分数(百分数)应用题典型解法的整理
22分数百分数应用题综合解法经典题型 (13)

分数百分数应用题综合解法经典题型1. 一个长方形的长是16米,宽是长的3/4。这个长方形的面积是多少?2. 某班男生32人,女生比男生少25%,女生有多少人?想:题中把( )看作单位“1”的量,要求女生多少人,可以先求出( ),也就是( )×75%=( );还可以想:要求女生多少人,可以先求出女生人数相当于男生的( ),也就可以用男生人数×( )=女生人数。
3. 果园里有梨树150棵,比桃树多20%,苹果树比梨树少20%。
150÷(1+20%)表示求( )150╳(1-20%)表示求( )150÷(1+20%)╳20%表示求( )4. 食堂九月份用煤气640立方米,十月份计划用煤气是九月份的109,而十月份实际又比计划节约了121。
十月份实际比计划节约煤气多少立方米?5. 有两桶油,甲桶油的重量是乙桶油的1.2倍,如果再往乙桶里倒入5千克油,两桶油就一样重了。
原来两桶油各有多少千克?6. 红星小学五年级有男生98人,女生112人。
五年级的学生人数是六年级的79,六年级有学生多少人? 7. 学校今年6月收到邮件270封,其中普通邮件和电子邮件的比是2∶7,收到的普通邮件占总数的( )( ),电子邮件有( )封。
8. 一块长方形地,长120米,宽比长短31。
这块地的面积是多少平方米?9. 一列火车每小时行120千米,一辆汽车每小时行的比火车慢41,(添加问题并解答) 10. 一袋杂交大米,吃掉它的20%以后,再增加余下的20%,现在这袋大米的重量是 [ ]A.比原来轻B.比原来重C.和原来重量相等11. 修一段公路,已修了90米,比未修的23少15米,这条公路还有多少米未修?12. 小明家四月份电话费64元,以后每个月都比前一个月少了81。
他家六月份电话费多少元?13. 禽场养鸡120只,养的鹅是鸡的43,养的鸭是鹅的2倍少100只。
养鸭多少只?14. 李师傅昨天上午生产80个零件,下午生产100个零件。
分数百分数应用题解题思想(一通百通)

分数应用题解题思想介绍金仁虎一、分配思想分配思想就是根据题中的数量关系,从已知条件入手,通过列式,先求出单位“1”,再由单位“1”的量进行分配。
其具体思路我们还是从第十一册教材第63页的思考题谈起。
1.基本题:同学们参加野营活动。
一个同学到负责后勤工作的老师那里去领碗,老师问他领多少,他说领55个。
又问:“多少人吃饭?” 他说:“一人一个饭碗,两人一个菜碗,三人一个汤碗。
”算一算这个同学给多少人领碗。
〔分析与解〕这是一道六年级的思考题,解答此题可以用多种方法。
(1)方程法。
设:共有X人X+X+X=55解得X=3O。
(2)算术法。
55÷(l++)=55÷1=3O(人)(3)此题还可以直接求最小公倍数来解。
根据“一人一个饭碗,二人一个菜碗,三人一个汤碗”的条件可得:[1、2、3]=6(6是1、2、3的最小公倍数)。
即:每6人为一桌,每桌所需的碗数为:饭碗:6÷l=6(个);菜碗:6÷2=3(个);汤碗:6÷3=2(个)。
共计:6+3+2=11(个)→每桌的总碗数。
这样野营的同学正好可以安排:55÷11=5(桌),而每桌都是6人,即共有6×5=3O人参加野营。
此题运用最小公倍数来解,不但可以拓宽六年级同学的解题思路,更重要的是为四、五年级同学开辟了一条解题途径。
2.变形题。
节日期间给某班同学发水果,每人3个桔子,每2人3个苹果,每4人3根香蕉,最后又给每人发1个梨,结果共发水果2OO个,求该班有多少个同学?每种水果各多少个?[分析与解] 每人所发水果情况:桔子3(个);苹果1(个);香蕉(个);梨1(个)。
(l)方程法。
设:共有X人X+3X+1X+X=200解得X=32(人)(2)算术法。
200÷(1+3+l+)=2OO÷6=32(人)(3)最小公倍数法(同学们自己思考列式)。
