《圆的半径的应用》PPT课件
合集下载
初中圆 ppt课件

作圆的切线
切线的定义
切线是与圆只有一个公共点的直 线,这个公共点叫做切点。
切线的判定
要判定一条直线是否为圆的切线, 可以通过切线的定义进行判定,即 看直线与圆是否只有一个公共点。
切线的作法
在已知圆上任取一点,过这一点作 圆的切线,这样的切线有且只有一 条。
作圆的直径和半径
01
02
03
直径的定义
通过圆心并且两端都在圆 上的线段叫做圆的直径。
详细描述:在几何证明题中,有时需要通过添加辅助线 来构造与圆相关的图形,从而利用圆的性质来证明题目 中的结论。
详细描述:解决与圆相关的几何证明题需要掌握一些解 题技巧,如利用圆的性质进行等量代换、利用切线性质 进行转化等,这些技巧能够简化问题并提高解题效率。
圆与其他几何图形的关系
总结词:相交和相切 总结词:组合图形
详细描述
圆内接四边形定理指出,圆内接 四边形的对角线互相平分。这个 定理是解决与圆内接四边形相关 问题的重要依据。
切线长定理
总结词
切线长定理是关于圆的切线与经过切点的半径之间关系的定 理。
详细描述
切线长定理指出,从圆外一点引出的两条切线,它们的切线 长相等。这个定理在证明其他与圆有关的定理时经常用到, 如垂径定理。
详细描述:圆与其他几何图形如三角形、矩形等 经常出现相交或相切的情况,这些关系涉及到一 些重要的几何定理和性质,如切线长定理、相交 弦定理等。
详细描述:在解决几何问题时,有时需要将圆与 其他几何图形组合起来形成复杂的组合图形,这 些组合图形具有一些特殊的性质和定理,能够为 解题提供重要的思路和方法。
详细描述:圆形具有优美的对称性和流畅的线条,常用 于装饰和艺术设计中,如建筑设计、绘画和雕塑等。
人教版初三数学九年级上册 第24章 《圆》教材分析 课件(共38张PPT)

能利用垂径定理解决有关简单问题; 能利用圆周角定理及其推论解决有关 简单问题
运用圆的性质的有关 内容解决有关问题
点和圆 的
位置关系
了解点与圆的位置关系
尺规作图(利用基本作图完成):过 不在同一直线上的三点作圆;能利用 点与圆的位置关系解决有关简单问题
图图 形形 与的 几性 何质
直线和圆 的
位置关系
了解直线和圆的位置关系;会判断直 线和圆的位置关系;理解切线与过切 点的半径的关系;会用三角尺过圆上 一点画圆的切线
三角形的内切圆;了解三角形的内心; 有关简单问题;尺规作图(利用基本
了解正多边形的概念及正多边形与圆 作图完成):作三角形的外接圆、内
的关系
切圆,作圆的内接正方形和正六边形
弧长、扇形面 会计算圆的弧长和扇形的面积;会计
积 算圆锥的侧面积和全面积
和圆锥
能利用圆的弧长和扇形的面积解决一 些简单的实际问题
O
O
适当补充“知二推三”,灵活运用所学 知识,特别是体会如何证明圆心在弦上 (某弦是直径)。
O
C
A
B
例. 根据条件求解:
D
(1)已知⊙O半径为5,弦长为6,求弦心距和弓形高.
(2)已知⊙O半径为4,弦心距为3,求弦长和弓形高.
(3)已知⊙O半径为5,劣弧所对的弓形高为2,求弦长和 弦心距.
(4)已知⊙O弦长为2,弦心距为,求⊙O半径及弓形高.
A
B
半径为5dm。则水深______dm.
