴函数()f x =的定义域为:[)()1,00,-⋃+∞;故答案为[)()1,00,-⋃+∞.7.(2021·青海西宁市·高三一模(理))函数()f x 的定义域为[]1,1-,图象如图1所示,函数()g x 的定义域为[]1,2-,图象如图2所示.若集合()(){}0A x f g x ==,()(){}0B x g f x ==,则A B 中有___________个元素.【答案】3【解析】利用数形结合分别求出集合A 与集合B ,再利用交集运算法则即可求出结果.【详解】若()()0f g x =,则()0g x =或1-或1,∴{}1,0,1,2A =-,若()()0g f x =,则()0f x =或2,∴{}1,0,1B =-,∴{}1,0,1=- A B .故答案为:3.8.(2021·湖北襄阳市·襄阳五中高三二模)已知函数22211x x y f x x ⎛⎫+-= ⎪+-⎝⎭的定义域是[)1,+∞,则函数()y f x =的定义域是_______.【答案】(]1,2【解析】令()()222111x x g x x x x +-=≥+-,根据函数值域的求解方法可求得()g x 的值域即为所求的()f x 的定义域.【详解】令()()222111x x g x x x x +-=≥+-,则()()222111111111x x x x g x x x x x x x x+-+==+=+≥+-+--+,1y x x =- 在[)1,+∞上单调递增,10x x∴-≥,10111x x∴<≤-+,()12g x ∴<≤,()f x ∴的定义域为(]1,2.故答案为:(]1,2.9.(2021·黑龙江哈尔滨市第六中学校高三二模(文))已知函数()221,01,0x x f x x x⎧+≥⎪=⎨<⎪⎩,若()2f a =,则实数a =___________.【答案】1或【解析】分别令212a +=,212a=,解方程,求出方程的根即a 的值即可.【详解】当0a ≥,令212a +=,解得:1a =,当0a <,令212a =,解得:a =故1a =或,故答案为:1或.10.(2021·云南高三二模(理))已知函数231,1()1,1x x f x x x +≤⎧=⎨->⎩,若n m >,且()()f n f m =,设t n m =-,则t 的取值范围为________.【答案】171,12⎤-⎥⎦【解析】用n 表示出m ,结合二次函数的性质求得t n m =-的取值范围.【详解】画出()f x 图象如下图所示,3114⨯+=,令()2140x x -=>,解得x =由()(),n m f n f m >=得2311m n +=-,223n m -=,且1n <≤所以(222121333n t n m n n n n -=-=-=-++<≤,结合二次函数的性质可知,当131223n =-=⎛⎫⨯- ⎪⎝⎭时,t 取得最大值为2133217322312⎛⎫-⨯++= ⎪⎝⎭,当n =时,t取得最小值为212133-⨯=-.所以t的取值范围是171,12⎤⎥⎦.故答案为:171,12⎤⎥⎦1.(2021·云南高三二模(文))已知函数231,1()1,1x x f x x x +≤⎧=⎨->⎩,若n m >,且()()f n f m =,设t n m =-,则( )A .t 没有最小值B .t1-C .t 的最小值为43D .t 的最小值为1712【答案】B 【解析】先作出分段函数图象,再结合图象由()()f n f m =,得到m 与n 的关系,消元得关于n 的函数,最后求最值.【详解】如图,作出函数()f x 的图象,()()f n f m = 且n m >,则1m £,且1n >,练提升2311m n ∴+=-,即223n m -=.由21014n n >⎧⎨<-≤⎩,解得1n <≤.222211317(32)(333212n n m n n n n -⎡⎤∴-=-=---=--+⎢⎥⎣⎦,又1n <≤ ∴当n =时,()min 1n m -=-.故选:B.2.(2020·全国高一单元测试)已知函数21,0,()2,0,x x f x x x ⎧+≤=⎨->⎩,若()05f x =,则0x 的取值集合是( )A .{2}-B .5,22⎧⎫-⎨⎬⎩⎭C .{2,2}-D .52,2,2⎧⎫--⎨⎬⎩⎭【答案】A 【解析】根据分段函数值的求解方法,对00x ≤与00x >两种情况求解,可得答案.【详解】若00x ≤,可得2015x +=,解得02x =-,(02x =舍去);若00x >,可得02x -=5,可得052x =-,与00x >相矛盾,故舍去,综上可得:02x =-.故选:A.3.【多选题】(2021·全国高一课时练习)(多选题)下列函数中,定义域是其值域子集的有( )A .865y x =+B .225y x x =--+C .y =D .11y x=-【答案】AC 【解析】分别求得函数的定义域和值域,利用子集的定义判断.【详解】A 函数的定义域和值域都是R ,符合题意;B.定义域为R ,因为2225(1)66y x x x =--+=-++≤,所以函数值域为(,6]-∞,值域是定义域的真子集不符合题意;C.易得定义域为[1,)+∞,值域为[0,)+∞,定义域是值域的真子集;D.定义域为{|0}x x ≠,值域为{|1}x x ≠-,两个集合只有交集;故选:AC4.【多选题】(2021·全国高一课时练习)已知f (x )=2211x x+-,则f (x )满足的关系有( )A .()()f x f x -=-B .1f x ⎛⎫⎪⎝⎭= ()f x -C .1f x ⎛⎫⎪⎝⎭=f (x )D .1(()f f x x-=-【答案】BD 【解析】根据函数()f x 的解析式,对四个选项逐个分析可得答案.【详解】因为f (x )= 2211x x+-,所以()f x -=221()1()x x +---=2211x x+-()f x =,即不满足A 选项;1f x ⎛⎫ ⎪⎝⎭=221111x x ⎛⎫+ ⎪⎝⎭⎛⎫- ⎪⎝⎭=2211x x +-,1f x ⎛⎫⎪⎝⎭=()f x -,即满足B 选项,不满足C 选项,1(f x -=221111x x ⎛⎫+- ⎪⎝⎭⎛⎫-- ⎪⎝⎭=2211x x +-,1()()f f x x -=-,即满足D 选项.故选:BD5.【多选题】(2021·全国高三其他模拟)已知函数21,0,()2,0,x x f x x x x +<⎧=⎨-+≥⎩令()()()g x f f x =,则下列说法正确的是( )A .()10g -=B .方程()2g x =有3个根C .方程()2g x =-的所有根之和为-1D .当0x <时,()()f xg x ≤【答案】ACD 【解析】由题意知()10f -=可得()10g -=;令()f x u =,因为方程()2f u =没有实根,即()2g x =没有实根;令()u f x =,则方程()2g x =-,即()2f u =-,通过化简与计算即可判断C ;当0x <时,()(1)g x f x =+,则将函数()f x 在(,1)-∞的图象向左平移1个单位长度可得函数()g x 的图象,即可判断D .【详解】对于A 选项,由题意知()10f -=,则()()()()1100g f f f -=-==,所以A 选项正确;对于B 选项,令()f x u =,则求()()()2g x f f x ==的根,即求()2f u =的根,因为方程()2f u =没有实根,所以()2g x =没有实根,所以选项B 错误;对于C 选项,令()u f x =,则方程()2g x =-,即()2f u =-,得112,03u u u +=-<⇒=-,2222,01u u u u -+=-≥⇒=+,由方程1()f x u =得13(0)x x +=-<或223(0)x x x -+=-≥,解得4x =-或3x =,易知方程2()f x u =,没有实数根,所以方程()2g x =-的所有根之和为-1,选项C 正确;对于D 选项,当0x <时,()(1)g x f x =+,则将函数()f x 在(,1)-∞的图象向左平移1个单位长度可得函数()g x 的图象,当0x <时,函数()g x 的图象不在()f x 的图象的下方,所以D 选项正确,故选:ACD .6.【多选题】(2021·全国高三专题练习)已知函数()f x ,(,0)(0,)x ∈-∞⋃+∞,对于任意的,(,0)(0,)x y ∈-∞+∞ ,()()()f xy f x f y =+,则( )A .()f x 的图象过点()1,0和()1,0-B .()f x 在定义域上为奇函数C .若当1x >时,有()0f x >,则当10x -<<时,()0f x <D .若当01x <<时,有()0f x <,则()0f x >的解集为()1,+∞【答案】AC 【解析】根据抽象函数的性质,利用特殊值法一一判断即可;【详解】解:因为函数()f x ,(,0)(0,)x ∈-∞⋃+∞,对于任意的,(,0)(0,)x y ∈-∞+∞ ,()()()f xy f x f y =+,令1x y ==,则()()()111f f f =+,则()10f =,令1x y ==-,则()()()111f f f =-+-,则()10f -=,所以()f x 过点()1,0和()1,0-,故A 正确;令1y =-,则()()()1f x f x f -=+-,即()()f x f x -=,所以()f x 为偶函数,故B 错误;令1y x =-,则()()110f f x f x ⎛⎫-=+-= ⎪⎝⎭,则()1f f x x ⎛⎫-=- ⎪⎝⎭当1x >时,所以()11,0x -∈-,又()0f x >,则10f x ⎛⎫-< ⎪⎝⎭,即当10x -<<时,()0f x <,故C 正确;令1y x =,则()()110f f x f x ⎛⎫=+= ⎪⎝⎭,则()1f f x x ⎛⎫=- ⎪⎝⎭,当01x <<时,所以()11,x ∈+∞,又()0f x <,则10f x ⎛⎫>⎪⎝⎭,即当1x >时,()0f x >,因为()f x 是偶函数,所以1x <-时,()0f x >,所以()0f x >的解集为()(),11,-∞-+∞U ,故D 错误;故选:AC7.【多选题】(2021·全国高三专题练习)已知函数()22,023,0x x x f x x x ⎧-<=⎨-+≥⎩,则( )A .()13f f -⎡⎤⎣=-⎦B .若()1f a =-,则2a =C .()f x 在R 上是减函数D .若关于x 的方程()f x a =有两解,则(]0,3a ∈【答案】ABD 【解析】根据函数解析式,代入数据可判断A 、B 的正误,做出()f x 的图象,可判断C 、D 的正误,即可得答案.【详解】对于A :由题意得:2(1)(1)2(1)3f -=--⨯-=,所以()(3)23331f f f -==-⨯+=-⎡⎤⎣⎦,故A 正确;对于B :当0a <时,2()21f a a a =-=-,解得a =1,不符合题意,舍去当0a ≥时,()231f a a =-+=-,解得2a =,符合题意,故B 正确;对于C :做出()f x 的图象,如下图所示:所以()f x 在R 上不是减函数,故C 错误;对于D :方程()f x a =有两解,则()y f x =图象与y a =图象有两个公共点,如下图所示所以(]0,3a ∈,故D 正确.故选:ABD8.(2021·浙江高三月考)已知0a >,设函数2(22),(02)(),(2)x a x x a f x ax x a ⎧-++<<+=⎨≥+⎩,存在0x 满足()()00f f x x =,且()00f x x ≠,则a 的取值范围是______.1a ≤<【解析】求得()2x ax a y =≥+关于y x =对称所得函数的解析式,通过构造函数,结合零点存在性列不等式,由此求得a 的取值范围.【详解】由于()f x 存在0x 满足()()0f f x x=,且()00f x x ≠,所以()f x 图象上存在关于y x =对称的两个不同的点.对于()()2,2y ax x a y a a =≥+≥+,交换,x y 得x ay =,即()()12,2y x x a a y a a=≥+≥+,构造函数()()22111222222g x x a x x x a x x x a a a a ⎛⎫⎛⎫=-++-=-++-=-++- ⎪ ⎪⎝⎭⎝⎭(()22a a x a +≤<+),所以()g x 的零点122a a +-满足()12222a a a a a+≤+-<+,由1222a a a +-<+得()()21111001a a a a a a a a+---==<⇒<<,由()1222a a a a+≤+-得3210a a -+≤,即()()()()31111a a a a a a a --+=+---()()()21110a a a a a a ⎛=+--=--≤ ⎝,由于01a <<1a ≤<.1a ≤<9. (2021·浙江高一期末)已知函数()1f x x =-+,()()21g x x =-,x ∈R .(1)在图1中画出函数()f x ,()g x 的图象;(2)定义:x R ∀∈,用()m x 表示()f x ,()g x 中的较小者,记为()()(){}min ,m x f x g x =,请分别用图象法和解析式法表示函数()m x .(注:图象法请在图2中表示,本题中的单位长度请自己定义且标明)【答案】(1)图象见解析;(2)()(][)()()21,,01,1,0,1x x m x x x ⎧-+∈-∞⋃+∞⎪=⎨-∈⎪⎩;图象见解析.【解析】(1)由一次函数和二次函数图象特征可得结果;(2)根据()m x 定义可分段讨论得到解析式;由解析式可得图象.【详解】(1)()f x ,()g x 的图象如下图所示:(2)当0x ≤时,()211x x -≥-+,则()()1m x f x x ==-+;当01x <<时,()211x x -<-+,则()()()21m x g x x ==-;当1≥x 时,()211x x -≥-+,则()()1m x f x x ==-+;综上所述:()(][)()()21,,01,1,0,1x x m x x x ⎧-+∈-∞⋃+∞⎪=⎨-∈⎪⎩.()m x图象如下图所示:10. (2021·全国高一课时练习)已知函数()12f x x x =++-,()3g x x =-.(1)在平面直角坐标系里作出()f x 、()g x 的图象.(2)x R ∀∈,用()min x 表示()f x 、()g x 中的较小者,记作()()(){}min ,x f x g x =,请用图象法和解析法表示()min x ;(3)求满足()()f x g x >的x 的取值范围.【答案】(1)答案见解析;(2)答案见解析;(3)()(),20,-∞-+∞ .【解析】(1)化简函数()f x 、()g x 的解析式,由此可作出这两个函数的图象;(2)根据函数()min x 的意义可作出该函数的图象,并结合图象可求出函数()min x 的解析式;(3)根据图象可得出不等式()()f x g x >的解集.【详解】(1)()21,2123,1212,1x x f x x x x x x -≥⎧⎪=++-=-<<⎨⎪-≤-⎩,()3,333,3x x g x x x x -≥⎧=-=⎨-<⎩.则对应的图象如图:(2)函数()min x的图象如图:解析式为()3,20312,21min 3,103,3x x x x x x x x x -<-≤<⎧⎪--≤≤-⎪=⎨-<<⎪⎪-≥⎩或;(3)若()()f x g x >,则由图象知在A 点左侧,B 点右侧满足条件,此时对应的x 满足0x >或2x <-,即不等式()()f x g x >的解集为()(),20,-∞-+∞ .1.