在求出单位“1”为32人以后,根据分配思想分别算出每种水果的个数,即:桔子3×32=96(个)苹果32×l=48(个)香蕉32×=24(个)梨子1×32=32(个)3.综合题:星期日某车间去郊外植树,休息时每人发2瓶汽水,每3人发2瓶果汁,每6人发2瓶雪碧,结果共发饮料180瓶,在这些人中,每人植一棵松树,每2人植5棵杨树,每3人植4棵柳树,每5人植3棵杏树,求该车间共植树多少棵?〔分析与解〕此题综合性很强,实际上是把前两个分配思想的小题合在一起。
六年级分数应用题解题方法

六年级分数应用题解题方法分数(百分数)应用题的典型解法有数形结合思想和对应思想。
数形结合是将抽象的数量关系用线段图直观表示,从而降低解题难度的基本方法。
对应思想则是通过具体数量与抽象分率之间的对应关系来分析和解决问题的思想。
例如,在求一桶油原来有多少千克的问题中,我们可以画出线段图,清楚地看出油的千克数乘以(1-1/5)等于20+22,从而得出油的千克数为70.同样地,在求一堆煤原来有多少千克的问题中,我们可以根据煤的使用情况和剩余量的关系,得出煤的千克数乘以(1-20%-50%)等于290+10,从而得出煤的千克数为1000.对应思想同样适用于解决问题。
例如,在求缝纫机厂女职工人数的问题中,我们可以通过线段图找到与具体数量144人相对应的分率,从而得出女职工占厂职工人数的7/20,男职工占的比例为13/20.再根据女职工比男职工少144人的关系,得出全厂人数为480人。
在转化思想方面,例如在求一批大白菜的千克数的问题中,我们可以通过将题目中的信息转化为对应分率的形式,再用线段图进行分析。
根据第一天卖出后余下的240千克大白菜,可以得出对应分率为1-1/3,从而得出第一天卖出后余下的大白菜千克数为400.再根据剩余240千克的对应分率为1-3/5,可以得出这批大白菜的千克数为600.化简得:甲:乙=15:28,即甲是乙的18/43.五(2)班男生人数:女生人数=4:5.男生人数×(1-75%)=女生人数×(1-80%)。
代入得男生人数:女生人数=4:5,女生人数=30人,男生人数=24人。
有软糖和硬糖两种糖,软糖占总数的4/9.加入16块硬糖后,软糖占总数的20/29.设软糖块数为单位“1”,原来硬糖块数是软糖块数的5/9,加入16块硬糖后,硬糖块数是软糖块数的2倍。
解得软糖块数为9块。
小明看一本课外读物,已读的页数和剩下页数之比为1:6.后来又读了20页,已读的页数和剩下页数之比为3:4.设总页数为单位“1”,原来已读页数占总页数的1/7,后来已读页数占总页数的4/7.解得总页数为630页。
分数百分数乘除法应用题解题技巧

分数、百分数乘除法应用题解题技巧分数、百分数的知识,在日常生活和生产建设中有着广泛的应用,也是小学数学的一个重要内容。
新课标中要求学生能够运用所学的知识解决生活中一些简单的实际问题。
如何改进和加强分数、百分数应用题教学,使其能有效地解决日常生活中的问题,增强学习的目的性和实践性,真正做到提高教学质量,是我们面临的一个新问题。
教学中我探索出一些解决分数、百分数问题的技巧和策略,将其运用在常见的一些分数、百分数应用题中进行分析,使之有效地解决日常生活中的问题。
一、求一个数是另一个数的几(百)分之几的应用题。
例:实验小学现有男生500人,女生400人,①男生是女生的几(百)分之几?②女生是男生的几(百)分之几?【方法】:比较量÷标准量=对应分率【分析与解】实际生活中,经常需要比较两个数量的倍数关系,当它们的倍数等于1或大于1的时候,通常称为“几倍”;当它们的倍数小于1的时候,通常表示为一个数是另一个数的“几分之几”。
这类问题的数量关系跟整数里求一个数是另一个数的几倍是致的,要求学生掌握谁与谁相比较。
如:甲是乙的几(百)分之几,甲与乙进行比较,乙就作为标准,乙是甲的几(百)分之几,乙与甲进行比较,就把甲作为标准。
在问题①中男生为单位“1”的量,即为“标准量”,女生是与男生进行比较的量,暂称为“比较量”。