5.注重数学核心素养的培养
本章的教学内容能进一步发展学生的几何 直观、推理能力等数学核心素养。
在教学过程中引导学生多画图、敢画图, 借助对几何图形直观的感知、分析问题, 并在此基础之上,在解决问题的过程中, 运用合情推理探索思路,发现结论,运用 演绎推理用于证明结论。
初中圆的ppt课件

02 圆的性质和定理
圆周角定理பைடு நூலகம்
总结词
圆周角定理是圆的基本性质之一,它描述了圆周角与其所夹 弧之间的关系。
详细描述
圆周角定理指出,对于圆上的任意一个圆周角,它所对的弧 与其夹角的度数成比例。具体来说,如果一个圆周角是θ度, 它所对的弧是θ/180*π*r,其中r是圆的半径。
垂径定理
总结词
垂径定理是圆的另一个重要性质,它 描述了通过圆心的直径与圆周之间的 关系。
VS
详细描述
圆锥的侧面展开图是一个扇形,这个扇形 所在的圆就是圆锥的底面。通过这个关系 ,我们可以更好地理解圆锥的几何性质, 例如圆锥的侧面积和底面积之间的关系。 此外,这个关系也为我们提供了解决圆锥 问题的方法,例如求圆锥的表面积或体积 。
圆与圆柱的关系
总结词
圆与圆柱之间存在密切的关系,圆柱的侧面 展开图是一个矩形,而这个矩形的长和宽分 别是圆柱的高和底面圆的周长。
详细描述
圆柱的侧面展开图是一个矩形,这个矩形的 长等于圆柱的高,而宽等于圆柱底面圆的周 长。这个关系可以帮助我们理解圆柱的几何 性质,例如圆柱的侧面积和底面积之间的关 系。此外,这个关系也为我们提供了解决圆 柱问题的方法,例如求圆柱的侧面积或表面 积。
THANKS 感谢观看
初中圆的ppt课件
• 圆的基本概念 • 圆的性质和定理 • 圆的作图和计算 • 圆的在实际生活中的应用 • 圆的拓展知识
01 圆的基本概念
圆的基本定义
总结词
描述圆的定义
详细描述
圆是一个平面图形,由所有与固定点等距离的点组成。这个固定点称为圆心, 而这个等距离的长度称为半径。
圆的性质
总结词
描述圆的性质
周长计算的应用
小学数学六年级上册《圆的认识》课件

球体的表面积公式 为:$4pi r^{2}$, 其中$r$为球的半径 。
圆是平面图形,而 球是立体图形。
球体的表面积和体 积计算公式与圆有 关。
球体的体积公式为 :$frac{4}{3}pi r^{3}$,其中$r$为 球的半径。
圆与椭圆的关系
椭圆可以看作是一个长轴和短轴 不同的圆弯曲后形成的平面图形
当圆的直径等于方的对角线长 时,圆的周长等于方的周长, 即2 × π × r = d,其中d是方 的对角线长。
04
圆的实际应用
圆在日常生活中的应用
03
交通工具
餐具
建筑
汽车、火车和飞机等交通工具的轮子都是 圆形的,因为圆可以保证轮子在转动时平 稳,减少摩擦和磨损。
碗和盘子等餐具通常设计成圆形,因为圆 可以容纳更多的食物,并且方便手持和清 洗。
圆形窗户、门和屋顶等建筑元素可以增加 建筑的通风和采光,同时使建筑看起来更 加美观。
圆在科学实验中的应用
01
天文学
天文学家使用圆来描述星球和 星系的运动轨迹,例如地球绕 太阳的公转轨迹就是一个大圆
。
02
物理学
物理学家使用圆来描述物体的 运动状态,例如速度和加速度
等物理量。
03
化学
化学家使用圆来描述化学反应 的平衡状态,例如酸碱中和反 应的平衡常数就是一个圆的方
径。
02
这个公式是通过将圆分割成 无数个小的等长弧线,然后 求和这些弧线的长度来得到
的。
03
圆的周长反映了圆的“长度 ”,是描述圆周长大小的数
学量。
圆和方之间的关系
圆和方之间存在密切的关系, 主要体现在圆的面积和周长与 方的面积和周长的关系上。
当圆的半径等于方的一边长时 ,圆的面积等于方的面积,即 π × r^2 = a^2,其中a是方的 一边长。
六年级数学上册5.2.1圆的周长公式的推导及应用课件(共26张PPT)

一条直径:10×2=20cm
半圆形的周长:31.4+20=51.4cm
答:它的周长是51.4厘米。
一个圆形桌面的直径是0.9m,它的周长是多少米? 3.14×0.9=2.826(米)
答:它的周长是2.826米。
用皮尺量得圆桌面的周长是4.71m,这个圆桌面的 直径是多少?
C=πd 或 C=2πr
5圆
圆的周长公式的 推导及应用
找出下列圆的直径和半径。 D
A
C
BE
圆1
半径:OA、OD、OE
直径:DE
圆2
半径:OI、OF、OJ 直径:IJ
长方形、正方形 周长各指什么?