(山东高考真题)设f (x )=<x <1―1),x ≥1,若f (a )=f (a +1),则=( )A .2B .4C .6D .8【答案】C【解析】由x ≥1时f (x )=2(x ―1)是增函数可知,若a ≥1,则f (a )≠f (a +1),所以0<a <1,由f (a )=f (a+1)得a =2(a +1―1),解得a =14,则=f (4)=2(4―1)=6,故选C.2.(2018上海卷)设D 是含数1的有限实数集,f (x )是定义在D 上的函数,若f (x )的图象绕原点逆时针旋转π6后与原图象重合,则在以下各项中,f (1)的可能取值只能是( )A .3B .32 C .33 D .0【答案】B 【解析】由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转π6个单位后与下一个点会重合.我们可以通过代入和赋值的方法当f (1)=3,33,0时,此时得到的圆心角为π3,π6,0,然而此时x=0或者x=1时,都有2个y 与之对应,而我们知道函数的定义就是要求一个x 只能对应一个y ,因此只有当练真题x=32,此时旋转π6,此时满足一个x 只会对应一个y ,故选:B .3. (2018年新课标I 卷文)设函数f (x )=2―x , x ≤01 , x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A. (―∞ , ―1]B. (0 , +∞)C. (―1 , 0)D. (―∞ , 0)【答案】D【解析】将函数f (x )的图象画出来,观察图象可知会有2x <02x <x +1,解得x <0,所以满足f (x +1)<f (2x )的x 的取值范围是(―∞ , 0),故选D.4.(浙江高考真题(文))已知函数()2,1{66,1x x f x x x x≤=+->,则()2f f ⎡⎤-=⎣⎦,()f x 的最小值是.【答案】162-【解析】如图根据所给函数解析式结合其单调性作出其图像如图所示,易知()()min 12,62f f f x f ⎡⎤-=-==⎣⎦.5. (2018·天津高考真题(文))已知a R ∈,函数()22220220x x a x f x x x a x ⎧++-≤=⎨-+->⎩,,,.若对任意x ∈[–3,+∞),f (x )≤x 恒成立,则a 的取值范围是__________.【答案】1,28⎡⎤⎢⎥⎣⎦【解析】由题意分类讨论0x >和0x ≤两种情况,结合恒成立的条件整理计算即可求得最终结果.【详解】分类讨论:①当0x >时,()f x x ≤即:222x x a x -+-≤,整理可得:21122a x x ≥-+,由恒成立的条件可知:()2max 11022a x x x ⎛⎫≥-+> ⎪⎝⎭,结合二次函数的性质可知:当12x =时,2max 1111122848x x ⎛⎫-+=-+= ⎪⎝⎭,则18a ≥;②当30x -≤≤时,()f x x ≤即:222x x a x ++-≤-,整理可得:232a x x ≤--+,由恒成立的条件可知:()()2min3230a x x x ≤--+-≤≤,结合二次函数的性质可知:当3x =-或0x =时,()2min322x x --+=,则2a ≤;综合①②可得a 的取值范围是1,28⎡⎤⎢⎥⎣⎦,故答案为1,28⎡⎤⎢⎥⎣⎦.6.(2018·浙江高考真题)已知λ∈R,函数f (x )=24,43,x x x x x λλ-≥⎧⎨-+<⎩,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________.【答案】(1,4) (1,3](4,)⋃+∞ 【解析】分析:根据分段函数,转化为两个不等式组,分别求解,最后求并集.先讨论一次函数零点的取法,再对应确定二次函数零点的取法,即得参数λ的取值范围.详解:由题意得240x x ≥⎧⎨-<⎩或22430x x x <⎧⎨-+<⎩,所以24x ≤<或12x <<,即14x <<,不等式f (x )<0的解集是(1,4),当4λ>时,()40f x x =->,此时2()430,1,3f x x x x =-+==,即在(,)λ-∞上有两个零点;当4λ≤时,()40,4f x x x =-==,由2()43f x x x =-+在(,)λ-∞上只能有一个零点得13λ<≤.综上,λ的取值范围为(1,3](4,)⋃+∞.。
第08讲 函数的概念及其表示方法(原卷版)

第08讲 函数的概念及其表示方法1.函数的概念一般地,设A ,B 是非空的 ,如果对于集合A 中的 一个数x ,按照某种确定的对应关系f ,在集合B 中都有 定的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =f (x ),x ∈A . 2.函数的三要素(1)函数的三要素: 、 、 .(2)如果两个函数的 相同,并且 完全一致,则这两个函数相等. 3.函数的表示法4若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.5.常见函数的定义域:(1)分式函数中分母 . (2)偶次根式函数被开方式 . (3)一次函数、二次函数的定义域为 .(4)y =a x (a >0且a ≠1),y =sin x ,y =cosx,定义域均为 . (5)y =tan x 的定义域为(6)函数f (x )=x α的定义域为 .【2018年新课标1卷文科】已知函数()()22log f x x a =+,若()31f =,则=a ________.1、下列图形中可以表示以M ={x |0≤x ≤1}为定义域,N ={y |0≤y ≤1}为值域的函数的图象是( )2、下列各组函数中,表示同一函数的是( )A .f (x )=e ln x ,g (x )=xB .f (x )=x 2-4x +2,g (x )=x -2C .f (x )=sin 2x2cos x ,g (x )=sin x D .f (x )=|x |,g (x )=x 23、函数的定义域是( ) A .B .C .D .4、 (多选)(2022·雅礼中学高三月考)下列说法中,正确的有( )A. 式子y =x -1+-x -1可表示自变量为x ,因变量为y 的函数B. 函数y =f (x )的图象与直线x =1的交点最多有1个C. 若f (x )=|x -1|-|x |,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=1 D. f (x )=x 2-2x 与g (t )=t 2-2t 是同一函数考向一 函数的概念例1、(1)下列各曲线表示的y 与x 之间的关系中,y 不是x 的函数的是( )()()2lg 31f x x =++1,3⎛⎫-+∞ ⎪⎝⎭1,13⎛⎫- ⎪⎝⎭11,33⎛⎫- ⎪⎝⎭1,3⎛⎫-∞- ⎪⎝⎭(2)(多选)下列各组函数是同一函数的为( ) A.f (x )=x 2-2x -1,g (s )=s 2-2s -1 B.f (x )=x -1,g (x )=x 2-1x +1C.f (x )=x 2,g (x )=⎩⎪⎨⎪⎧x ,x ≥0,-x ,x <0D.f (x )=-x 3,g (x )=x -x变式1、下列各对函数中是同一函数的是( ) .A .f (x )=2x -1与g (x )=2x -x 0B .f (x )=(2x +1)2与g (x )=|2x +1|;C .f (n )=2n +2(n ∈Z )与g (n )=2n (n ∈Z );D .f (x )=3x +2与g (t )=3t +2.变式2、已知集合P ={x |0≤x ≤4},Q ={y |0≤y ≤2},下列从P 到Q 的各对应关系f 不是函数的是________.(填序号)①f :x →y =12x ;②f :x →y =13x ;③f :x →y =23x ;④f :x →y =x .方法总结:(1)定义是解题的重要依据,它有双重功能:一是判定;二是性质.要判定一个对应是不是从定义域A 到值域B 的一个函数,就要看其是否满足函数的定义,反之亦然;(2)函数的值域可由定义域和对应法则唯一确定,当且仅当定义域和对应法则都相同的函数才是同一函数,而定义域、值域和对应法则中有一个不同就不是同一函数.考向二 函数的定义域例1、 求下列函数的定义域: (1) f (x )=lg (5-x 2); (2) f (x )=1ln (x -1).变式1、(1)函数f (x )=ln(4x -x 2)+1x -2的定义域为( )A.(0,4)B.[0,2)∪(2,4]C.(0,2)∪(2,4)D.(-∞,0)∪(4,+∞) (2).函数f (x )=ln x ·lg ⎝ ⎛⎭⎪⎫x +22-x 的定义域是( )A.[1,2]B.[2,+∞)C.[1,2)D.(1,2]变式3、.已知函数f (x )的定义域是[-1,1],则函数g (x )=f (2x -1)ln (1-x )的定义域是( )A.[0,1]B.(0,1)C.[0,1)D.(0,1]方法总结:1.求给定解析式的函数定义域的方法求给定解析式的函数的定义域,其实质就是以函数解析式中所含式子(运算)有意义为准则,列出不等式或不等式组求解;对于实际问题,定义域应使实际问题有意义. 2.求抽象函数定义域的方法(1)若已知函数f(x)的定义域为[a ,b],则复合函数f[g(x)]的定义域可由不等式a ≤g(x)≤b 求出. (2)若已知函数f[g(x)]的定义域为[a ,b],则f(x)的定义域为g(x)在x ∈[a ,b]上的值域.考向三 函数的解析式例2、 (1) 已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求函数f (x )的解析式;(2) 已知函数f (x )的定义域为R ,且满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),求当-1≤x ≤0时,函数f (x )的解析式;(3) 已知f (x )的定义域为{x |x ≠0},满足3f (x )+5f ⎝⎛⎭⎫1x =3x +1,求函数f (x )的解析式.变式1、(1)已知f ⎝⎛⎭⎫2x +1=lg x ,求f (x )的解析式;(2)已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x )的解析式; (3)已知函数f (x )满足f (-x )+2f (x )=2x ,求f (x )的解析式.变式2、求下列函数的解析式:(1)已知f (1-sin x )=cos 2x ,求f (x )的解析式; (2)已知f ⎝⎛⎭⎫x +1x =x 2+1x2,求f (x )的解析式; (3)已知f (x )是一次函数且3f (x +1)-2f (x -1)=2x +17,求f (x )的解析式; (4)已知f (x )满足2f (x )+f (-x )=3x ,求f (x )的解析式.方法总结:函数解析式的常见求法函数解析式的求法主要有以下几种:(1)换元法:已知复合函数f(g(x))的解析式,可用换元法,此时要注意新元的取值范围;(2)配凑法:由已知条件f(g(x))=f(x),可将f(x)改写成关于g(x)的表达式,然后以x 替代g(x),便得f(x)的解析式;(3)待定系数法:已知函数的类型(如一次函数、二次函数)可用待定系数法,比如二次函数f(x)可设为f(x)=ax2+bx +c(a≠0),其中a ,b ,c 是待定系数,根据题设条件,列出方程组,解出a ,b ,c 即可.(4)解方程组法:已知f(x)满足某个等式,这个等式除f(x)是未知量外,还有其他未知量,如f ⎝⎛⎭⎫1x (或f(-x))等,可根据已知等式再构造其他等式组成方程组,通过解方程组求出f(x).考向四 分段函数例3、(1)已知函数f (x )=⎩⎪⎨⎪⎧x +2x -3,x ≥1,lg (x 2+1),x <1,则f (f (-3))=________,f (x )的最小值是________.(2)、已知()()()()3,94,9x x f x f f x x -≥⎧⎪=⎨+<⎡⎤⎪⎣⎦⎩则f (7) =______.(3)已知函数f(x)=⎩⎪⎨⎪⎧log 2(3-x ),x ≤0,2x -1,x>0,若f(a -1)=12,则实数a =________.(4)、已知函数f (x )=⎩⎪⎨⎪⎧12x +1, x ≤0,-(x -1)2, x >0,则不等式f (x )≥-1的解集是________.变式1、设函数1,0()2,0xx x f x x +⎧=⎨>⎩≤,则满足1()()12f x f x +->的x 的取值范围是___. 方法总结:(1)求分段函数的函数值,首先要确定自变量的范围,再通过分类讨论求解;(2)当给出函数值或函数值的取值范围求自变量的值或自变量的取值范围时,应根据每一段解析式分别求解,但要注意检验所求自变量的值或取值范围是否符合相应段的自变量的值或取值范围.1、设函数211log (2),1,()2,1,x x x f x x -+-<⎧=⎨≥⎩,2(2)(log 12)f f -+=( )A .3B .6C .9D .122、设函数()113,1,,1,x e x f x x x -⎧<⎪=⎨⎪≥⎩则使得()2f x ≤成立的x 的取值范围是________.3、(2022·泰州中学期初考试)下列关于x ,y 的关系中为函数的是( ) A.43y x x =-+-B.24y x =C.,112,1x x y x x ≥⎧=⎨-≤⎩D.4、(2022·湖南省雅礼中学开学考试)已知函数f (x )=⎩⎨⎧(x -1)2,x ≤1,log 12x ,x >1,f (x 0)=-2,则x 0= .5、(2022·湖北省新高考联考协作体高三起点考试)已知定义在R 上的偶函数()f x 和奇函数()g x 满足()()()22101x x f x g x a a a a -+=-+>≠,,则()1f =( )A. 1-B. 0C. 1D. 26、(2022·沭阳如东中学期初考试)(多选题)设函数y =f (x )定义域为D ,若存在x ,y ∈D ,且x ≠y ,使得2f (x +y 2)=f (x )+f (y ),则称函数y =f (x )是D 上的“S 函数”,下列函数是“S 函数”的是A .y =2xB .y =x -sin x +1C .y =ln xD .y =⎩⎪⎨⎪⎧1x ,x >01,x ≤07、已知f ⎝⎛⎭⎫x 2+1x 2=x 4+1x4,则f (x )=__________.。
高中试卷-3.1 函数的概念及其表示方法(含答案)