“女生是男生的几(百)分之几?”用整数方法表示则为“女生是男生的几倍?”故用男生的量除以女生的量便为女生是男生的几(百)分之几。
问题②中女生与男生进行比较,男生为“标准量”,女生为“比较量”所以要用女生的人数除以男生的人数。
解:①列式:500÷400=5/4 (125%)②列式:400÷500=4/5 (80%)二、求一个数的几分之几或百分之几是多少的应用题。
例1、实验小学现有男生500人,女生人数是男生人数的4/5,实验小学现有女生多少人?【方法】标准量×对应分率=比较量【分析与解】从女生人数是男生人数的4/5的信息中得知男生为标准量(已知), 女生为比较量。
22分数百分数应用题综合解法经典题型 (18)

分数百分数应用题综合解法经典题型1. 某工程队修一段公路,第一天比第二天多修1/4,第二天比第一天少修1/4千米,两天修的比这段公路的全长少1/4,这段公路长多少千米?2. 小明家六月份用电180千瓦时,七月份比六月份多用了20%,每千瓦时电费为0.54元,小明家七月份的电费为多少元?〕3. 某工程队修一条公路,已经修了30千米,比没修的少20千米,修好的占全长的(—)。4. 同学们在操场上围成三层圆圈,最里面一层有48人,向外每一层都比里面一层多31。
一共有多少学生?5. 小明家四月份电话费64元,以后每个月都比前一个月少了81。
他家六月份电话费多少元?6. 某工厂一车间有工人84人,二车间人数比一车间少61,三车间人数是二车间人数的76,三车间有多少人?7. 两队合铺一段铁路,甲队每天铺6千米,乙队每天比甲队多铺61。
两队同时开工,经过16天完成。
这段铁路长多少千米?8. 六年级三个班的学生共同植树,一班植树80棵,二班植树的棵数是一班的89,三班植树的棵数比二班的97还多7棵,三班植树多少棵?9. 学校图书馆有三种书,已知连环画有100本,文艺书比连环画少2/5,连环画比科技书多1/4。
三种书共有多少本?10. 一个长方形的长是16米,宽是长的3/4。这个长方形的面积是多少?11. 胜利学校有学生840人,五年级学生数是全校学生总数的81,一年级比五年级多人数多71,一年级有学生多少人?12. 一项工,6月1日开工,原定一个月完成,实际6月25日完成,到6月30日超额( )%.13. 某班男生32人,女生比男生少25%,女生有多少人?想:题中把( )看作单位“1”的量,要求女生多少人,可以先求出( ),也就是( )×75%=( );还可以想:要求女生多少人,可以先求出女生人数相当于男生的( ),也就可以用男生人数×( )=女生人数。
14. 一个畜牧场养猪500头,比羊多14 ,牛的头数是羊的35,这个畜牧场养牛多少头?15. 商店有120辆电瓶车,第一天卖出总数的81,第二天卖出的比第一天的32多10辆。
六年级下册数学常见分数应用题的解题方法

常见的分数应用题的结构和解题方法一、求一个数 是 另一个数的几分之几(或百分之几)是多少 ( 用除法计算 ) ↓ ↓(已知) (单位“1” )→已知↓ ↓具体数量 具体数量【方法: 甲÷乙(乙≠0)=乙甲】 如:甲数是5,乙数是4,甲是乙的几分之几(或百分之几)?(单位“1”)5÷4=411 或【5÷4×100%=1.25×100%=125%】 甲数是5,乙数是4,乙是甲的几分之几(或百分之几)?(单位“1”)4÷5=54 或【4÷5×100%=0.8×100%=80%】 甲数是5,乙数是4,甲比乙多几分之几(或百分之几)?(单位“1”)(5-4)÷4=41 或【(5-4)÷4×100%=0.25×100%=25% 】 甲数是5,乙数是4,乙比甲少几分之几(或百分之几)?(单位“1”)(5-4)÷5=51 或【(5-4)÷5×100%=0.2×100%=20%】二、求 一个数 的 几分之几(或百分之几)是多少 (用乘法计算) (单位“1”) (已知)↓ ↓具体数量(已知) 分率【方法: 单位“1”对应数量×几几(或百几)=几几(或百几)对应数量】 如:甲数是5,乙数是甲数的54(或80%),乙数是多少? (单位“1”)5×54=4 或 【5×80%=4】 甲数是5,乙数比甲数多51(或20%),乙数是多少? (单位“1”)5+5×51=6 或5+5×20%=6 5×(1+51)=6 5×(1+20%)=6甲数是5,乙数比甲数少51(或20%),乙数是多少? 