举手回答:用自己的话 说一下,什么是圆的周 长?用手画一画。
如何计算圆 的周长?
围成圆的曲线的长是圆的周长。
2厘米
方法一:滚动法
计算下面图形的周长。
10×3.14÷2×5+3.14×5 =31.4(cm)
这节课你们都学会了哪些知识?
围成圆的曲线的长是圆的周长。 圆的周长=直径×圆周率
C=πd 或 C=2πr
d=C÷π 或 r=C÷2π
一个圆形牛栏的半径是15m,至少要用多长的粗铁丝 才能把牛栏围上3圈?(接头处忽略不计。)如果每 隔2m打一根木桩,大约要打多少根木桩?
3.14×15×2×3=282.6(m)
3.14×15×2÷2≈47(根) 答:要用282.6m长的粗铁丝才能把牛栏围上3圈。
每隔2m打一根木桩,大约要打47根木桩。
选择
(1)圆周率是一个( B )。
A.有限小数 B.无限小数
(2)求车轮滚动一周前进的距离,是求车轮的( C )。
A.半径 B.直径 C.周长
半圆形的周长:31.4+20=51.4cm
答:它的周长是51.4厘米。
一个圆形桌面的直径是0.9m,它的周长是多少米? 3.14×0.9=2.826(米)
答:它的周长是2.826米。
用皮尺量得圆桌面的周长是4.71m,这个圆桌面的 直径是多少?
C=πd 或 C=2πr
5圆
圆的周长公式的 推导及应用
找出下列圆的直径和半径。 D
A
C
BE
圆1
半径:OA、OD、OE
直径:DE
圆2
半径:OI、OF、OJ 直径:IJ
长方形、正方形 周长各指什么?
举手回答:用自己的话 说一下,什么是圆的周 长?用手画一画。
如何计算圆 的周长?
围成圆的曲线的长是圆的周长。
2厘米
方法一:滚动法
计算下面图形的周长。
10×3.14÷2×5+3.14×5 =31.4(cm)
这节课你们都学会了哪些知识?
围成圆的曲线的长是圆的周长。 圆的周长=直径×圆周率
C=πd 或 C=2πr
d=C÷π 或 r=C÷2π
一个圆形牛栏的半径是15m,至少要用多长的粗铁丝 才能把牛栏围上3圈?(接头处忽略不计。)如果每 隔2m打一根木桩,大约要打多少根木桩?
3.14×15×2×3=282.6(m)
3.14×15×2÷2≈47(根) 答:要用282.6m长的粗铁丝才能把牛栏围上3圈。
每隔2m打一根木桩,大约要打47根木桩。
选择
(1)圆周率是一个( B )。
A.有限小数 B.无限小数
(2)求车轮滚动一周前进的距离,是求车轮的( C )。
A.半径 B.直径 C.周长
小学数学六年级上册《圆的认识》课件

3
用方程表示
圆也可以用简单的方程来表示,例如 "(x - 2)^2 + (y - 3)^2 = 4"。
圆的直径和周长
圆的直径是两个半径的长度之和。它通过圆心并且 将圆分成相等的两部分。
圆的周长是由圆所覆盖的总长度。它的值由公式"C = 2πr"给出,其中"π"约等于3.14,"r"是半径长度。
圆与直线的关系
圆的面积
圆的面积可以由公式"A = πr^2"来计算, 其中"A"表示圆的面积。
圆的应用举例
1 车轮和轮胎
车轮和轮胎常常采用圆形设计。
2 钟表和计时器
钟表和计时器的表盘通常都为圆形,以便于读取时间。
3 运动场
许多运动场均为圆形,例如田径赛场。
相离
如果直线与圆没有交点,那么它们是相离的。
相交
如果直线与圆有两个交点,则它们是相交的。
相切
如果直线仅与圆有一个交点,则它们是相切的。
注意
交点数量最多为2,但也可能没有交点。
圆的面积和扇形的面积
1
扇形的面积2Fra bibliotek扇形的面积是圆周围某个角度对应的扇 形部分的面积。它由公式"A = (πr^2 x θ)
/ 360"给出,其中"θ" 是扇形的角度。
小学数学六年级上册《圆 的认识》ppt课件
在六年级上册,我们将深入研究圆的定义和特点。此外,我们还将探讨有关 这个形状的公式和应用示例。
圆的定义和特点
圆是一个具有无限长度的完整曲线,其中每个点到 其中心的距离相等。
在一个圆中,用于测量圆的大小的是其半径,它从 圆心到圆上的任意点。
六年级数学圆的整理和复习PPT课件

半径的2倍 C 半径是直径的一半
第35页/共45页
圆单元整理与复习
查漏补缺
2、对比练习:
给直径是75厘米的水缸做一个木盖,木盖的直径 比缸口直径大5厘米。
(1)木盖的面积是多少平方米?