3.1 函数的概念及其表示方法1. 函数概念的理解;2. 求函数的定义域;3. 求函数值(值域);4. 函数的三种表示方法;5. 求函数解析式;6. 分段函数的概念;7.分段函数的求值;8.函数的图象及应用;9. 分段函数与方程、不等式综合问题一、单选题1.(2021·全国高一课时练习)设()1,01,01,0x x f x x x +>ìï==íï-<î,则()()0f f 等于( )A .1B .0C .2D .-1【答案】C 【解析】1,0()1,01,0x x f x x x +>ìï==íï-<îQ\ (0)1f =,((0))(1)112f f f ==+=.故选: C.2.(2021·浙江南湖嘉兴一中高一月考)下列函数中,与函数y =有相同定义域的是( )A.()f x =B .1()f x x=C .()||f x x =D.()f x =【答案】A 【解析】函数y =的定义域为{}0x x >;函数()f x ={}0x x >;函数1()f x x=的定义域为{}0,x x x ¹ÎR ;函数()f x x =的定义域为R ;函数()f x =定义域为{}1x x ….所以与函数y =有相同定义域的是()f x =.故选:A.3.(2021·浙江高一期中)函数1()f x x=的定义域是( )A .R B .[1,)-+¥C .(,0)(0,)-¥+¥U D .[1,0)(0,)-+¥U 【答案】D 【解析】由题意可得:10x +³,且0x ¹,得到1x ³-,且0x ¹,故选:D4.(2021·全国高一课时练习)已知函数f(x -1)=x 2-3,则f(2)的值为( )A .-2B .6C .1D .0【答案】B 【解析】令1x t -=,则1x t =+,()()213f t t \=+-,()()213f x x \=+-()()222136f \=+-=,故选B.5.(2021·全国高一课时练习)如果1f x æöç÷èø=1x x-,则当x≠0,1时,f(x)等于( )A .1xB .11x -C .11x-D .11x-【答案】B 【解析】令1x=t ,则x =1t ()1t ¹,代入1f x æöç÷èø=1x x -,则有f(t)=111t t-=11t -()1t ¹.即()()111f x x x =¹-.故选:B.6.(2021·全国高一课时练习)已知函数y =21,02,0x x x x ì+£í->î,则使函数值为5的x 的值是( )A .2-或2B .2或52-C .2-D .2或2-或52-【答案】C 【解析】当0x £时,令5y =,得215x +=,解得2x =-;当0x >时,令5y =,得25x -=,解得52x =-,不合乎题意,舍去.综上所述,2x =-.故选:C.7.(2021·全国高一课时练习)设函数若f (a )=4,则实数a =( )A .-4或-2B .-4或2C .-2或4D .-2或2【答案】B 【解析】当0a £时,()4f a a =-=,解得4a =-;当0a >时,24()f a a ==,解得2a =±,因为0a >,所以2a =,综上,4a =-或2,故答案选B 8.(2021·全国高一)函数()f x x =+的值域是( )A .1,2éö+¥÷êëøB .1,2æù-¥çúèûC .(0,)+¥D .[1,)+¥【答案】A【解析】t =,且0t ³,则212t x +=,函数转化为2211(1)22t y t t +=+=+由0t ³,则12y ≥,即值域为1,2éö+¥÷êëø故选:A.9.(2021·浙江高一课时练习)下列函数中,不满足:(2)2()f x f x =的是( )A .()f x x =B .()f x x x=-C .()1f x x =+D .()f x x=-【答案】C 【解析】A 中()()2222f x x x f x ===,B 中()()2222f x x x f x =-=,C 中()()2212f x x f x =+¹,D 中()()222f x x f x =-=10.(2021·浙江高一课时练习)设函数()f x 的定义域是[0,1],则函数()(2)(01)f x a f x a a +++<<的定义域为( )A .1,22a a -éù-êúëûB .,12a a éù--êúëûC .[,1]a a --D .1,2a a -éù-êúëû【答案】A 【解析】由1011021220101a x ax a a a x a x a a --ì+ìï-ïï+Þ-ííïï<<î<<ïî……………………得122a a x --……故选:A 二、多选题11.(2021·广东禅城 佛山一中高一月考)下列四个图形中可能是函数y =f (x )图象的是( )A .B .C .D .【答案】AD 【解析】在A ,D 中,对于定义域内每一个x 都有唯一的y 与之相对应,满足函数关系,在B ,C 中,存在一个x 有两个y 与x 对应,不满足函数对应的唯一性,故选AD.12.(2021·历下 山东师范大学附中高一学业考试)已知()221f x x +=,则下列结论正确的是( )A .()34f -=B .()2214x x f x -+=C .()2f x x=D .()39f =【答案】AB 【解析】由()221f x x +=,令21x t +=,可得12t x -=,可得:()222(1)2124t t t f t --+==,即:()2214x x f x -+=,故C 不正确,B 正确;可得:()2(31)344f ---==,故A 正确;()2(31)314f -==故D 不正确;故选:AB.13.(2021·江苏姑苏 苏州中学高一期中)下列各组函数中,两个函数是同一函数的有( )A .()||f x x =与()g x =B .()1f x x =+与21()1x g x x -=-C .||()x f x x =与1,0()1,0x g x x >ì=í-<îD .()f x =()g x =【答案】AC 【解析】对A, ()g x x ==,故A 正确.对B, ()1f x x =+定义域为R ,21()1x g x x -=-定义域为{}|1x x ¹,故B 错误.对C, 1,0()1,0x xf x x x >ì==í-<î,故C 正确.对D, ()f x =210x -³,解得1x £-或1x ³.()g x =定义域为1010x x +³ìí-³î即1x ³.故D 错误.故选:AC14.(2021·全国高一课时练习)已知函数()22,1,12x x f x x x +£-ì=í-<<î,关于函数()f x 的结论正确的是( )A .()f x 的定义域为RB .()f x 的值域为(),4-¥C .()13f =D .若()3f x =,则x E.()1f x <的解集为()1,1-【答案】BD 【解析】由题意知函数()f x 的定义域为(),2-¥,故A 错误;当1x £-时,()f x 的取值范围是(],1-¥,当12x -<<时,()f x 的取值范围是[)0,4,因此()f x 的值域为(),4-¥,故B 正确;当1x =时,()2111f ==,故C 错误;当1x £-时,23x +=,解得1x =(舍去),当12x -<<时,23x =,解得x =或x =,故D 正确;当1x £-时,21x +<,解得1x <-,当12x -<<时,21x <,解得11x -<<,因此()1f x <的解集为()(),11,1-¥--U ;故E 错误.故选:BD.三、填空题15.(2021·全国高一课时练习)下列对应或关系式中是A 到B 的函数的序号为________.①,ÎÎA R B R ,221x y +=;②A ={1,2,3,4},B ={0,1},对应关系如图:③,==A R B R ,1:2®=-f x y x ;④,==A Z B Z ,:®=f x y .【答案】②【解析】①,ÎÎA R B R ,221x y +=,存在x 对应两个y 的情况,所以不是A 到B 的函数;②符合函数的定义,是A 到B 的函数;③,==A R B R ,1:2®=-f x y x ,对于集合A 中的2x =没有对应y ,所以不是A 到B 的函数;④,==A Z B Z ,:®=f x y ,对于集合A 中的{|0,}x x x z £Î没有对应y ,所以不是A 到B的函数.故答案为:②16.(2021·浙江南湖 嘉兴一中高一月考)已知,若()()10f f a =,则a =______________.【答案】32【解析】0x >时,()20f x x =-<,∴由()10f x =知0x £,∴2110x +=,3x =-,而2()11f x x =+³,因此由()3f a =-知0a >,即23a -=-,32a =.故答案为:32.17.(2021·全国高一课时练习)已知()1,00,0x f x x ³ì=í<î则不等式()2xf x x +£的解集是________.【答案】{}|1x x £【解析】当0x ³时,()1f x =,代入()2xf x x +£,解得1x £,∴01x ££;当0x <时,()0f x =,代入()2xf x x +£,解得2x £,∴0x <;综上可知{}|1x x £.故答案为:{}|1x x £.四、双空题18.(2021·全国高一课时练习)已知f(x)=11x+ (x≠-1),g(x)=x 2+2,则f (2)=________,f(g (2))=________.【答案】13 17【解析】因为()11f x x =+,故可得()123f =;又()22g x x =+,故可得()22226g =+=;故()()()1267f g f ==.故答案为:13;17.19.(2021·安达市第七中学高一月考)设[]x 表示不超过x 的最大整数,已知函数[]()f x x x =-,则(0.5)f -=________ ;其值域为_________.【答案】0.5 [)0,1 【解析】作出函数[]()f x x x =-的图像,如图所示,由图可知(0.5)0.5(1)0.5f -=---=,其值域为[)0,1,故答案为(1). 0.5 (2). [)0,120.(2021·浙江高一期中)设函数()(2141x f x x ì<ï=í³ïî,则((0))f f =____,使得()4f a a ³的实数a 的取值范围是_____.【答案】4 1a £ 【解析】因为()(2141x f x x ì<ï=í³ïî,所以()01f =,因此((0))(1)4f f f ==;当1a <时,()4f a a ³可化为2(1)4+³a a ,即2(1)0a -³显然恒成立,所以1a <;当1a ³时,()44f a a =³,解得1a =;综上,1a £.故答案为4;1a £21.(2021·首都师范大学附属中学高一期中)已知函数22,(),x x x af x x x a ì-+£=í>î.(1)当a =1时,函数()f x 的值域是___________;(2)若函数()f x 的图像与直线y a =只有一个公共点,则实数a 的取值范围是_______________.【答案】R []0,1【解析】(1)当a =1时,22,1(),1x x x f x x x ì-+£=í>î当1x >时,()1f x x =>当1x £时,22()2(1)11f x x x x =-+=--+£所以函数()f x 的值域是(1,)(,1]R+¥-¥=U (2)因为当x a >时,()f x x a =>,所以只需函数2()2,()f x x x x a =-+£的图像与直线y a =只有一个公共点,当22x x x -+³,即01x ££时,所以当01a ££时,函数2()2,()f x x x x a =-+£的图像与直线y a =只有一个公共点,当22x x x -+<,即1x >或0x <时,所以当1a >或0a <,即2a x x >-+,从而函数2()2,()f x x x x a =-+£的图像与直线y a =无公共点,因此实数a 的取值范围是[]0,1故答案为:(1). R (2). []0,1五、解答题22.(2021·全国高一课时练习)求下列函数的定义域.(1)y =3-12x ;(2)y =(3)y(4)y 1x.【答案】(1)R ;(2)10,7éùêúëû;(3)()()2,11,---+¥U ;(4)()3,00,22éö-÷êëøU .【解析】(1)因为函数y =3-12x 为一次函数,所以该函数的定义域为全体实数R ;(2)由题意可得0170x x ³ìí-³î,解得107x ££,所以该函数的定义域为10,7éùêúëû;(3)由题意得1020x x +¹ìí+>î,解得2x >-且1x ¹-,所以该函数的定义域为()()2,11,---+¥U ;(4)由题意得230200x x x +³ìï->íï¹î,解得322x -£<且0x ¹,所以该函数的定义域为()3,00,22éö-÷êëøU .23.(2021·全国高一课时练习)已知2,11()1,11,1x x f x x x ì-££ï=>íï<-î(1)画出f(x)的图象;(2)若1()4f x =,求x 的值;(3)若1()4f x ³,求x 的取值范围.【答案】(1)作图见解析;(2)12x =±;(3)11,,22æùéö-¥-È+¥ç÷úêèûëø【解析】(1)函数2y x =的对称轴0x =,当0x =时,0y =;当1x =-时,1y =;当1x =时,1y =,则f(x)的图象如图所示.(2)1()4f x=等价于21114xx-££ìïí=ïî①或1114x>ìïí=ïî②或1114x<-ìïí=ïî③解①得12x=±,②③的解集都为Æ∴当1()4f x=时,12x=±.(3)由于1124fæö±=ç÷èø,结合此函数图象可知,使1()4f x³的x的取值范围是11,,22æùéö-¥-È+¥ç÷úêèûëø24.(2021·全国高一课时练习)根据下列条件,求f(x)的解析式.(1)f(x)是一次函数,且满足3f(x+1)-f(x)=2x+9;(2)f(x+1)=x2+4x+1;(3)12()(0) f f x x xxæö+=¹ç÷èø.【答案】(1)f(x)=x+3;(2)f(x)=x2+2x-2;(3)2()(0)33xf x xx=-¹【解析】(1)解由题意,设f(x)=ax+b(a≠0)∵3f(x+1)-f(x)=2x+9∴3a(x+1)+3b-ax-b=2x+9,即2ax+3a+2b=2x+9,由恒等式性质,得22 329 aa b=ìí+=î∴a=1,b=3∴所求函数解析式为f(x)=x+3.(2)设x+1=t,则x=t-1f(t)=(t-1)2+4(t-1)+1即f(t)=t2+2t-2.∴所求函数解析式为f(x)=x2+2x-2.(3)解1 ()2f x f xxæö+=ç÷èøQ,将原式中的x与1x互换,得112()f f xx xæö+=ç÷èø.于是得关于f(x)的方程组()()12112f x f x x f f x x x ìæö+=ç÷ïïèøíæöï+=ç÷ïèøî解得2()(0)33x f x x x =-¹.25.(2021·全国高一课时练习)已知函数22,2()2,2x x f x x x £ì=í+>î(1)若0)(8f x =,求0x 的值;(2)解不等式()8f x >.【答案】(1)0x =;(2){|>x x .【解析】(1)当02x £时,由02=8x ,得04x =,不符合题意;当02x >时,由2028+=x,得0x =0x =舍去),故0x =(2)()8f x >等价于228x x £ìí>î ——①或2228x x >ìí+>î——②解①得x f Î,解②得>x ,综合①②知()8f x >的解集为{|>x x .26.(2021·全国高一)已知(1)f x +的定义域为(2,4),(1)求()f x 的定义域;(2)求(2)f x 的定义域【答案】(1)(3,5);(2)35,22æöç÷èø.【解析】(1))1(f x +Q 的定义域为(2,4),24x \<<,则315x <+<,即()f x 的定义域为(3,5);(2)()f x Q 的定义域为(3,5);\由325x <<得3522x <<,即(2)f x 的定义域为35,22æöç÷èø.27.(2021·全国高一)若函数()f x =的定义域为R ,则m 的取值范围为多少?【答案】112mm ìü>íýîþ∣.【解析】Q 函数()f x =的定义域为R ,230mx x \++¹,若0m =,则3x ¹-,不满足条件.,若0m ¹,则判别式1120m D =-<,解得112m >,即1|12m m ìü>íýîþ。
专题3.1 函数的概念及其表示(练)(解析版)