5-5×51=4 或5-5×20%=4 5×(1-51)=4 5×(1-20%)=4 如:一本书共120页,第一天看了全书的51(或20%),第二天看了全书的41(或25%),还剩多少页未看?120-120×51-120×41 或 120×(1-51-41) 120-120×20%-120×25% 或 120×(1-20%-25%)三、已知一个数 的 几分之几 (或百分之几)是多少 (用除法计算) ↓ ↓(单位“1”) (分率)↓ ↓具体数量(未知) (已知) 【方法:几几(或百几)对应数量÷几几(或百几)=单位“1”对应数量】 甲数是5,是乙数的54(或80%),乙数是多少?解法一:方程解 解法二:算术方法解 设乙数为ⅹ, 5÷54(80%)=6.25 ⅹ×54(80%)=5 甲数是5,比乙数多41(或25%),乙数是多少? 解法一:方程解 解法二:算术方法解 设乙数为ⅹ, 5÷(1+41【25%】)=4 ⅹ+41ⅹ【25%ⅹ】=5ⅹ×(1+41【25%】)=5 甲数是5,比乙数少51(或20%),乙数是多少? 解法一:方程解 解法二:算术方法解 设乙数为ⅹ, 5÷(1-51【20%】)=6.25 ⅹ-ⅹ×51(20% )=5 ⅹ×(1-51【20%】)=5如:一本故事书,小王看了20页,是小勇的41(25%),小勇是小刚的51(20%),小刚看了多少页?方程解:设小刚看了ⅹ页,算术方法解: ⅹ×51×41=20 20÷41÷51 ⅹ×25%×20%=20 20÷25%÷20% 如:小王看一本书,第一天看了全书41(或25%),第二天看了全书51(或20%),正好看了200页,这本书共有多少页?方程解:设这本书有ⅹ页, 算术方法解:41ⅹ+51ⅹ=200 200÷(41+51) 25%ⅹ+20%ⅹ=200 200÷(25%+20%) 如:小王看一本书,第一天看了全书41(或25%),第二天看了全书51(或20%),第二天比第一天少看10页,这本书一共有多少页?方程解:设这本书有ⅹ页, 算术方法解:41ⅹ-51ⅹ=10 10÷(41-51) 25%ⅹ-20%ⅹ=10 10÷(25%-20%)四、工程问题(行程问题)工作总量=工作时间×工效 工作效率=工作总量÷工作时间工作时间=工作总量÷工效如:一件工程,甲独做8天完成,乙独做10天完成,丙独做12天完成。
分数应用题的六种类型整理

②已知比一个数少几分之几的数是多少,求这个数。
用字母表示:
已知A,A比B少 n ,求B。
m
①除法
②解方程
A 1 n m
设 B为 x
1 n x A
m
分数应用题的六种类型整理
例
果园里有桃树30棵,桃树比梨树少
2 5
梨树多少棵?
30÷(1-
2 5
)
这是一类 怎样的分数应用题?解答这类 应用题要注意什么问题 ?
分数应用题的六种类型整理
(1)池塘里有12只鸭和4只鹅,
鹅的只数是鸭的几分之几?
单位“1”
鸭:
鹅:
4只
12只
求一个数是另一个数的几分之几(或
几倍)是多少,用除法计算。
4÷12=
1 3
1 答:鹅的只数是鸭的 。 3 分数应用题的六种类型整理
(2)池塘里有12只鸭,鹅的只数是鸭
的
1 3
。池塘里有多少只鹅单?位“1”
分数应用题的六种类型整理
我们一起来小结: 解答分数应用题要准确判断题目中的
( 单位“)1”,根据单位“1”已知还是 未知,单位“1”已知选择( 乘法)、单 位“1”未知选择( 除法),同时要处 理好( 数量间的对应关系)。
找单位“1”的方法有( )
分数应用题的六种类型整理
①电视机厂今年生产电视机36000台,相当于去年产量的1/4, 去年生产多少台?