(2)如果在木盖的边沿钉一条铁片,铁片长多少厘米?
这两个问题有什么区别?
第36页/共45页
圆单元整理与复习
查漏补缺
3.14×0.28×20 =3.14×5.6 =17.584(平方米)
17.584÷(3.14×0.35) =17.584 ÷3.14 ÷0.35 =16(圈)
2、在一答个:周后轮长行为驶1186圈.8。4厘米的圆内画一个最大的 正方形,这个正方形的面积是多少平方厘米?
Байду номын сангаас
18.84÷3.14=6(厘米) 6×(6÷2)=18(平方厘米) 答:这个正方形的面积是18平方厘米。
这两个问题有什么区别?
第38页/共45页
圆单元整理与复习
查漏补缺
下图是一个直径是4厘米的半圆,你会求它的周长 和面积吗?
4厘米 半圆的周长等于圆周长的一半加一条直径。 半圆的面积等于圆面积的一半。
第39页/共45页
圆单元整理与复习
灵活应用
1、如下图,绳长4米,问小狗的活动面积有多大?
2、一个圆形花圃的周长是50.24米,在它里面留出1/8 的面积种菊花。菊花的占地面积是多少?
通过观察、思考、交流 ,我们发现了 拼成的长方形与原来的圆之间的联系。 长方形的面积与圆的面积相等。
长方形的长是圆的( 周长的一半r )。
长方形的宽是圆的( 半径r )。
r
2C(r)
第26页/共45页
华师版九年级数学下册第27章圆PPT教学课件1

A
· O
B
三 关系定理及推论的运用
典例精析
» =CD » = DE », 例1 如图,AB是⊙O 的直径, BC
∠COD=35°,求∠AOE 的度数.
E D C A · O
» =CD » = DE », 解: ∵ BC
BOC COD DOE =35,
B
75 .
⌒ ⌒ 例2 如图,在⊙O中, AB=AC ,∠ACB=60°, 求证:∠AOB=∠BOC=∠AOC. ⌒ ⌒ 证明:∵AB=CD , ∴ AB=AC.△ABC是等腰三角形. 又∠ACB=60°, · O C A
⌒ ⌒ 果∠AOB=∠COD,那么,AB =CD ,弦AB=弦CD.
要点归纳 弧、弦与圆心角的关系定理
在同一个圆中,如果圆心角相等,那么它们所对
的弧相等,所对的弦相等.
①∠AOB=∠COD
C D O B A
⌒ ⌒ ②AB=CD ③AB=CD
想一想:定理“在同圆或等圆中,相等的圆心角所 对的弧相等,所对的弦也相等.”中,可否把条件 “在同圆或等圆中”去掉?为什么? 不可以,如图.
» 的中点E,连接OE.那么 不是,取 CD
A O
B C E D
» ∠AOB=∠COE=∠DOE,所以 » AB = CE
= DE » .
» =2 » AB,弦AB=CE=DE,在 CD
△CDE中,CE+DE>CD,即CD<2AB.
课堂小结
圆心角
概念:顶点在圆心的角 在同圆或等圆中
弦、弧、圆心角 的 关 系 定 理
圆心角相等,所对的弦相等. 在同一个圆中,如果弦相等,那么它们所对的
圆心角相等,所对的弧相等.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.如图,在△ABC中,∠ACB=90°,AB=10,BC=8, CD⊥AB于点D,O为AB的中点.
(1)以C为圆心,6为半径作圆,试判断点A,D,B与⊙C 的位置关系. 解:在 Rt△ ABC 中,∠ACB=90°, AB=10,BC=8, 由勾股定理得 AC=6,所以点 A 在⊙C 上.
由 S△ACB=12CD·AB=12AC·BC, 得 CD=4.8<6,所以点 D 在⊙C 内. 又因为 BC=8>6,所以点 B 在⊙C 外.