专题3.1 函数的概念及其表示1.(2020·安徽省高三三模(理))已知集合{}2|2P x y x ==-,{}2|Q y y x ==,则P Q =( )A .2,2⎡⎤-⎣⎦B .0,2⎡⎤⎣⎦C .{}1D .{}1,1-【答案】B 【解析】{}2202,2P x x ⎡⎤=-≥=-⎣⎦,{}[)20,Q y y x ===+∞,0,2P Q ⎡⎤∴=⎣⎦. 故选:B .2.(2020·广西壮族自治区北流市实验中学高二期中(文))已知函数()()3,10{5,10n n f n f f n n -≥=⎡⎤+<⎣⎦,其中n N ∈,则()8f =( )A .6B .7C .2D .4 【答案】B 【解析】()()()()()813133101037.f ff f f ==-==-=故选B3.(山东省2018年普通高校招生(春季))函数的定义域是( )A. B. C. D.【答案】D 【解析】因为,所以所以定义域为,选D.4.(2017山东卷)设函数24y x =- 的定义域A ,函数y=ln(1-x)的定义域为B ,则A B=⋂( )A .(1,2)B .(1,2]C .(-2,1)D .[-2,1) 【答案】D【解析】由240x -≥得22x -≤≤,由10x ->得1x <, 故A B={|22}{|1}{|21}x x x x x x ⋂-≤≤⋂<=-≤<,选D.5.(2020·辽宁省高三二模(理))设函数21log (2),1(),1xx x f x e x +-<⎧=⎨≥⎩,则(2)(ln 6)f f -+=( ) A .3 B .6C .9D .12【答案】C 【解析】由题意,函数21log (2),1(),1xx x f x e x +-<⎧=⎨≥⎩, 则ln 62(2)(ln 6)1log [2(2)]1269f f e -+=+--+=++=.故选:C.6.(2020·北京高三月考)已知函数()y f x =满足(1)2()f x f x +=,且(5)3(3)4f f =+,则(4)f =( ) A .16 B .8C .4D .2【答案】B 【解析】因为(1)2()f x f x +=,且(5)3(3)4f f =+,故()()324442f f =+,解得()48f =. 故选:B7.(2020·嫩江市高级中学高一月考)已知函数f (x )R ,则实数m 取值范围为( ) A .{m |–1≤m ≤0} B .{m |–1<m <0} C .{m |m ≤0} D .{m |m <–1或m >0}【答案】A 【解析】∵函数f (x )R ,∴函数y =–mx 2+6mx –m +8的函数值非负,(1)当m =0时,y =8,函数值非负,符合题意;(2)当m ≠0时,要–mx 2+6mx –m +8恒为非负值,则–m >0,且关于x 的方程–mx 2+6mx –m +8=0根的判别式Δ≤0,即–m >0,且(6m )2–4(–m )(–m +8)≤0,即m <0,且m 2+m ≤0,解得–1≤m <0.综上,–1≤m ≤0. 故选A .8.(2020·辽宁省沈阳二中高三其他(理))已知函数13log ,02,0x x x f x x ()>⎧⎪=⎨⎪≤⎩,则[]9f f ()的值是______.【答案】14【解析】因为9>0,所以()13992f log ==-,又-2<0,所以[]219224f f f -=-==()(). 故答案为14. 9.(安徽省江淮十校2019届5月)已知函数22,0()21,0x x f x x x x ⎧>=⎨--+≤⎩,若(())4f f a =,则a =________.【答案】1或1- 【解析】 令()m f a =,则()4f m =,当0m >时,由24m =,解得2m =;当0m ≤时,由2213m m --+=,无解.故()2f a =,当0a >时,由22a =,解得1a =;当0a ≤时,由2212a a --=+,解得1a =-.综上:1a =或1a =-.故答案为1或1-10.(北京市房山区2019届一模)已知函数则______;求满足的的取值范围______. 【答案】【解析】 根据题意,函数,则对于,分种情况讨论:当时,,有,则无解;当时,若,即,解可得,此时不等式的解集为综合可得:的取值范围为本题正确结果:;1.(2019·河北省辛集中学高三开学考试(理))若()y f x =的定义域是[0,2],则函数(1)(21)f x f x ++-的定义域是( ). A .[1,1]- B .1,12⎡⎤⎢⎥⎣⎦C .13,22⎡⎤⎢⎥⎣⎦D .10,2⎡⎤⎢⎥⎣⎦【答案】B 【解析】由函数()f x 的定义域为[0,2]得0120212x x ≤+≤⎧⎨≤-≤⎩,解得112x ≤≤, 所以函数()()121f x f x ++-的定义域为1,12⎡⎤⎢⎥⎣⎦. 故选B .2.(2020·广东省高三其他(文))如图,OAB 是边长为2的正三角形,记OAB 位于直线(02)x t t =<左侧的图形的面积为()f t ,则()y f t =的大致图象为( )A .B .C .D .【答案】B 【解析】OAB 是边长为2的正三角形,当01t <≤时,21()2f t t =⨯=; 当12t <≤时,()))211()2222222f t t t t =⨯⨯--=--+.)22,01()22t f t t t <≤∴=⎨⎪-<≤⎪⎩.只有选项B 中图象符合 故选:B .3.(2018·湖北省高三期中(理))为更好实施乡村振兴战略,加强村民对本村事务的参与和监督,根据《村委会组织法》,某乡镇准备在各村推选村民代表.规定各村每15户推选1人,当全村户数除以15所得的余数大于10时再增加1人.那么,各村可推选的人数y 与该村户数x 之间的函数关系用取整函数[]y x =([]x 表示不大于x 的最大整数)可以表示为( ) A .1115x y +⎡⎤=⎢⎥⎣⎦B .415x y +⎡⎤=⎢⎥⎣⎦C .1015x y +⎡⎤=⎢⎥⎣⎦D .515x y +⎡⎤=⎢⎥⎣⎦【答案】B 【解析】当全村户数为25x =户时,应该选1人,即1y =. 对于A 选项中的函数112511211515x y ++⎡⎤⎡⎤===≠⎢⎥⎢⎥⎣⎦⎣⎦,A 选项错误; 对于B 选项中的函数425411515x y ++⎡⎤⎡⎤===⎢⎥⎢⎥⎣⎦⎣⎦,B 选项正确; 对于C 选项中的函数102510211515x y ++⎡⎤⎡⎤===≠⎢⎥⎢⎥⎣⎦⎣⎦,C 选项错误; 对于D 选项中的函数5255211515x y ++⎡⎤⎡⎤===≠⎢⎥⎢⎥⎣⎦⎣⎦,D 选项错误,故选B. 4.(2019·全国高三专题练习(文))函数223,0,(),0,x x f x x x --<⎧=⎨≥⎩若0a b >>,且()()f a f b =,则()f a b +的取值范围是( ) A .[1,)-+∞ B .[0,)+∞ C .[7,)-+∞ D .(,0]-∞【答案】A 【解析】设()()t f a f b ==, 作出()f x 的图象, 由图象知,0t ,由()2f a a t ==,得a t =,由()23f b b t =--=,得32tb --=, 则313222t a b t t t --+=+=-+- 21(1)12t =---,0t ,∴0t ,则21(1)112m t =----,即1m a b =+-,此时()()23231f a b f m m +==---=-, 即()f a b +的取值范围是[1-,)+∞, 故选:A .5.(2020·辽宁省高三一模(理))定义在()1,+∞上的函数()f x 满足下列两个条件(1)对任意的()1,x ∈+∞恒有()()22f x f x =成立;(2)当(]1,2x ∈时,()2f x x =-.则()6f 的值是__________.【答案】2 【解析】因为对任意的()1,x ∈+∞恒有()()22f x f x =成立, 所以有:()()()336232322422f f f f f ⎛⎫⎛⎫=⨯==⨯= ⎪ ⎪⎝⎭⎝⎭, 又因为当(]1,2x ∈时,()2f x x =-, 所以3312222f ⎛⎫=-=⎪⎝⎭, 所以()36422f f ⎛⎫== ⎪⎝⎭故答案为:26.(2020·上海高三专题练习)设函数122,1,()1log ,1,x x f x x x -⎧≤=⎨->⎩则满足()2f x ≤的x 的取值范围是_______________. 【答案】[0,)+∞ 【解析】1x ≤时,1()22x f x -=≤,11x -≤,0x ≥,∴01x ≤≤, 1x >时,2()1log 2f x x =-≤,2log 1x ≥-,12x ≥,所以1x >, 综上,原不等式的解集为[0,)+∞. 故答案为:[0,)+∞.7.(2020·上海高三专题练习)设函数,则满足31,1()2,1xx x f x x -<⎧=⎨≥⎩的()(())2f a f f a =的a 取值范围是__________. 【答案】2[,)3+∞ 【解析】令()f a t =,则()2t f t =当1t <时,312t t -=令1231,2ty t y =-=,1t <其图象如下图所示∴1t <时,312t t -=无解当1t ≥时,22t t =成立,由()1f a ≥,得 当1a <时,有311a -,解得213a < 当1a 时,有21a ,解得1a 综上,a 取值范围是2[,)3+∞ 故答案为2[,)3+∞8.(2018·全国高三专题练习(文))已知函数()(12)3,1ln ,1a x a x f x x x -+<⎧⎨⎩=的值域为R ,则实数a 的取值范围是________. 【答案】11,2⎡⎫-⎪⎢⎣⎭【解析】由题意知() 1y ln x x ≥=的值域为[0,+∞),故要使()f x 的值域为R ,则必有23(1)y a x a =-+为增函数,且1230a a ≥-+,所以120a ->且1a ≥-,解得112a ≤-<,实数a 的取值范围是11,2⎡⎫-⎪⎢⎣⎭. 9.(2019·江西省上高二中高三月考(理))已知函数2()2(,)f x ax x c a c N *=++∈满足:①(1)5f =;②6(2)11f <<.(1)求函数f(x)的解析式;(2)若对任意的实数13[,]22x ∈,都有()21f x mx -≤成立,求实数m 的取值范围. 【答案】(1)1,2a c ==;(2)94m ≥ 【解析】 (1)()125,3f a c c a =++=∴=- ……………①又∵()6211f <<,即64411a c <++<……② 将①式代入②式得1433a -<<,又*,a c N ∈,1,2a c ∴==. 2()22f x x x ∴=++ (2)由(1)得()222f x x x =++ 设()()()22212g x f x mx x m x =-=+-+①当()2112m --≤,即2m ≤时,()max 329324g x g m ⎛⎫==- ⎪⎝⎭,故只需29314m -≤, 解得2512m ≥,与2m ≤不合,舍去 ②当()2112m -->,即2m >时,()max 11324g x g m ⎛⎫==- ⎪⎝⎭,故只需1314m -≤,解得94m ≥,又2m >,故94m ≥ 综上,m 的取值范围为94m ≥10.(2018·北京高三期中(理))已知二次函数满足2()(0)f x ax bx c a =++≠,(1)()2,f x f x x +-= 且(0) 1.f =(1)求函数()f x 的解析式(2)求函数()f x 在区间[1,1]-上的值域;【答案】(1)2()1f x x x =-+;(2)3[,3]4【解析】(1)因为()01f =,所以1c =,所以()()210f x ax bx a =++≠;又因为()()12f x f x x +-=,所以()()()2211112a x b x ax bx x ⎡⎤++++-++=⎣⎦,所以22ax a b x ++=,所以220a a b =⎧⎨+=⎩,所以11a b =⎧⎨=-⎩,即()21f x x x =-+;(2)因为()21f x x x =-+,所以()f x 对称轴为12x =且开口向上, 所以()f x 在11,2⎡⎫-⎪⎢⎣⎭递减,在1,12⎡⎤⎢⎥⎣⎦递增,所以()min 111312424f x f ⎛⎫==-+= ⎪⎝⎭, 又()()211113f -=-++=,()211111f =-+=,所以()max 3f x =, 所以()f x 在[]1,1-上的值域为:3,34⎡⎤⎢⎥⎣⎦.1. (2017·浙江高考真题)若函数()2f x =x ax b ++在区间[0,1]上的最大值是M,最小值是m,则M m -的值( )A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关【答案】B 【解析】因为最值在2(0),(1)1,()24a a fb f a b f b ==++-=-中取,所以最值之差一定与b 无关,选B .2.(2017山东文)设,若,则( )A .2B .4C .6D .8 【答案】C 【解析】由时是增函数可知,若,则,所以,由得,解得,则,故选C.3.(2018上海卷)设是含数的有限实数集,是定义在上的函数,若的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,的可能取值只能是( )A .B .C .D .【答案】B【解析】由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转个单位后与下一个点会重合. 我们可以通过代入和赋值的方法当f (1)=,,0时,此时得到的圆心角为,,0,然而此时x=0或者x=1时,都有2个y 与之对应,而我们知道函数的定义就是要求一个x 只能对应一个y ,因此只有当x=,此时旋转,此时满足一个x 只会对应一个y ,故选:B .4.(2018年江苏卷)函数的定义域为________.【答案】[2,+∞) 【解析】要使函数有意义,则,解得,即函数的定义域为. 5.(2018·浙江高考真题)已知λ∈R ,函数f (x )=24,43,x x x x x λλ-≥⎧⎨-+<⎩,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________.【答案】(1,4) (1,3](4,)⋃+∞【解析】分析:根据分段函数,转化为两个不等式组,分别求解,最后求并集.先讨论一次函数零点的取法,再对应确定二次函数零点的取法,即得参数λ的取值范围.详解:由题意得240x x ≥⎧⎨-<⎩或22430x x x <⎧⎨-+<⎩,所以24x ≤<或12x <<,即14x <<,不等式f (x )<0的解集是(1,4),当4λ>时,()40f x x =->,此时2()430,1,3f x x x x =-+==,即在(,)λ-∞上有两个零点;当4λ≤时,()40,4f x x x =-==,由2()43f x x x =-+在(,)λ-∞上只能有一个零点得13λ<≤.综上,λ的取值范围为(1,3](4,)⋃+∞.6.(2017新课标全国Ⅲ理)设函数则满足的x 的取值范围是____________. 【答案】【解析】由题意得:当时,恒成立,即;当时,恒成立,即;当时,,即.综上,x的取值范围是.。
高三一轮复习 函数全章 练习(11套)+易错题+答案