②电视机厂今年生产电视机36000台,比去年少生产1/4,去 年生产多少台?
③电视机厂今年生产电视机36000台,比去年多生产1/4,去 年生产多少台?
④电视机厂今年生产电视机36000台,去年产量是今年的1/4, 去年生产多少台?
22分数百分数应用题综合解法经典题型 (4)

分数百分数应用题综合解法经典题型1. 一列火车3小时行驶240千米,如果提速后每小时比原来多行驶14,那么现在这列火车3小时行驶多少千米? 2. 六(1)班男生占全班的45%,女生比男生多(—)。
3. 某班男生32人,女生比男生少25%,女生有多少人?想:题中把( )看作单位“1”的量,要求女生多少人,可以先求出( ),也就是( )×75%=( );还可以想:要求女生多少人,可以先求出女生人数相当于男生的( ),也就可以用男生人数×( )=女生人数。
4. 女生人数比男生人数少全班的4%,那么男生人数比女生人数多全班的4%。
( )5. 妈妈的体重是50千克,正好是爸爸体重的75,爸爸的体重是多少千克?小明的体重比爸爸体重的21多3千克,小明的体重是多少千克?6. 把问题和相对应的算式连接起来。某体操队有60名男队员, 女队员有多少人?(1)女队员比男队员多15 , 60×15(2)女队员是男队员的15 , 60÷15(3)男队员比女队员少15 , 60×(1+15) (4)男队员是女队员的15 , 60÷(1-15) (5)男队员比女队员多15 , 60×(1-15) (6)女队员比男队员少15 , 60÷(1+15 )7. 育新小学六年级学生植树150棵,五年级学生植树比六年级少20%,比四年级多31,四年级学生植树多少棵?8. 小明家四月份电话费64元,以后每个月都比前一个月少了81。
他家六月份电话费多少元?9. 一块长方形地,长120米,宽比长短31。
这块地的面积是多少平方米?10. 学校组织跳绳比赛,小红跳了460下,是小花的32,小花跳的又是小明跳的43,小明跳多少下?11. 甲班有男生25人,女生20人,乙班学生的人数比甲班少1/9,乙班有学生多少人?12. 某化肥厂四月份生产化肥800吨,如果以后每个月都比前一个月增产1/20。六月份生产化肥多少吨?13. 商店运来三种水果,苹果720千克,梨子比苹果少121,桔子比梨子多112。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分数(百分数)应用题典型解法的整理和复习一、数形结合思想数形结合是研究数学问题的重要思想,画线段图能将题目中抽象的数量关系,直观形象地表示出来,进行分析、推理和计算,从而降低解题难度。
画线段图常常与其它解题方法结合使用,可以说,它是学生弄清分数(百分数)应用题题意、分析其数量关系的基本方法。
【例1】一桶油第一次用去51,第二次比第一次多用去20千克,还剩下22千克。
原来这桶油有多少千克?[分析与解]从图中可以清楚地看出:这桶油的千克数×(1-51-51)=20+22则这桶油的千克数为:(20+22)÷(1-51-51)=70(千克)二、对应思想量率对应是解答分数应用题的根本思想,量率对应是通过题中具体数量与抽象分率之间的对应关系来分析问题和解决问题的思想。
(量率对应常常和画线段图结合使用,效果极佳。
)【例2】缝纫机厂女职工占全厂职工人数的207,比男职工少144人,缝纫机厂共有职工多少人?[分析与解]解题的关键是找到与具体数量144人的相对应的分率。
从线段图上可以清楚地看出女职工占207,男职工占1-207=2013,女职工比男职工少占全厂职工人数的2013-207=103,也就是144人与全厂人数的103相对应。
全厂的人数为:144÷(1-7-7)=480(人)【例3】菜农张大伯卖一批大白菜,第一天卖出这批大白菜的31,第二天卖出余下的52,这时还剩下240千克大白菜未卖,这批大白菜共有多少千克?[分析与解]从线段图上可以清楚地看出240千克的对应分率是第一天卖出31后余下的(1-52)。