1. 说得太好了,老师佩服你,为你感到骄傲! 2. 你的设计(方案、观点)富有想象力,极具创造性。 3. 我非常欣赏你的想法,请说具体点,好吗? 4. 某某同学的解题方法非常新颖,连老师都没想到,真厉害! 5. 让我们一起为某某喝彩!同学们在学习过程中,也要敢于猜想,善于猜想,这样才能有所发现,有所创造! 三、表扬类
ቤተ መጻሕፍቲ ባይዱ
解:该船应按射线AB方向驶离危险区域. 理由如下:如图,连结AB,并延长交⊙A于点C,在⊙A 上任取一点D(D异于C,且不是C关于A的对称点),连结 BD,AD. 在△ABD中,AB+BD>AD. ∵AD=AC=AB+BC, ∴AB+BD>AB+BC.∴BD>BC.
当点D是C关于A的对称点时,BD=BA+AD=BA+AC> BC,∴BD>BC. ∴为了尽快驶离危险区域,该船应按射线AB方向航行.
2 . 如 图 , CD 是 ⊙ O 的 直 径 , 点 A 在 DC 的 延 长 线 上 , ∠A=20°,AE交⊙O于点B,且AB=OC.求:
(1)∠AOB的度数; 解 : ∵ AB = OC, OB= OC , ∴AB=OB. ∴∠AOB=∠A=20°.
(2)∠EOD的度数. 解:∵∠OBE=∠A+∠AOB, ∴∠OBE=2∠A. ∵OB=OE,∴∠OBE=∠E. ∴∠E=2∠A. ∴∠EOD=∠A+∠E=3∠A=60°.
4.如图,海军某部队在灯塔A周围进行爆破作业,灯塔A 周围3 km内的水域为危险水域,有一渔船误入离灯塔 A 2 km远的B处,为了尽快驶离危险区域,该船应按 哪条射线方向航行?并说明理由.
【点拨】本题运用了建模思想,将实际问题转化为数学问 题.其中圆内一点到圆上的最小距离为以圆心为端点,过 该点的射线与圆相交的点与该点之间的线段长度.
此页为防盗标记页(下载后可删)
1、谢谢大家听得这么专心。 2、大家对这些内容这么感兴趣,真让我高兴。 3、你们专注听讲的表情,使我快乐,给我鼓励。 4、我从你们的姿态上感觉到,你们听明白了。 5、我不知道我这样说是否合适。 6、不知我说清了没有,说明白了没有。 7、我的解释不知是否令你们满意,课后让我们大家再去找有关的书来读读。 8、你们的眼神告诉我,你们还是没有明白,想不想让我再讲一遍? 9、会“听”也是会学习的表现。我希望大家认真听好我下面要说的一段话。 10、从听课的情况反映出,我们是一个素质良好的集体。 1、谢谢你,你说的很正确,很清楚。 2、虽然你说的不完全正确,但我还是要感谢你的勇气。 3、你很有创见,这非常可贵。请再响亮地说一遍。 4、××说得还不完全,请哪一位再补充。 5、老师知道你心里已经明白,但是嘴上说不出,我把你的意思转述出来,然后再请你学说一遍。 6、说,是用嘴来写,无论是一句话,还是一段话,首先要说清楚,想好了再说,把自己要说的话在心里整理一下就能说清楚。 7、对!说得很好,我很高兴你有这样的认识,很高兴你能说得这么好! 8、我们今天的讨论很热烈,参与的人数也多,说得很有质量,我为你们感到骄傲。 9、说话,是把自己心里的想法表达出来,与别人交流。说时要想想,别人听得明白吗? 10、说话,是与别人交流,所以要注意仪态,身要正,不扭动,眼要正视对方。对!就是这样!人在小时候容易纠正不良习惯,经常 注意哦。
1. 你虽然没有完整地回答问题,但你能大胆发言就是好样的!