第二章函数第1节函数概念及其表示方法一、选择题1.下列集合A到集合B的对应f是函数的是( A )(A)A={-1,0,1},B={0,1},f:A中的数平方(B)A={0,1},B={-1,0,1},f:A中的数开方(C)A=Z,B=Q,f:A中的数取倒数(D)A=R,B={正实数},f:A中的数取绝对值解析:按照函数定义,选项B中集合A中的元素1对应集合B中的元素±1,不符合函数定义中一个自变量的值对应唯一的函数值的条件;选项C中的元素0取倒数没有意义,也不符合函数定义中集合A中任意元素都对应唯一函数值的要求;选项D中,集合A中的元素0在集合B 中没有元素与其对应,也不符合函数定义,只有选项A符合函数定义.2.已知f(x-1)=2x-5,且f(a)=6,则a等于( B )(A)- (B) (C) (D)-解析:令t=x-1,则x=2t+2,f(t)=2(2t+2)-5=4t-1,又由f(a)=6,则4a-1=6,解得a=.3.若f(1-2x)=(x≠0),那么f()等于( C )(A)1 (B)3 (C)15 (D)30解析:法一令1-2x=t,则x=(t≠1),则f(t)=-1,则f()=16-1=15.法二令1-2x=,得x=,则f()=16-1=15.4.已知f(x)=的值域为R,那么a的取值范围是( C )(A)(-∞,-1] (B)(-1,)(C)[-1,) (D)(0,)解析:要使函数f(x)的值域为R,需使则则-1≤a<.即a的取值范围是[-1,).5.已知函数f(x)=且f(a)=-1,则f(6-a)等于( A )(A)1 (B)2 (C)3 (D)4解析:由题意,知a>0,则由-log2(a+1)+2=-1,解得a=7,所以f(6-a)= f(-1)=2-1+1=1,故选A.6.设函数y=f(x)在R上有定义,对于任一给定的正数p,定义函数f p(x)=则称函数f p(x)为f(x)的“p界函数”,若给定函数f(x)=x2-2x-1,p=2,则下列结论不成立的是( B )(A)f p[f(0)]=f[f p(0)] (B)f p[f(1)]=f[f p(1)](C)f p[f p(2)]=f[f(2)] (D)f p[f p(3)]=f[f(3)]解析:给定函数f(x)=x2-2x-1,p=2,则f(1)=-2,f p(1)=-2,所以f[f p(1)]=f(-2)=7,f p[f(1)]=f p(-2)=2,所以f p[f(1)]≠f[f p(1)],故选B.二、填空题7.函数y=的定义域是.解析:要使函数有意义,需满足即x<且x≠-1.答案:(-∞,-1)∪(-1,)8.已知函数f(x)=且f(a)=-3,则f(5-a)= . 解析:若a≤1,则2a-2=-3,即2a=-1,不合题设;故a>1,即-log2(a+1)=-3,解之得a=7,代入f(5-a)=f(-2)=-2=-.答案:-9.已知f(2x-2)的定义域是[1,2],则f(2x+1)的定义域为.解析:由题知f(2x-2)中1≤x≤2,则0≤2x-2≤2,即f(x)的定义域为[0,2],所以0≤2x+1≤2,得-≤x≤,故f(2x+1)的定义域为[-,].答案:[-,]10.定义在R上的函数f(x)满足f(x-1)=2f(x),若当0≤x≤1时,f(x)=x(1-x),则当1≤x≤2时,f(x)= .解析:由f(x-1)=2f(x),则f(x)=f(x-1).由1≤x≤2,则0≤x-1≤1.又当0≤x≤1时,f(x)=x(1-x),则f(x-1)=(x-1)[1-(x-1)]=(x-1)(2-x),则f(x)=f(x-1)=(x-1)(2-x).答案:(x-1)(2-x)11.定义在R上的函数f(x)满足f(x+y)=f(x)+f(y)+2xy(x,y∈R), f(1)=2,则f(-3)= .解析:令x=1,y=1,则f(2)=f(1)+f(1)+2=6,令x=2,y=1,则f(3)=f(2)+f(1)+4=12,令x=0,y=0,则f(0)=0,令y=-x,则f(0)=f(x)+f(-x)-2x2,则f(-x)=f(0)-f(x)+2x2,则f(-3)=f(0)-f(3)+2×32=0-12+18=6.答案:612.设函数f(x)=则满足f(f(a))=2f(a)的a的取值范围为.解析:由f(f(a))=2f(a)得,f(a)≥1.当a<1时,有3a-1≥1,则a≥,则≤a<1;当a≥1时,有2a≥1,则a≥0,则a≥1.综上,a≥.答案:[,+∞)三、解答题13.设函数f(x)满足2f()+f()=1+x,其中x≠0,x∈R,求f(x). 解:令x=t,则2f()+f()=1+t,①令x=-t,则2f()+f()=1-t,②由①②得f()=t+,令=x可得f(x)=+,x≠1.14.已知函数f(x)满足f(x+y)+f(x-y)=2f(x)·f(y),且f(0)≠0,若f()=0,求f(π)及f(2π)的值.解:令x=y=0,则f(0)+f(0)=2[f(0)]2,则f(0)[f(0)-1]=0,由f(0)≠0,则f(0)=1,令x=y=,则f(π)+f(0)=2[f()]2=0,则f(π)=-1;令x=y=π,则f(2π)+f(0)=2[f(π)]2=2,则f(2π)=1.第2节二次函数一、选择题1.函数f(x)=2x2-mx+3,当x∈[-2,+∞)时,f(x)是增函数,当x∈(-∞,-2]时,f(x)是减函数,则f(1)的值为( B )(A)-3 (B)13 (C)7 (D)5解析:函数f(x)=2x2-mx+3图象的对称轴为直线x=,由函数f(x)的增减区间可知=-2,所以m=-8,即f(x)=2x2+8x+3,所以f(1)=2+8+3=13.2.已知二次函数f(x)满足f(2+x)=f(2-x),且f(x)在[0,2]上是增函数,若f(a)≥f(0),则实数a的取值范围是( C )(A)[0,+∞) (B)(-∞,0](C)[0,4] (D)(-∞,0]∪[4,+∞)解析:由f(2+x)=f(2-x)可知,函数f(x)图象的对称轴为x==2,又函数f(x)在[0,2]上单调递增,所以由f(a)≥f(0)可得0≤a≤4.3.若函数f(x)=(1-x2)(x2+ax-5)的图象关于直线x=0对称,则f(x)的最大值是( B )(A)-4 (B)4 (C)4或-4 (D)不存在解析:依题意,函数f(x)是偶函数,则y=x2+ax-5是偶函数,故a=0,则f(x)=(1-x2)(x2-5)=-x4+6x2-5=-(x2-3)2+4,当x2=3时,f(x)取最大值为4.4.设函数f(x)=x2-23x+60,g(x)=f(x)+|f(x)|,则g(1)+g(2)+…+g(20)等于( B )(A)56 (B)112 (C)0 (D)38解析:由二次函数图象的性质得,当3≤x≤20时,f(x)+|f(x)|=0,所以g(1)+g(2)+…+g(20)=g(1)+g(2)=f(1)+|f(1)|+f(2)+|f(2)|=112.5.已知函数f(x)(x∈R)满足f(x)=f(2-x),若函数y=|x2-2x-3|与y=f(x)图象的交点为(x1,y1),(x2,y2),…,(x m,y m),则x1+x2+…+x m等于( B )(A)0 (B)m (C)2m (D)4m解析:由f(x)=f(2-x)知函数f(x)的图象关于直线x=1对称,又y=|x2-2x-3|的图象也关于直线x=1对称,所以这两函数的交点也关于直线x=1对称.不妨设x1<x2<…<x m,则=1,即x1+x m=2,同理x2+x m-1=2,x3+x m-2=2,…,设S m=x1+x2+…+x m,则S m=x m+x m-1+ (x1)所以2S m=(x1+x m)+(x2+x m-1)+…+(x m+x1)=2m,所以S m=m.6.设函数f(x)=,g(x)=ax2+bx(a,b∈R,a≠0),若y=f(x)的图象与y=g(x)的图象有且仅有两个不同的公共点A(x1,y1),B(x2,y2),则下列判断正确的是( D )(A)当a<0时,x1+x2<0,y1+y2<0(B)当a<0时,x1+x2>0,y1+y2>0(C)当a>0时,x1+x2>0,y1+y2<0(D)当a>0时,x1+x2<0,y1+y2>0解析:当a<0时,作出两个函数的图象,如图,因为函数f(x)是奇函数,所以A与A′关于原点对称,显然x2>-x1>0,即x1+x2>0,-y1>y2,即y1+y2<0;当a>0时,作出两个函数的图象,同理有x1+x2<0,y1+y2>0.二、填空题7.二次函数的图象与x轴只有一个交点,对称轴为x=3,与y轴交于点(0,3).则它的解析式为 .解析:由题意知,可设二次函数的解析式为y=a(x-3)2,又图象与y轴交于点(0,3),所以3=9a,即a=,所以y=(x-3)2=x2-2x+3.答案:y=x2-2x+38.若函数f(x)=(x+a)(bx+2a)(常数a,b∈R)是偶函数,且它的值域为(-∞,4],则该函数的解析式f(x)= .解析:由f(x)是偶函数知f(x)图象关于y轴对称,所以b=-2,所以f(x)=-2x2+2a2,又f(x)的值域为(-∞,4],所以2a2=4,故f(x)=-2x2+4.答案:-2x2+49.若关于x的不等式x2-4x≥m对任意x∈(0,1]恒成立,则m的取值范围为.解析:只需要在x∈(0,1]时,(x2-4x)min≥m即可.因为函数f(x)=x2-4x在(0,1]上为减函数,所以当x=1时,(x2-4x)min=1-4=-3,所以m≤-3.答案:(-∞,-3]10.若函数f(x)=x2-x+a的定义域和值域均为[1,b](b>1),则a= ,b= .解析:因为f(x)=(x-1)2+a-,所以其对称轴为x=1,即[1,b]为f(x)的单调递增区间.所以f(x)min=f(1)=a-=1,①f(x)max=f(b)=b2-b+a=b,②由①②解得答案: 311.设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若函数y=f(x)-g(x)在x∈[a,b]上有两个不同的零点,则称f(x)和g(x)在[a,b]上是“关联函数”,区间[a,b]称为“关联区间”.若f(x)=x2-3x+4与g(x)=2x+m在[0,3]上是“关联函数”,则m的取值范围为.解析:由题意知,y=f(x)-g(x)=x2-5x+4-m在[0,3]上有两个不同的零点.在同一直角坐标系下作出函数y=m与y=x2-5x+4(x∈[0,3])的图象如图所示,结合图象可知,当x∈[2,3]时,y=x2-5x+4∈[-,-2],故当m∈(-,-2]时,函数y=m与y=x2-5x+4(x∈[0,3])的图象有两个交点.答案:(-,-2]12.若函数f(x)=cos 2x+asin x在区间(,)上是减函数,则a的取值范围是.解析:f(x)=cos 2x+asin x=-2sin2x+asin x+1,令sin x=t,则f(x)=-2t2+at+1,因为x∈(,),所以t∈(,1).因为f(x)在x∈(,)上是减函数,所以y=-2t2+at+1在t∈(,1)上是减函数,又对称轴是t=,所以≤,所以a≤2.答案:(-∞,2]三、解答题13.已知二次函数f(x)的二次项系数为a,且f(x)>-2x的解集为{x|1<x<3},方程f(x)+6a=0有两个相等的实根,求f(x)的解析式. 解:设f(x)+2x=a(x-1)(x-3)(a<0),则f(x)=ax2-4ax+3a-2x,因为f(x)+6a=ax2-(4a+2)x+9a=0有两个相等的实根,所以Δ=(4a+2)2-36a2=0,解得a=-,或a=1(舍去).因此f(x)的解析式为f(x)=-x2-x-.14.已知函数f(x)=x2-2ax+5(a>1).若f(x)在区间(-∞,2]上是减函数,且对任意的x1,x2∈[1,a+1],总有|f(x1)-f(x2)|≤4,求实数a的取值范围.解:因为f(x)的对称轴方程为x=a,且f(x)在区间(-∞,2]上是减函数,所以a≥2.又x∈[1,a+1],且(a+1)-a≤a-1,所以f(x)max=f(1)=6-2a,f(x)min=f(a)=5-a2.因为对任意的x1,x2∈[1,a+1],总有|f(x1)-f(x2)|≤4,所以f(x)max-f(x)min≤4,得-1≤a≤3.又a≥2,所以2≤a≤3.所以a的取值范围是[2,3].15.已知函数f(x)= (k∈Z)满足f(2)<f(3).(1)求k的值并求出相应的f(x)的解析式;(2)对于(1)中得到的函数f(x),试判断是否存在q>0,使函数g(x)=1-qf(x)+(2q-1)x在区间[-1,2]上的值域为[-4,]?若存在,求出q;若不存在,请说明理由.解:(1)由已知,f(x)在第一象限是增函数.故-k2+k+2>0,解得-1<k<2.又因为k∈Z,所以k=0或k=1.当k=0或k=1时,-k2+k+2=2,所以f(x)=x2.(2)假设存在q>0满足题设,由(1)知g(x)=-qx2+(2q-1)x+1,x∈[-1,2].因为g(2)=-1,所以两个最值点只能在端点(-1,g(-1))和顶点(,)处取得.所以-1<<2,q>0,g(x)max==,g(x)min=g(-1)=2-3q=-4.解得q=2,所以存在q=2满足题意.第3节二次函数与不等式一、选择题1.已知不等式2x≤x2的解集为P,不等式(x-1)(x+2)<0的解集为Q,则集合P∩Q等于( B )(A){x|-2<x≤2} (B){x|-2<x≤0}(C){x|0≤x<1} (D){x|-1<x≤2}解析:P={x|x2-2x≥0}={x|x≤0或x≥2},Q={x|-2<x<1},所以P∩Q={x|-2<x≤0}.2.使不等式2x2-5x-3≥0成立的一个充分不必要条件是( C )(A)x≥0 (B)x<0或x>2(C)x∈{-1,3,5} (D)x≤-或x≥3解析:不等式2x2-5x-3≥0的解集是{x|x≥3或x≤-}.由题意,选项中x的范围应该是上述解集的真子集,只有C满足. 3.已知函数f(x)=-x2-mx+1,若对于任意x∈[m,m+1],都有f(x)>0成立,则实数m的取值范围是( B )(A)[-,0] (B)(-,0)(C)[0,] (D)(0,)解析:函数f(x)=-x2-mx+1的图象开口向下,且过点(0,1),所以为使对于任意x∈[m,m+1],都有f(x)>0,须即所以-<m<0.4.若关于x的不等式ax-b>0的解集是(-∞,-2),则关于x的不等式>0的解集为( B )(A)(-2,0)∪(1,+∞)(B)(-∞,0)∪(1,2)(C)(-∞,-2)∪(0,1)(D)(-∞,1)∪(2,+∞)解析:关于x的不等式ax-b>0的解集是(-∞,-2),所以a<0,=-2,所以b=-2a,所以=>0,因为a<0,所以<0,解得x<0或1<x<2.5.若不等式x2+ax-2>0在区间[1,5]上有解,则a的取值范围是( A )(A)(-,+∞) (B)[-,1](C)(1,+∞) (D)(-∞,-]解析:由Δ=a2+8>0,知方程恒有两个不等实根,又知两根之积为负,所以方程必有一正根、一负根.于是不等式在区间[1,5]上有解的充要条件是f(5)>0,解得a>-,故a的取值范围为(-,+∞).6.已知f(x)=不等式f(x+a)>f(2a-x)在[a,a+1]上恒成立,则实数a的取值范围是( A )(A)(-∞,-2) (B)(-∞,0)(C)(0,2) (D)(-2,0)解析:f(x)为R上的减函数,故f(x+a)>f(2a-x)⇔x+a<2a-x,即2x<a在[a,a+1]上恒成立,所以(2x)max=2(a+1)<a,得a<-2.二、填空题7.不等式<4的解集为.解析:由题意得x2-x<2⇒-1<x<2,解集为(-1,2).答案:(-1,2)8. 若“x∈{a,3}”是“不等式2x2-5x-3≥0成立”的一个充分不必要条件,则实数a的取值范围是.解析:由题设2a2-5a-3≥0,解得a≥3或a≤-,由集合中元素的互异性可得a≠3.答案:(-∞,-]∪(3,+∞)9.设f(x)是定义在R上的以3为周期的奇函数,若f(1)>1,f(2)=,则实数a的取值范围是.解析:因为f(x+3)=f(x),所以f(2)=f(-1+3)=f(-1)=-f(1)<-1. 所以<-1⇔<0⇔(3a-2)(a+1)<0,所以-1<a<.答案:(-1,)10.在R 上定义运算:( a b c d )=ad-bc,若不等式(121 x a a x --+ )≥1对任意实数x 恒成立,则实数a 的最大值为 .解析:由定义知,不等式(121 x a a x --+ )≥1等价于x 2-x-(a 2-a-2)≥1, 所以x 2-x+1≥a 2-a 对任意实数x 恒成立.因为x 2-x+1=(x-)2+≥,所以a 2-a ≤,解得-≤a ≤,则实数a 的最大值为.答案:11.对于实数x,规定[x]表示不大于x 的最大整数,那么不等式4[x]2-36[x]+45<0的解集为 .解析:由题意解得<[x]<,所以[x]的取值为2,3,4,5,6,7,又[x]表示不大于x 的最大整数,故2≤x<8.答案:[2,8)12.已知f(x)=m(x-2m)(x+m+3),g(x)=2x -2.若同时满足条件: ①对任意x ∈R,f(x)<0或g(x)<0;②存在x∈(-∞,-4),f(x)g(x)<0.则m的取值范围是.