则第一天卖出后余下的大白菜千克数为:240÷(1-52)=400(千克)同理400千克的对应分率为这批大白菜的(1-31),则这批大白菜的千克数为:400÷(1-31)=600(千克)三、转化思想转化是解决数学问题的重要手段,可以这样说,任何一个解题过程都离不开转化。
它是把某一个数学问题,通过适当的变化转化成另一个数学问题来进行思考、求解,从而实现从繁到简、由难到易的转化。
复杂的分数应用题,常常含有几个不同的单位“1”,根据题目的具体情况,将不同的单位“1”转化成统一的单位“1”,使隐蔽的数量关系明朗化。
1、从分数的意义出发,把分数变成份数进行“率”的转化【例4】男生人数是女生人数的54,男生人数是学生总人数的几分之几?[分析与解]男生人数是女生的54,是将女生人数看作单位“1”,平均分成5份,男生是这样的4份,学生总人数为这样的(4+5)份,求男生人数是学生总人数的几分之几?就是求4份是(4+5)份的几分之几?4÷(4+5)=94【例5】兄弟两人各有人民币若干元,其中弟的钱数是兄的4,若弟给兄4元,则弟的钱数是兄的32,求兄弟两人原来各有多少元?[分析与解]兄弟两人的总钱数是不变量,把它看作单位“1”,原来弟的钱数占两人总钱数的544+,后来弟的钱数占两人总钱数的322+,则两人的总钱数为:4÷(544+-322+)=90(元)弟原来的钱数为:90×4+=40(元)兄原来的钱数为:90-40=50(元)2、直接运用分率计算进行“率”的转化【例6】甲是乙的2,乙是丙的4,甲是丙的的几分之几?[分析与解]甲是乙的2,乙是丙的4,求甲是丙的的几分之几?就是求4的2是多少?54×32=158【例7】某工厂计划一月份生产一批零件,由于改进生产工艺,结果上半月生产了计划的53,下半月比上半月多生产了51,这样全月实际生产了1980个零件,一月份计划生产多少个?[分析与解]51是以上半月的产量为“1”,下半月比上半月多生产51,即下半月生产了计划的53×(1+51)=2518。
则计划的(53+2518)为1980个,计划生产个数为:1980÷[53+53×(1+51)]=1500(个)3、通过恒等变形,进行“率”的转化【例8】甲的54等于乙的73,甲是乙的几分之几?[分析与解]由条件可得等式:甲×4=乙×3方法1:等式两边同除以54得:甲×54=乙×73÷54甲=乙×2518方法2:根据比例的基本性质得:甲∶乙=73∶54化简得:甲∶乙=15:28即甲是乙的2518。
【例9】五(2)班有学生54人,男生人数的75%和女生人数的80%都参加了课外兴趣小组,而未参加课外兴趣小组的男、女生人数刚好相等,这个班男、女生各有多少人?[分析与解]由条件可得等式:男生人数×(1-75%)=女生人数×(1-80%)男生人数∶女生人数=4:5就是男生人数是女生人数的54。
女生人数:54÷(1+54)=30(人)男生人数:54-30=24(人)四、变中求定的解题思想分数(百分数)应用题中有许多数量前后发生变化的题型,一个数量的变化,往往引起另一个数量的变化,但总存在着不变量。
解题时要善于抓住不变量为单位“1”,问题就会迎刃而解。
1、部分量不变【例11】有两种糖放在一起,其中软糖占9,再放入16块硬糖以后,软糖占两种糖总数的41,求软糖有多少块?[分析与解]根据题意,硬糖块数、两种糖的总块数都发生变化,但软糖块数不变,可以确定软糖块数为单位“1”,则原来硬糖块数是软糖块数的(1-209)÷209=911倍。
加入16块硬糖以后,后来硬糖块数是软糖块数的(1-41)÷41=3倍,这样16块硬糖相当于软糖的3-11=16倍,从而求出软糖的块数。
16÷[(1-41)÷41-(1-209)÷209]=9(块)2、和不变【例12】小明看一本课外读物,读了几天后,已读的页数是剩下页数的81,后来他又读了20页,这时已读的页数是剩下页数的61,这本课外读物共有多少页?[分析与解]根据题意,已读页数和未读页数都发生了变化,但这本书的总页数不变,可把总页数看作单位“1”,原来已读页数占总页数的811+,又读了20页后,这时已读页数占总页数的611+,这20页占这本书总页数的(611+-811+),则这本课外读物的页数为:20÷(1+-1+)=630(页)【例13】兄弟三人合买一台彩电,老大出的钱是其他两人出钱总数的21,老二出的钱是其他两人出钱总数的31,老三比老二多出400元。