此页为防盗标记页(下载后可删)
1、你的眼睛真亮,发现这么多问题! 2、能提出这么有价值的问题来,真了不起! 3、会提问的孩子,就是聪明的孩子! 4、这个问题很有价值,我们可以共同研究一下! 5、这种想法别具一格,令人耳目一新,请再说一遍好吗? 6、多么好的想法啊,你真是一个会想的孩子! 7、猜测是科学发现的前奏,你们已经迈出了精彩的一步! 8、没关系,大声地把自己的想法说出来,我知道你能行! 9、你真聪明!想出了这么妙的方法,真是个爱动脑筋的小朋友! 10、你又想出新方法了,真会动脑筋,能不能讲给大家听一听? 11、你的想法很独特,老师都佩服你! 12、你特别爱动脑筋,常常一鸣惊人,让大家禁不住要为你鼓掌喝彩! 13、你的发言给了我很大的启发,真谢谢你! 14、瞧瞧,谁是火眼金睛,发现得最多、最快? 15、你发现了这么重要的方法,老师为你感到骄傲! 16、你真爱动脑筋,老师就喜欢你思考的样子! 17、你的回答真是与众不同啊,很有创造性,老师特欣赏你这点! 18、××同学真聪明!想出了这么妙的方法,真是个爱动脑筋的同学! 19、你的思维很独特,你能具体说说自己的想法吗? 20、这么好的想法,为什么不大声地、自信地表达出来呢? 21、你有自己独特想法,真了不起! 22、你的办法真好!考虑的真全面! 23、你很会思考,真像一个小科学家! 24、老师很欣赏你实事求是的态度! 25、你的记录很有特色,可以获得“牛津奖”!
ZJ版九年级上
第3章 圆的基本性质
3.1 圆 第2课时 圆的半径的应用
提示:点击 进入习题
1 见习题 2 见习题 3 见习题 4 见习题
答案显示
1.如图,AB是⊙O的弦,半径OC,OD分别交AB于点E, F,且AE=BF,请你判断线段OE与OF的数量关系, 并说明理由. 解:OE=OF. 理由如下:连结OA,OB,∵OA=OB, ∴∠OAB=∠OBA.即∠OAE=∠OBF. 又∵AE=BF,∴△OAE≌△OBF(SAS). ∴OE=OF.
温馨提示: 此PPT
可修改编辑
1、“读”是我们学习语文最基本的方法之一,古人说,读书时应该做到“眼到,口到,心到”。我看,你们今天达到了这个要求。 2、大家自由读书的这段时间里,教室里只听见琅琅书声,大家专注的神情让我感受到什么叫“求知若渴”,我很感动。 3、经过这么一读,这一段文字的意思就明白了,不需要再说明什么了。 4、请你们读一下,将你的感受从声音中表现出来。 5、读得很好,听得出你是将自己的理解读出来了。特别是这一句,请再读一遍。
同学们下课啦
授课老师:xxx
此页为防盗标记页(下载后可删)
教师课堂用语在学科专业方面重在进行“引”与“导”,通过点拨、搭桥等方式让学生豁然开朗,得出结论,而不是和盘托 出,灌输告知。一般可分为:启发类、赏识类、表扬类、提醒类、劝诫类、鼓励类、反思类。
一、启发类
1. 集体力量是强大的,你们小组合作了吗?你能将这个原理应用于生活吗?你的探究目标制定好了吗? 2. 自学结束,请带着疑问与同伴交流。 3. 学习要善于观察,你从这道题中获取了哪些信息? 4. 请把你的想法与同伴交流一下,好吗? 5. 你说的办法很好,还有其他办法吗?看谁想出的解法多? 二、赏识类
1. 你真让人感动,老师喜欢你的敢想、敢说、敢问和敢辩,希望你继续保持下去。 2. 这么难的题你能回答得很完整,真是了不起!你是我们班的小爱因斯坦。 3. 你预习的可真全面,自主学习的能力很强,课下把你的学习方法介绍给同学们,好不好? 4. 哎呀. 通过你的发言,老师觉得你不仅认真听,而且积极动脑思考了,加油哇! 四、提醒类
(2)当⊙C的半径为多少时,点O在⊙C上? 解:连结 CO,在 Rt△ ABC 中,O 为斜边 AB 的 中点,所以 CO=12AB=12×10=5. 所以当⊙C 的半径为 5 时,点 O 在⊙C 上.
(3)若以点C为圆心作圆,使A,O,B三点至少有一点在 圆内,至少有一点在圆外,则⊙C的半径r的取值范围 是什么? 解:AC=6,OC=5,BC=8,以点C为圆心,r为半 径作圆.因为BC>AC>OC,所以满足条件的半径r的取 值范围是5<r<8.