解析:当x<1时,g(x)<0,当x>1时,g(x)>0,当x=1时,g(x)=0,m=0不符合要求;当m>0时,根据函数f(x)和函数g(x)的单调性,一定存在区间[a,+∞)使f(x)≥0且g(x)≥0,故m>0时不符合第①条的要求;当m<0时,如图所示,如果符合①的要求,则函数f(x)的两个零点都得小于1,如果符合第②条要求,则函数f(x)至少有一个零点小于-4,问题等价于函数f(x)有两个不相等的零点,其中较大的零点小于1,较小的零点小于-4,函数f(x)的两个零点是2m,-(m+3),故m满足或解第一个不等式组得-4<m<-2,第二个不等式组无解,故所求m的取值范围是(-4,-2).答案:(-4,-2)三、解答题13.已知函数f(x)=x2-(a+1)x+b.(1)若f(x)<0的解集为(-1,3),求a,b的值;(2)当a=1时,若对任意x∈R,f(x)≥0恒成立,求实数b的取值范围;(3)当b=a时,解关于x的不等式f(x)<0(结果用a表示).解:(1)由已知,x2-(a+1)x+b=0的两个根为-1和3,所以解得a=1,b=-3.(2)当a=1时,f(x)=x2-2x+b,因为对任意x∈R,f(x)≥0恒成立,所以Δ=(-2)2-4b≤0,解得b≥1,所以实数b的取值范围是[1,+∞).(3)当b=a时,f(x)<0,即x2-(a+1)x+a<0,所以(x-1)(x-a)<0,所以当a<1时,不等式f(x)<0的解集为{x|a<x<1};当a=1时,不等式f(x)<0的解集为 ;当a>1时,不等式f(x)<0的解集为{x|1<x<a}.14.已知a是实数,函数f(x)=2ax2+2x-3在[-1,1]上恒小于零,求实数a的取值范围.解:由题可知2ax2+2x-3<0在[-1,1]上恒成立.当x=0时,有-3<0恒成立;当x≠0时,a<(-)2-,因为∈(-∞,-1]∪[1,+∞),当=1,即x=1时,不等式右边取最小值,所以a<.实数a的取值范围是(-∞,).15.已知函数f(x)=ax2+bx+c(a>0,b∈R,c∈R).(1)若函数f(x)的最小值是f(-1)=0,且c=1,F(x)=求F(2)+F(-2)的值;(2)若a=1,c=0,且|f(x)|≤1在区间(0,1]上恒成立,试求b的取值范围.解:(1)由已知c=1,a-b+c=0,且-=-1,解得a=1,b=2.所以f(x)=(x+1)2.所以F(x)=所以F(2)+F(-2)=(2+1)2-(-2+1)2=8.(2)由题可知,f(x)=x2+bx,原命题等价于-1≤x2+bx≤1在(0,1]上恒成立,即b≤-x且b≥--x在(0,1]上恒成立.又-x的最小值为0,--x的最大值为-2,所以-2≤b≤0.故b的取值范围是[-2,0].第4节函数的单调性与最值一、选择题1.给定函数①y=,②y=lo(x+1),③y=,④y=2x+1.其中在区间(0,1)上单调递减的函数序号是( B )(A)①②(B)②③(C)③④(D)①④解析:①y=在(0,1)上递增;②因为t=x+1在(0,1)上递增,且0<<1,故y=lo(x+1)在(0,1)上递减;③结合图象可知y=|x-1|在(0,1)上递减;④因为u=x+1在(0,1)上递增,且2>1,故y=2x+1在(0,1)上递增.故在区间(0,1)上单调递减的函数序号是②③.2.定义在R上的函数f(x)的图象关于直线x=2对称,且f(x)在(-∞,2)上是增函数,则( A )(A)f(-1)<f(3) (B)f(0)>f(3)(C)f(-1)=f(3) (D)f(0)=f(3)解析:依题意得f(3)=f(1),且-1<1<2,于是由函数f(x)在(-∞,2)上是增函数得f(-1)<f(1)=f(3).同理f(0)<f(3).3.函数y=()的单调递增区间为( B )(A)(1,+∞) (B)(-∞,](C)(,+∞) (D)[,+∞)解析:令u=2x2-3x+1=2(x-)2-.因为u=2(x-)2-在(-∞,]上单调递减,函数y=()u在R上单调递减.所以y=()在(-∞,]上单调递增,即该函数的单调递增区间为(-∞,].4.已知f(x)=是(-∞,+∞)上的减函数,那么a的取值范围是( C )(A)(0,1) (B)(0,)(C)[,) (D)[,1)解析:当x=1时,log a1=0,若f(x)为R上的减函数,则(3a-1)x+4a>0在x<1时恒成立,令g(x)=(3a-1)x+4a,则必有即解得≤a<.此时,log a x是减函数,符合题意.5.已知a>0,设函数f(x)=(x∈[-a,a])的最大值为M,最小值为N,那么M+N等于( D )(A)2 016 (B)2 018(C)4 032 (D)4 034解析:由题意得f(x)==2018-.因为y=2 018x+1在[-a,a]上是单调递增的,所以f(x)=2018-在[-a,a]上是单调递增的,所以M=f(a),N=f(-a),所以M+N=f(a)+f(-a)=4 036--=4 034.6.已知函数f(x)的图象关于(1,0)对称,当x>1时,f(x)=log a(x-1),且f(3)=-1,若x1+x2<2,(x1-1)(x2-1)<0,则( B )(A)f(x1)+f(x2)<0 (B)f(x1)+f(x2)>0(C)f(x1)+f(x2)可能为0 (D)f(x1)+f(x2)可正可负解析:因为当x>1时,f(x)=log a(x-1),f(3)=log a2=-1,所以a=,故函数f(x)在(1,+∞)上为减函数,若x1+x2<2,则x2<2-x1,又(x1-1)(x2-1)<0,不妨令x1<1,x2>1,所以f(x2)>f(2-x1),又因为函数f(x)的图象关于(1,0)对称,所以f(x1)=-f(2-x1),此时f(x1)+f(x2)=-f(2-x1)+f(x2)>0.二、填空题7.函数y=-(x-3)|x|的递增区间是.解析:y=画图象如图所示,可知递增区间为[0,].答案:[0,]8.已知函数f(x)为(0,+∞)上的增函数,若f(a2-a)>f(a+3),则实数a 的取值范围为.解析:由已知可得解得-3<a<-1或a>3.答案:(-3,-1)∪(3,+∞)9.函数f(x)=lg(9-x2)的定义域为;其单调递增区间为.解析:对于函数f(x)=lg(9-x2),令9-x2>0,解得-3<x<3,即函数的定义域为(-3,3).令g(x)=9-x2,则函数f(x)=lg(g(x)),又函数g(x)在定义域内的增区间为(-3,0].所以函数f(x)=lg(9-x2)在定义域内的单调递增区间为(-3,0].答案:(-3,3) (-3,0]10.已知函数f(x)=则f(x)的最小值是.解析:当x≥1时,x+-3≥2-3=2-3,当且仅当x=,即x=时等号成立,此时f(x)min=2-3<0;当x<1时,lg(x2+1)≥lg(02+1)=0,此时f(x)min=0.所以f(x)的最小值为2-3.答案:2-311.设0<x<1,则函数y=+的最小值是.解析:y=+=,当0<x<1时,0<x(1-x)=-(x-)2+≤.所以y≥4.答案:412.已知f(x)=不等式f(x+a)>f(2a-x)在[a,a+1]上恒成立,则实数a的取值范围是.解析:作出函数f(x)图象的草图如图,易知函数f(x)在R上为减函数,所以不等式f(x+a)>f(2a-x)在[a,a+1]上恒成立等价于x+a<2a-x,即x<在[a,a+1]上恒成立,所以只需a+1<,即a<-2.答案:(-∞,-2)三、解答题13.求f(x)=x2-2ax-1在区间[0,2]上的最大值和最小值.解:f(x)=(x-a)2-1-a2,对称轴为x=a.(1)当a<0时,由图①可知,f(x)min=f(0)=-1,f(x)max=f(2)=3-4a.(2)当0≤a<1时,由图②可知,f(x)min=f(a)=-1-a2,f(x)max=f(2)=3-4a.(3)当1<a≤2时,由图③可知,f(x)min=f(a)=-1-a2,f(x)max=f(0)=-1.(4)当a>2时,由图④可知,f(x)min=f(2)=3-4a,f(x)max=f(0)=-1.综上,当a<0时,f(x)min=-1,f(x)max=3-4a;当0≤a<1时,f(x)min=-1-a2,f(x)max=3-4a;当1<a≤2时,f(x)min=-1-a2,f(x)max=-1;当a>2时,f(x)min=3-4a,f(x)max=-1.14.已知f(x)=(x≠a).(1)若a=-2,试证明f(x)在(-∞,-2)内单调递增;(2)若a>0且f(x)在(1,+∞)上单调递减,求a的取值范围.(1)证明:任取x1<x2<-2,则f(x1)-f(x2)=-=.因为(x1+2)(x2+2)>0,x1-x2<0,所以f(x1)-f(x2)<0,即f(x1)<f(x2),所以f(x)在(-∞,-2)上单调递增.(2)解:任取1<x1<x2,则f(x1)-f(x2)=-=.因为a>0,x2-x1>0,所以要使f(x1)-f(x2)>0,只需(x1-a)(x2-a)>0在(1,+∞)上恒成立,所以a≤1.综上所述,a的取值范围是(0,1].15.函数y=f(x)的定义域为R,若存在常数M>0,使得|f(x)|≥M|x|对一切实数x均成立,则称f(x)为“圆锥托底型”函数.(1)判断函数f(x)=2x,g(x)=x3是否为“圆锥托底型”函数?并说明理由.(2)若f(x)=x2+1是“圆锥托底型”函数,求出M的最大值.解:(1)对于函数f(x)=2x,因为|2x|=2|x|≥2|x|,即对于一切实数x使得|f(x)|≥2|x|成立,所以函数f(x)=2x是“圆锥托底型”函数.对于g(x)=x3,如果存在M>0满足|x3|≥M|x|,而当x=时,由||3≥M||,所以≥M,得M≤0,矛盾,所以g(x)=x3不是“圆锥托底型”函数.(2)因为f(x)=x2+1是“圆锥托底型”函数,故存在M>0,使得|f(x)|=|x2+1|≥M|x|对于任意实数恒成立.所以x≠0时,M≤|x+|=|x|+,此时当x=±1时,|x|+取得最小值2,所以M≤2.而当x=0时,也成立.所以M的最大值等于2.第5节函数的奇偶性与周期性一、选择题1.在函数y=xcos x,y=e x+x2,y=lg,y=xsin x中,偶函数的个数是( B )(A)3 (B)2 (C)1 (D)0解析:y=xcos x是奇函数,y=lg和y=xsin x是偶函数,y=e x+x2是非奇非偶函数,所以偶函数的个数是2.2.下列函数中,既是偶函数,又在区间(1,2)内是增函数的为( B )(A)y=cos 2x,x∈R(B)y=log2|x|,x∈R且x≠0(C)y=,x∈R(D)y=x3+1,x∈R解析:选项A中函数y=cos 2x在区间(0,)上单调递减,不满足题意;选项C中的函数为奇函数;选项D中的函数为非奇非偶函数.3.设f(x)=x+sin x(x∈R),则下列说法错误的是( D )(A)f(x)是奇函数(B)f(x)在R上单调递增(C)f(x)的值域为R(D)f(x)是周期函数解析:因为f(-x)=-x+sin(-x)=-(x+sin x)=-f(x),所以f(x)为奇函数,故A正确;因为f′(x)=1+cos x≥0,所以函数f(x)在R上单调递增,故B正确;f(x)的值域为R,故C正确;f(x)不是周期函数,D错误. 4.已知定义域为{x|x≠0}的函数f(x)为偶函数,且f(x)在区间(-∞,0)上是增函数,若f(-3)=0,则<0的解集为( D )(A)(-3,0)∪(0,3) (B)(-∞,-3)∪(0,3)(C)(-∞,-3)∪(3,+∞) (D)(-3,0)∪(3,+∞)解析:由已知条件,可得函数f(x)的图象大致如图,故<0的解集为(-3,0)∪(3,+∞).5.设函数f(x)(x∈R)满足f(x+π)=f(x)+sin x.当0≤x<π时,f(x)=0,则f()等于( A )(A) (B) (C)0 (D)-解析:因为f(x+2π)=f(x+π)+sin(x+π)=f(x)+sin x-sin x=f(x),所以f(x)的周期T=2π,又因为当0≤x<π时,f(x)=0,所以f()=f(-+π)=f(-)+sin(-)=0,所以f(-)=,所以f()=f(4π-)=f(-)=.6.已知定义在R上的奇函数f(x)在x>0时满足f(x)=x4,且f(x+t)≤4f(x)在x∈[1,16]时恒成立,则实数t的最大值是( A )(A)-1 (B)16(-1)(C)+1 (D)16(+1)解析:因为f(x)在x>0时满足f(x)=x4,所以f(x)在(0,+∞)上单调递增,又f(x)在R上为奇函数,所以f(x)在R上单调递增,而f(x+t)≤4f(x)(x∈[1,16])等价于f(x+t)≤f(x)(x∈[1,16]),即当x∈[1,16]时,x+t≤x恒成立,即t≤(-1)x,x∈[1,16],所以只需t≤-1,故t的最大值为-1.二、填空题7.设函数f(x)=x(e x+a)(x∈R)是偶函数,则实数a的值为.解析:因为f(x)是偶函数,所以恒有f(-x)=f(x),即-x(e-x+ae x)=x(e x+ae-x),化简得x(e-x+e x)(a+1)=0.因为上式对任意实数x都成立,所以a=-1.答案:-18.设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),则f(-1)= .解析:因为f(x)是定义在R上的奇函数,因此f(-x)+f(x)=0.当x=0时,可得f(0)=0,可得b=-1,此时f(x)=2x+2x-1,因此f(1)=3.又f(-1)=-f(1),所以f(-1)=-3.答案:-39.奇函数f(x)的周期为4,且x∈[0,2],f(x)=2x-x2,则f(2 018)+f(2 019)+f(2 020)的值为.解析:函数f(x)是奇函数,则f(0)=0,由f(x)=2x-x2,x∈[0,2]知f(1)=1,f(2)=0,又f(x)的周期为4,所以f(2 018)+f(2 019)+f(2 020)=f(2)+f(3)+f(0)=f(3)=f(-1)=-f(1)=-1.答案:-110.设函数f(x)是定义在R上的奇函数,若f(x)满足f(x+3)=f(x),且f(1)≥1,f(2)=,则m的取值范围是.解析:因为f(x+3)=f(x),所以f(2)=f(-1+3)=f(-1).因为f(x)为奇函数,且f(1)≥1,所以f(-1)=-f(1)≤-1,所以≤-1.解得-1<m≤.答案:(-1,]11.已知函数f(x)满足:f(1)=,4f(x)f(y)=f(x+y)+f(x-y)(x,y∈R),则f(2 018)= .解析:法一令x=1,y=0时,4f(1)·f(0)=f(1)+f(1),解得f(0)=,令x=1,y=1时,4f(1)·f(1)=f(2)+f(0),解得f(2)=-,令x=2,y=1时,4f(2)·f(1)=f(3)+f(1),解得f(3)=-,依次求得f(4)=-,f(5)=,f(6)=,f(7)=,f(8)=-,f(9)=-,…可知f(x)是以6为周期的函数,所以f(2 018)=f(336×6+2)=f(2)=-.法二因为f(1)=,4f(x)·f(y)=f(x+y)+f(x-y),所以构造符合题意的函数f(x)=cos x,所以f(2 018)=cos(×2 018)=-.答案:-12.已知函数f(x)=x3+x,对任意的m∈[-2,2],f(mx-2)+f(x)<0恒成立,则x的取值范围为.解析:易知f(x)在R上为单调递增函数,且f(x)为奇函数,由f(mx-2)+ f(x)<0,得f(mx-2)<-f(x)=f(-x),所以mx-2<-x,即mx+x-2<0对所有m∈[-2,2]恒成立,令h(m)=mx+x-2,此时,只需解得x∈(-2,).答案:(-2,)三、解答题13.已知函数f(x)=是奇函数.(1)求实数m的值;(2)若函数f(x)在区间[-1,a-2]上单调递增,求实数a的取值范围. 解:(1)设x<0,则-x>0,所以f(-x)=-(-x)2+2(-x)=-x2-2x.