问这台彩电多少钱?[分析与解]从字面上看21和31的单位“1”都是其他两人出钱的总数,但含义是不同的,21是以老二和老三出钱的总数为单位“1”,31是以老大和老三出钱的总数为单位“1”。
但三人出钱的总数(彩电价格)是不变的,把它确定为单位“1”,老大出的钱数相当于彩电价格的211+,老二出的钱相当于彩电价格的1+,老三出的钱数相当于彩电价格的1-1+-311+=125,400元相当于彩电价格的125-311+=61。
这台彩电的价格为:400÷(1-211+-311+-311+)=2400(元)五、假设思想假设思想是一种重要的数学思想,常用有推测性假设法和冲突式假设法。
1、推测性假设法推测性假设法是通过假定,再按照题的条件进行推理,然后调整设定内容,从而得到正确答案。
【例14】一条公路修了1000米后,剩下部分比全长的53少200米,这条公路全长多少米?[分析与解]由题意知,假设少修200米,也就是修1000-200=800(米),那么剩下部分正好是全长的53,因此已修的800米占全长的(1-53),所以这条公路全长为:(1000-200)÷(1-3)=2000(米)2、冲突式假设法冲突式假设法是解应用题中常用的一种思维方法。
通过对某种量的大胆假设,再依照已知条件进行推算,根据数量上出现的矛盾冲突,进行比较,作适当调整,从而找到正确答案的方法。
【例15】甲、乙两班共有96人,选出甲班人数的41和乙班人数的51,组成22人的数学兴趣小组,问甲、乙两班原来各有多少人?[分析与解]假设两班都选出41,则选出96×41=24(人),假设比实际多选出24-22=2(人)。
调整:这是因为把选出乙班人数的1假设为选出1,多算了1-1=1,由此可先算出乙班原来的人数。
(96×41-22)÷(41-51)=40(人)甲班原来的人数:96-40=56(人)【例16】某书店出售一种挂历,每售出1本可得18元利润。
售出一部分后每本减价10元出售,全部售完。
已知减价出售的挂历本数是减价前出售挂历本数的32。
书店售完这种挂历共获利润2870元。
书店共售出这种挂历多少本?[分析与解]根据减价出售的挂历本数是减价前出售挂历本数的32,我们假设减价前出售的挂历为3本,减价出售的挂历为2本,则售出这2+3=5(本)挂历所获的利润为:18×3+(18-10)×2=70(元)这与实际共获利润2870元相矛盾,这是什么原因造成的呢?调整:这是因为把出售的挂历假设为5本,根据实际共获利润是假设所获利润的2870÷70=41倍,实际共售出挂历的本数也应该是假设5本的41倍。
即5×41=205(本)六、用方程解应用题思想在用算术方法解应用题时,数量关系比较复杂,特别是逆向思考的应用题,往往棘手,而这些的应用题用列方程解答则简单易行。
列方程解应用题一开始就用字母表示未知量,使它与已知量处于同等地位,同时运算,组成等式,然后解答出未知数的值。
列方程解应用题的关键是根据题中已知条件找出的等量关系,再根据等量关系列出方程。
【例17】某工厂第一车间人数比第二车间的54多16人,如果从第二车间调40人到第一车间,这时两个车间的人数正好相等,原来两个车间各有多少人?[分析与解]根据题意,有如下数量关系:第一车间人数+40人=第二车间人数-40人解:设第二车间有X 人。
54X+16+40=X -40解得:X=480第一车间人数为:54X+16=54×480+16=400(人)【例18】老师买来一些本子和铅笔作奖品,已知本子本数与铅笔支数的比是4∶3,每位竞赛获奖的同学奖8本本子和5支铅笔,奖了7位同学后,剩下的本子本数与铅笔支数的比是3∶4,老师买来本子、铅笔各多少?[分析与解]根据题意,有如下数量关系:(本子本数-8×7)∶(铅笔支数-5×7)=3∶4解:设老师买来本子4X 本,铅笔3X 支。
(4X -8×7)∶(3X -5×7)=3∶4解得:X =17本子数:4X=4×17=68(本)铅笔数:3X=3×17=51(本)。