又f(x)为奇函数,所以f(-x)=-f(x),于是x<0时,f(x)=x2+2x=x2+mx,所以m=2.(2)由(1)及已知,f(x)在(-∞,-1]上是减函数,在[-1,1]上是增函数,在[1,+∞)上是减函数,要使f(x)在[-1,a-2]上单调递增,必需且只需所以1<a≤3,故实数a的取值范围是(1,3].14.已知奇函数f(x)的定义域为[-2,2],且在区间[-2,0]上递减,求满足f(1-m)+f(1-m2)<0的实数m的取值范围.解:因为f(x)的定义域为[-2,2],所以解得-1≤m≤. ①又f(x)为奇函数,且在[-2,0]上递减,所以f(x)在[-2,2]上递减,所以f(1-m)<-f(1-m2)=f(m2-1),即1-m>m2-1,解得-2<m<1. ②综合①②可知,-1≤m<1.即实数m的取值范围是[-1,1).第6节函数单调性、奇偶性与周期性综合运用一、选择题1.已知f(x)是定义在R上的偶函数,且满足f(x+2)=-,当1≤x≤2时,f(x)=x-2,则f(6.5)等于( D )(A)4.5 (B)-4.5 (C)0.5 (D)-0.5解析:由f(x+2)=-,得f(x+4)=-=f(x),所以f(x)的周期是4,得f(6.5)=f(2.5).因为f(x)是偶函数,则f(2.5)=f(-2.5)=f(1.5).而1≤x≤2时,f(x)=x-2,所以f(1.5)=-0.5.由上知f(6.5)=-0.5.2.设函数f(x)满足:①y=f(x+1)是偶函数;②在[1,+∞)上为增函数,则f(-1)与f(2)的大小关系是( A )(A)f(-1)>f(2) (B)f(-1)<f(2)(C)f(-1)=f(2) (D)无法确定解析:由y=f(x+1)是偶函数,得到y=f(x)的图象关于直线x=1对称,所以f(-1)=f(3).又f(x)在[1,+∞)上为单调增函数,所以f(3)>f(2),即f(-1)>f(2).3.已知函数f(x)的定义域为R,当x<0时,f(x)=x3-1;当-1≤x≤1时,f(-x)=-f(x);当x>时,f(x+)=f(x-).则f(6)等于( D ) (A)-2 (B)-1 (C)0 (D)2解析:因为当x>时,f(x+)=f(x-),所以x>1时,f(x)=f(x-1),即f(6)=f(1).因为当-1≤x≤1时,f(-x)=-f(x),所以f(1)=-f(-1).因为当x<0时,f(x)=x3-1,所以f(6)=f(1)=-f(-1)=-[(-1)3-1]=2.4.定义在R上的函数f(x)既是奇函数,又是周期函数,T是它的一个正周期.若将方程f(x)=0在闭区间[-T,T]上的根的个数记为n,则n可能为( D )(A)0 (B)1 (C)3 (D)5解析:因为f(x)是R上的奇函数,所以f(0)=0.又因为T是函数f(x)的一个正周期,所以f(T)=f(-T)=f(0)=0,又f(-)=f(T-)=f(),且f(-)=-f(),所以f()=0,于是可得f(-)=f()=0.所以方程f(x)=0在闭区间[-T,T]上的根的个数可能为5.5.已知f(x)是奇函数并且是R上的单调函数,若函数y=f(2x2+1)+ f(λ-x)只有一个零点,则实数λ的值是( C )(A)(B)(C)- (D)-解析:令y=f(2x2+1)+f(λ-x)=0,且f(x)是奇函数,则f(2x2+1)=-f(λ-x)=f(x-λ),又因为f(x)是R上的单调函数,所以2x2+1=x-λ只有一个根,即2x2-x+1+λ=0只有一个根,则Δ=1-8(1+λ)=0,解得λ=-.6.记max{x,y}=若f(x),g(x)均是定义在实数集R上的函数,定义函数h(x)=max{f(x),g(x)},则下列命题正确的是( C )(A)若f(x),g(x)都是单调函数,则h(x)也是单调函数(B)若f(x),g(x)都是奇函数,则h(x)也是奇函数(C)若f(x),g(x)都是偶函数,则h(x)也是偶函数(D)若f(x)是奇函数,g(x)是偶函数,则h(x)既不是奇函数,也不是偶函数解析:对于A,如f(x)=x,g(x)=-2x都是R上的单调函数,而h(x)=不是定义域R上的单调函数,故A错误;对于B,如f(x)=x,g(x)=-2x都是R上的奇函数,而h(x)=不是定义域R上的奇函数,故B错误;对于C,当f(x),g(x)都是定义域R上的偶函数时,h(x)=max{f(x),g(x)}也是定义域R上的偶函数,故C正确;对于D,如f(x)=sin x是定义域R上的奇函数,g(x)=x2+2是定义域R 上的偶函数,而h(x)=g(x)=x2+2是定义域R上的偶函数,故D错误.二、填空题7.定义在R上的函数f(x)满足f(x)=f(-x),且f(x)=f(x+6),当x∈[0,3]时,f(x)单调递增,则f(x)在[4,5]上单调.(递增,递减)解析:由已知,f(x)在[-3,0]上单调递减,又周期为6,所以f(x)在[3,6]上单调递减,在[4,5]上单调递减.答案:递减8.已知函数f(x)是R上的偶函数,g(x)是R上的奇函数,且g(x)=f(x-1),若f(2)=2,则f(2 018)的值为.解析:由g(x)=f(x-1),得g(-x)=f(-x-1),又g(x)为R上的奇函数,所以g(-x)=-g(x),所以f(-x-1)=-f(x-1),即f(x-1)=-f(-x-1),用x+1替换x,得f(x)=-f(-x-2).又f(x)是R上的偶函数,所以f(x)=-f(x+2).所以f(x)=f(x+4),即f(x)的周期为4.所以f(2 018)=f(4×504+2)=f(2)=2.答案:29.若函数f(x)是定义在R上的周期为2的奇函数,当0<x<1时,f(x)= 4x,则f(-)+f(2)= .解析:因为f(x)是周期为2的函数,所以f(x)=f(x+2).又f(x)是奇函数,所以f(x)=-f(-x),f(0)=0.所以f(-)=f(-)=-f()=-4×=-2,f(2)=f(0)=0,所以f(-)+f(2)=-2.答案:-210.已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数,若方程f(x)=m(m>0),在区间[-8,8]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4= .解析:因为定义在R上的奇函数f(x)满足f(x-4)=-f(x),所以f(4-x)=f(x).因此,函数图象关于直线x=2对称且f(0)=0,由f(x-4)=-f(x)知f(x-8)=f(x),所以函数是以8为周期的周期函数.又因为f(x)在区间[0,2]上是增函数,所以f(x)在区间[-2,0]上也是增函数,如图所示,方程f(x)=m(m>0)在区间[-8,8]上有四个不同的根x1,x2,x3,x4,不妨设x1<x2<x3<x4.由对称性知x1+x4=-4,x2+x3=-4.所以x1+x2+x3+x4=-8.答案:-811.设函数f(x)是定义在R上的偶函数,且对任意的x∈R恒有f(x+1)=f(x-1),已知当x∈[0,1]时,f(x)=(),则①2是函数f(x)的周期;②函数f(x)在(1,2)上递减,在(2,3)上递增;③函数f(x)的最大值是1,最小值是0;④当x∈(3,4)时,f(x)=()x-3.其中所有正确命题的序号是.解析:由已知条件:f(x+1)=f(x-1)得f(x+2)=f(x),则y=f(x)是以2为周期的周期函数,①正确;当-1≤x≤0时0≤-x≤1,f(x)=f(-x)=()1+x,函数y=f(x)的图象如图所示,当3<x<4时,-1<x-4<0,f(x)=f(x-4)=()x-3,因此②④正确.③不正确. 答案:①②④三、解答题12.已知函数f(x)=x2+(x≠0).(1)判断f(x)的奇偶性,并说明理由;(2)若f(1)=2,试判断f(x)在[2,+∞)上的单调性.解:(1)当a=0时,f(x)=x2,f(-x)=f(x),函数是偶函数.当a≠0时,f(x)=x2+(x≠0),取x=±1,得f(-1)+f(1)=2≠0;f(-1)-f(1)=-2a≠0,所以f(-1)≠-f(1),f(-1)≠f(1).所以函数f(x)既不是奇函数也不是偶函数.(2)若f(1)=2,即1+a=2,解得a=1,此时f(x)=x2+.任取x1,x2∈[2,+∞),且x1<x2,则f(x1)-f(x2)=(+)-(+)=(x1+x2)(x1-x2)+=(x1-x2)(x1+x2-).由于x1≥2,x2≥2,且x1<x2,所以x1-x2<0,x1+x2>,所以f(x1)<f(x2),故f(x)在[2,+∞)上是增函数.13.函数f(x)的定义域为D={x|x≠0},且满足对任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2).(1)求f(1)的值;(2)判断f(x)的奇偶性并证明你的结论;(3)如果f(4)=1,f(x-1)<2,且f(x)在(0,+∞)上是增函数,求x的取值范围.解:(1)因为对于任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2),所以令x1=x2=1,得f(1)=2f(1),所以f(1)=0.(2)f(x)为偶函数.证明如下:令x1=x2=-1,有f(1)=f(-1)+f(-1),所以f(-1)=f(1)=0.令x1=-1,x2=x,有f(-x)=f(-1)+f(x),所以f(-x)=f(x),所以f(x)为偶函数.(3)依题设有f(4×4)=f(4)+f(4)=2,由(2)知,f(x)是偶函数,所以f(x-1)<2⇔f(|x-1|)<f(16).又f(x)在(0,+∞)上是增函数.所以0<|x-1|<16,解得-15<x<17且x≠1.所以x的取值范围是(-15,1)∪(1,17).14.已知函数f(x)在R上满足f(2-x)=f(2+x),f(7-x)=f(7+x),且在闭区间[0,7]上,只有f(1)=f(3)=0.(1)试判断函数y=f(x)的奇偶性;(2)试求方程f(x)=0在闭区间[-2 018,2 018]上根的个数,并证明你的结论.解:(1)若y=f(x)为偶函数,则f(-x)=f[2-(x+2)]=f[2+(x+2)]=f(4+x)=f(x),所以f(7)=f(3)=0,这与f(x)在闭区间[0,7]上,只有f(1)=f(3)=0 矛盾;因此f(x)不是偶函数.若y=f(x)为奇函数,则f(0)=f(-0)=-f(0),所以f(0)=0,这与f(x)在闭区间[0,7]上,只有f(1)=f(3)=0矛盾;因此f(x)不是奇函数.综上可知:函数f(x)既不是奇函数也不是偶函数.(2)因为f(x)=f[2+(x-2)]=f[2-(x-2)]=f(4-x),f(x)=f[7+(x-7)]=f[7-(x-7)]=f(14-x),所以f(14-x)=f(4-x),即f[10+(4-x)]=f(4-x),所以f(x+10)=f(x),即函数f(x)的周期为10.对于区间[7,10],令7+x∈[7,10],则x∈[0,3],7-x∈[4,7],又f(7-x)=f(7+x),f(x)在[4,7]内无零点,所以f(x)在[7,10]内无零点.又因为f(1)=f(3)=0,所以f(1)=f(1+10n)=0(n∈Z),f(3)=f(3+10n)=0(n∈Z),即只有x=1+10n和x=3+10n(n∈Z)是方程f(x)=0的根.由-2 018≤1+10n≤2 018及n∈Z可得n=0,±1,±2,±3,…,±201,共403个;由-2 018≤3+10n≤2 018及n∈Z可得n=0,±1,±2,±3,…,±201,-202,共404个;所以方程f(x)=0在闭区间[-2 018,2 018]上的根共有807个.第7节函数的图象一、选择题1.函数f(x)=的图象大致为( A )解析:因为f(x)=,所以f(0)=0,排除选项C,D;当0<x<π时,sin x>0,所以当0<x<π时,f(x)>0,排除选项B.2.(2016·浙江卷)函数y=sin x2的图象是( D )解析:因为y=sin x2为偶函数,所以它的图象关于y轴对称,排除A,C 选项;当x=时,y=sin ≠1,排除B选项,故选D.3.函数y=的图象大致是( C )解析:由题意得,x≠0,排除A;当x<0时,x3<0,3x-1<0,所以>0,排除B;又因为x→+∞时,→0,所以排除D.4.函数f(x)=的图象如图所示,则下列结论成立的是( C )(A)a>0,b>0,c<0(B)a<0,b>0,c>0(C)a<0,b>0,c<0(D)a<0,b<0,c<0解析:函数定义域为{x|x≠-c},结合图象知-c>0,所以c<0.令x=0,得f(0)=,又由图象知f(0)>0,所以b>0.令f(x)=0,得x=-,结合图象知->0,所以a<0.5.已知函数y=f(x)及y=g(x)的图象分别如图所示,方程f(g(x))=0和g(f(x))=0的实根个数分别为a和b,则ab等于( A )(A)24 (B)15 (C)6 (D)4解析:由图象知,f(x)=0有3个根,分别为0,±m(m>0),其中1<m<2, g(x)=0有2个根n,p,-2<n<-1,0<p<1,由f(g(x))=0,得g(x)=0或±m,由图象可知当g(x)所对应的值为0,±m时,其都有2个根,因而a=6;由g(f(x))=0,知f(x)=n或p,由图象可以看出当f(x)=n时,有1个根,而当f(x)=p时,有3个根,即b=1+3=4.所以ab=24.6.如图所示,在△ABC中,∠B=90°,AB=6 cm,BC=8 cm,点P以1 cm/s 的速度沿A→B→C的路径向C移动,点Q以2 cm/s的速度沿B→C→A 的路径向A移动,当点Q到达A点时,P,Q两点同时停止移动.记△PCQ的面积关于移动时间t的函数为S=f(t),则f(t)的图象大致为( A )解析:当0≤t≤4时,点P在AB上,点Q在BC上,此时PB=6-t,QC=8-2t,则S=f(t)=QC×BP=(8-2t)×(6-t)=t2-10t+24;当4≤t≤6时,点P 在AB上,点Q在CA上,此时AP=t,P到AC的距离为t,QC=2t-8,则S=f(t)=QC×t=(2t-8)×t=(t2-4t);当6≤t≤9时,点P在BC上,点Q在CA上,此时CP=14-t,QC=2t-8,则S=f(t)=QC×CPsin ∠ACB= (2t-8)·(14-t)×=(t-4)·(14-t).综上,函数f(t)对应的图象是三段抛物线,依据开口方向得图象是A.二、填空题7.若函数y=f(x)的图象过点(1,1),则函数y=f(4-x)的图象一定经过点.解析:由于函数y=f(4-x)的图象可以看作y=f(x)的图象先关于y轴对称,再向右平移4个单位长度得到.点(1,1)关于y轴对称的点为(-1,1),再将此点向右平移4个单位长度,可推出函数y=f(4-x)的图象过定点(3,1).答案:(3,1)8.函数f(x)的图象是曲线OAB,其中点O,A,B的坐标分别为(0,0), (1,2),(3,1),则f()= .解析:由已知f(3)=1,所以=1.所以f()=f(1)=2.答案:29.给定min{a,b}=已知函数f(x)=min{x,x2-4x+4}+4,若动直线y=m与函数y=f(x)的图象有3个交点,则实数m的取值范围为.解析:设g(x)=min{x,x2-4x+4},则f(x)=g(x)+4,故把g(x)的图象向上平移4个单位长度,可得f(x)的图象,函数f(x)=min{x,x2-4x+4}+4的图象如图所示,由于直线y=m与函数y=f(x)的图象有3个交点,数形结合可得m的取值范围为(4,5).答案:(4,5)10.函数f(x)是定义在[-4,4]上的偶函数,其在[0,4]上的图象如图所示,那么不等式<0的解集为.解析:在[0,)上y=cos x>0,在(,4]上y=cos x<0.由f(x)的图象知在(1,)上<0,因为f(x)为偶函数,y=cos x也是偶函数,所以y=为偶函数,所以<0的解集为(-,-1)∪(1,).答案:(-,-1)∪(1,)11.如图,函数f(x)的图象为折线ACB,则不等式f(x)≥log2(x+1)的解集为.解析:令g(x)=log2(x+1),作出函数g(x)的图象如图.由得所以结合图象知不等式f(x)≥log2(x+1)的解集为{x|-1≤x≤1}.答案:{x|-1≤x≤1}12.若当x∈(1,2)时,函数y=(x-1)2的图象始终在函数y=log a x的图象的下方,则实数a的取值范围是.解析:如图,在同一平面直角坐标系中画出函数y=(x-1)2和y=log a x的图象.由于当x∈(1,2)时,函数y=(x-1)2的图象恒在函数y=log a x的图象的下方,则解得1<a≤2.答案:(1,2]三、解答题13.讨论方程|1-x|=kx的实数根的个数.解:可以利用函数图象确定方程实数根的个数.设y1=|1-x|,y2=kx,则方程的实根的个数就是函数y1=|1-x|的图象与y2=kx的图象交点的个数.由图象可知:当-1≤k<0时,方程没有实数根;当k=0或k<-1或k≥1时,方程只有一个实数根;当0<k<1时,方程有两个不相等的实数根.14.已知函数f(x)=x|m-x|(x∈R),且f(4)=0.(1)求实数m的值;(2)作出函数f(x)的图象;(3)根据图象指出f(x)的单调递减区间;(4)若方程f(x)=a只有一个实数根,求a的取值范围.解:(1)因为f(4)=0,所以4|m-4|=0,即m=4.(2)f(x)=x|x-4|=f(x)的图象如图所示.(3)f(x)的单调递减区间是[2,4].(4)从f(x)的图象可知,当a<0或a>4时,f(x)的图象与直线y=a只有一个交点,即方程f(x)=a只有一个实数根,所以a的取值范围是(-∞,0)∪(4,+∞).15.设函数f(x)=x+的图象为C1,C1关于点A(2,1)的对称图象为C2,C2对应的函数为g(x).(1)求函数g(x)的解析式;(2)若直线y=b与C2有且仅有一个公共点,求b的值,并求出交点的坐标.解:(1)设曲线C2上的任意一点为P(x,y),则P关于A(2,1)的对称点P′(4-x,2-y)在C1上,所以2-y=4-x+,即y=x-2+=,。
衡水内部资料-高中数学- 函数的概念及表示(精练)(解析版)

3.1 函数的概念【题组一 区间】1.(2020·三亚华侨学校高一月考)不等式0213x <-≤的解集用区间可表示为( ) A .1(,2)2B .(0,2]C .1[,2)2D .1(,2]2【答案】D【解析】由0213x <-≤解得122x <≤,用区间表示为1,22⎛⎤⎥⎝⎦,故选D. 2.(2020·全国高一课时练习)集合{|342}x x -<可以表示为( ) A .(2,)+∞ B .(,2)-∞C .[2,)+∞D .(,2]-∞【答案】B 【解析】3422x x -<⇒<,∴集合{|342}x x -<可以表示为(,2)-∞.故选:B3.(2020·全国高一课时练习)不等式20x -≥的所有解组成的集合表示成区间是( ) A .(2,)+∞ B .[2,)+∞C .(,2)-∞D .(,2]-∞【答案】B【解析】不等式20x -≥的所有解组成的集合为{|2}x x ≥,表示成区间为[2,)+∞.答案:B 4.(2019·贵州省铜仁第一中学高一期中)集合{0x x >且}2x ≠用区间表示出来( ) A .()0,2 B .()0,∞+C .()()0,22,+∞ D .()2,+∞【答案】C【解析】由集合{0x x >且}{202x x x ≠=<<或}()()20,22,x >=⋃+∞, 故选:C.5.(2019·吉林辽源高一期中(理))下列四个区间能表示数集{|05A x x =≤<或}10x >的是( ) A .((0,5)1)0,∞+B .[)0,51()0,∞+C .(]0,51[)0,∞+D .[]0,51()0,∞+【答案】B【解析】根据区间的定义可知数集{|05A x x =≤<或}10x >可以用区间[)0,51()0,∞+表示. 故选B.6.(2020·全国高一课时练习)若[a,3a -1]为一确定区间,则a 的取值范围是________.【答案】1,2⎛⎫+∞⎪⎝⎭【解析】由题意3a -1>a ,得a>12,故填1,.2⎛⎫+∞ ⎪⎝⎭7.(2020·全国高一课时练习)已知(]2,31a a -为一个确定的区间,则a 的取值范围是________. 【答案】()1,+∞.【解析】解析由(]2,31a a -为一个确定的区间知231a a <-,解得1a >, 因此a 的取值范围是()1,+∞.故答案为:()1,+∞ 【题组二 函数的判断】1.(2020·三亚华侨学校高一月考)下列图象表示函数图象的是( )A .B .C .D .【答案】C【解析】A 、B 、D 都不满足函数定义中一个与唯一的一个对应的关系,所以选C2.(2020·全国高一)在下列图象中,函数()y f x =的图象可能是( )A .B .C .D .【答案】D【解析】对于A ,存在一个自变量x 对应两个值,错误;对于B ,存在自变量x 对应两个值,错误;对于C ,存在自变量x 对应两个值,错误;对于D ,定义域内每个自变量都有唯一实数与之对应,正确,故选D. 3.(2020·全国高一课时练习)设M ={x |0≤x ≤2},N ={y |0≤y ≤2},给出下列四个图形,其中能表示从集合M 到集合N 的函数关系的是________.【答案】②【解析】对于①,当12x <≤时,集合N 中没有y 值与之对应,故①错误;对于②,集合{|02}M x x =≤≤中的每一个x 值,在{|02}N y y =≤≤中都有唯一确定的一个y 值与之对应,故②正确;对于③,对于集合{|02}M x x =≤≤中的元素2,在集合N 中没有y 值与之对应,故③错误; 对于④,对于集合{|02}M x x =<≤中的元素2,在集合N 中有两个y 值与之对应,故④错误. 故答案为:②. 【题组三 定义域】1.(2020·浙江高一课时练习)函数()f x =的定义域是( )A .[2,2]-B .{2,2}-C .(,2)(2,)-∞-+∞D .(2,2)-【答案】B【解析】由题意2240,40x x ⎧-⎨-≥⎩,得240x -=,解得2x =±.∴定义域为{2,2}-. 故选:B .2.(2020·贵州高二学业考试)函数()f x =的定义域是( )A .{}|1x x ≥B .{|1}x x ≤C .{}|1x x >D .{}|1x x <【答案】A【解析】要使函数()f x 有意义,则:10x -≥,解得1x ≥,所有()f x 的定义域为:{}|1x x ≥,故选:A3.(2020·朝阳.吉林省实验高二期末(文))函数()f x =的定义域是 ( ) A .(],0-∞B .[)0,+∞C .(),0-∞D .(),-∞+∞【答案】A【解析】120x -≥,解得0x ≤,∴函数的定义域(],0-∞,故选A.4.(2020·汪清县汪清第六中学高二月考(文))函数()f x=A .(,2]-∞B .[0,2]C .(0,2]D .[2,)+∞【答案】C【解析】由题意得:4200x x ⎧-≥⎨>⎩,解得:02x <≤ ()f x ∴定义域为:(]0,2本题正确选项:C5.(2019·哈尔滨市第一中学校高三开学考试(文))已知()f x 的定义域为(1,0)-,则函数(21)f x +的定义域为 ( ) A .(1,1)- B .1(1,)2--C .(1,0)-D .1(,1)2【答案】B【解析】因为函数()f x 的定义域为(1,0)-,故函数(21)f x +有意义只需-1210x <+<即可,解得1-1-2x <<,选B .6.(2020·嫩江市高级中学高一月考)已知(1)f x +的定义域为[2,3)-,(2)f x -的定义域是( ) A .[2,3)- B .[1,4)-C .[0,5)D .[1,6)【答案】D 【解析】)1(f x +的定义域为[2,3)-;23x ∴-≤<;114x ∴-≤+<;()f x ∴的定义域为[1,4)-;124x ∴-≤-<;16x ∴≤<; 2()f x ∴-的定义域为[1,6).故选:D .7.(2020·全国高一)若函数()y f x =的定义域是[]0,2,则函数()()22f x g x x=的定义域是( ) A .[]0,4 B .](0,4C .](0,1D .](0,2【答案】C 【解析】函数()y f x =的定义域是[]0,2,()()22f x g x x∴=的定义域须满足,022x x ≤≤⎧⎨≠⎩,解得01x <≤,所以函数()g x 的定义域为(0,1].故选:C. 8(2020·广西兴宁.南宁三中高二月考(文))已知函数(1)f x +的定义域为[-2,1],则函数()(2)g x f x =-的定义域为( ) A .[-2,1] B .[0,3]C .[1,4]D .[1,3]【答案】C 【解析】∵()1f x +定义域为[]2,1-,∴112-≤+≤x ,即()f x 定义域为[]1,2-, 由题意得:122-≤-≤x ,解得:14x ≤≤, ∴()g x 定义域为[]1,4, 故选:C.9.(2019·内蒙古集宁一中高一期中(文))已知函数()y f x =定义域是[]2,3-,则()21y f x =-的定义域是( )A .1,22⎡⎤-⎢⎥⎣⎦B .[]1,4-C .[]2,3-D .50,2⎡⎤⎢⎥⎣⎦【答案】A【解析】由题意2213x -≤-≤,解得122x -≤≤.故选:A . 【题组四 解析式】1.(2020·云南会泽。
中职数学基础模块上册《函数的表示法》

(3)恩格尔系数 (列表法)
1.2.2 函数的表示法 三、3种表示方法的特点
解析法的特点:简明、全面地概括了变量间 的关系;可以通过用解析式求出任意一个自 变量所对应的函数值。
但不够形象、直观、具体,而且并不是所 有的函数都能用解析式表示出来
列表法的特点:不通过计算就可以直接看出与自变 量的值相对应的函数值。
三、求解函数解析式的方法:代入法、配凑法、换元法 。
2.1.2 指数函数及其性质 八、作业
谢谢!
1.2.2
函数的表示法
1.2.2 函数的表示法
一、温故而知新
1.函数的概念: 设A、B是非空的数集,如果按照某个确定的对应关系f, 使对于集合A中的任意一个数x,在集合B中都有唯一确定 的数f(x)和它对应,那么就称f:A→B为从集合A到集合B 的一个函数(function).
记作:y=f(x),x∈A.
做题步骤:整体代入→化简
五、如1.2何.2根函据数已的知表条示件法求函数 的解析式
一、换元法和配凑法求解析式 类型二:已知f[g(x)] 的表达式,求f(x)的表达式
例2 已知f(x+1) =3x+5,求f(x)的解析式
练习:1、已知f(x+1)=x2+2x,求 f(x).
2、若f (x 1) x2 x 1,求f (x 1)的解析式
解:这个函数的定义域是数集{1,2,3,4,5}.
用解析式法可将函数y=f(x)表示为 y=5x,x∈{1,2,3,4,5}
用列表法可将函数y=f(x)表示为
注一:
解析法:必须 注明函数的定 义域
笔记本数 x
1
2
3
45
钱数y 5 10 15 20 25
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的概念及表示方法练习题
一、选择题
1.集合A ={x |0≤x ≤4},B ={y |0≤y ≤2},下列不表示从A 到B 的函数是( )
A .f (x )=12x
B .f (x )=13x
C .f (x )=23x
D .f (x )=x
2.某物体一天中的温度是时间t 的函数:T (t )=t 3-3t +60,时间单位是小时,温度单位为℃,t =0表示12:00,其后t 的取值为正,则上午8时的温度为( )
A .8℃
B .112℃
C .58℃
D .18℃
3.函数y =1-x 2+x 2-1的定义域是( )
A .[-1,1]
B .(-∞,-1]∪[1,+∞)
C .[0,1]
D .{-1,1}
4.函数y =f (x )的图象与直线x =a 的交点个数有( )
A .必有一个
B .一个或两个
C .至多一个
D .可能两个以上
5.函数f (x )=1ax 2+4ax +3
的定义域为R ,则实数a 的取值范围是( )
A .{a |a ∈R }
B .{a |0≤a ≤34}
C .{a |a >34}
D .{a |0≤a <34}
6.某汽车运输公司购买了一批豪华大客车投入运营.据
市场分析,每辆客车营运的利润y 与营运年数x (x ∈N )为二次
函数关系(如图),则客车有营运利润的时间不超过( )年.
A .4
B .5
C .6
D .7
7.函数f (x )=2x -1,x ∈{1,2,3},则f (x )的值域是( ) A .[0,+∞) B .[1,+∞) C .{1,3,5} D .R
二、填空题
1.某种茶杯,每个2.5元,把买茶杯的钱数y (元)表示为茶杯个数x (个)的函数,则y =________,其定义域为________.
2.函数y =x +1+12-x
的定义域是(用区间表示)________. 3. 若函数2()2f x x x =-,则)3(f =________. 4.函数4
22--=x x y 的定义域________. 5.下列四组函数表示同一函数的一组是 .
①29()
3x f x x ,()3g x x ;②2()()f x x ,2()g x x ; ③21
()3f x x ;242()3x g x x x ;④2()()f x x ,()g x x .
6. 下列图象中能表示函数y =()f x 的有 .
① ② ③ ④
7.函数221,[1,3)y x x x =--∈-的值域为_______.
8.若函数2()1f x x ,()2g x x
,则[(2)]f g . 9.若函数()f x 满足()()()f x f y f xy ,且(3)
f a ,(2)f b ,则
(36)f .
10. 已知函数2()2f x x x a =++,2()962f bx x x =-+,其中x ∈R ,a ,b 为常数,则方程()0f ax b +=的解集为 .
11. 为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密).已知加密规则为:明文a ,b ,c ,d 对应密文2a b +,2b c +,23c d +,4d .例如,明文1,2,3,4对应密文5,7,18,16,则当接收方收到密文14,9,23,28时,解密得到的明文为 .
12. 已知22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩
,若()3f x =,则x 的值是 .
13.函数()f x 对于任意实数x 满足条件1
(2)()f x f x +=,若(1)5f =-,则
((5))f f = .
14. 若二次函数2y ax bx c =++的图象与x 轴交于(2,0),(4,0)A B -,且函数的最大值为9,
则这个二次函数的表达式是________.
15. 函数()f x 满足1()2()
f x f x x ,则(2)f .
三、解答题
1.求一次函数f (x ),使f [f (x )]=9x +1.
2.求下列函数的定义域.
(1)y =x +1x 2-4; (2)y =1|x |-2
;(3)y =x 2+x +1+(x -1)0.
3.(1)已知f (x )=2x -3,x ∈{0,1,2,3},求f (x )的值域.
(2)已知f (x )=3x +4的值域为{y |-2≤y ≤4},求此函数的定义域.
4.某大学教师将每周的课时数列表如下:
则在这个函数中,求其定义域和值域.
5. 已知()2f x x a =+,21()(3)4g x x =+,若2[()]1g f x x x =++,求a 的值.。