河北省衡水中学2018年高三下学期期初考试(3月)数学(文)试卷(无答案)

合集下载

河北省衡水中学2018届高三第十六次模拟考试数学(文)试题(解析版)

河北省衡水中学2018届高三第十六次模拟考试数学(文)试题(解析版)

全称命题与特
称命题,判断命题的真假应注意以下几个方面: (l) 首先要分清命题的条件与结论,再比较每个命题的
条件与结论之间的关系; (2) 要注意四种命题关系的相对性, 一旦一个命题定为原命题, 也就相应地确
定了它的“逆命题”“否命题”“逆否命题”, 注意利用“原命题”与“逆否命题”同真假; (3) 判断
乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分
.
3. 已知数列 是各项为正数的等比数列,点

都在直线
上,则数列
的前 项和为( )
A.
B.
C.
D.
【答案】 C
【解析】分析:由点

都在直线
上,可求出
比,进而可得结果 .
详解:因为点

都在直线
上,
所以
,可得

,可得

,从而求出首项与公
最终输出的
,则一开始输入的 的值为( )
3
A. B.
C.
D.
【答案】 B
【解析】 分析: 模拟执行程序框图, 只要按照程序框图规定的运算方法逐次计算,
即可得到输入的 的值 .
详解:第一次输入
;第二次输入

第三次输入

第四次输入

第五次输入

直到达到输出条件,
输出
,解得
,故选 B.
点睛:本题主要考查程序框图的循环结构流程图,属于中档题
【答案】 D
【解析】分析:对 ,利用否命题的定义可判断;对 ,利用指数函数的单调性即可得出;对
,利用
正弦函数的单调性与 “或命题 ”的定义可判断;对 ,利用实数的性质和充分必要条件可判断 .

河北省衡水中学2018年高考押题(三)文科数学 (PDF)文数(三)试卷

河北省衡水中学2018年高考押题(三)文科数学 (PDF)文数(三)试卷
x
(1)如果曲线 y f x 在点 0, f 0 处的切线方程为 y x ,求 a , b 的值; (2)若 a 1 , b 2 ,关于 x 的不等式 f x ax 的整数解有且只有一个,求 a 的取值范围.


请考生在 22、23 两题中任选一题作答,如果多做,则按所做的第一题记分.
C.第三象限 D.第四象限
B.第二象限
r r r 1 r r 3.已知平面向量 a , b 的夹角为 ,且 a 1 , b ,则 a 2b ( 3 2 3 A.1 B. 3 C.2 D. 2
2
9. 某几何体的正视图和侧视图如图 (1) , 它的俯视图的直观图是矩形 O1 A1 B1C1(如图 (2) ) , 其中 O1 A1 3 ,
22.选修 4-4:坐标系与参数方程
3 x 1 t, 2 ( t 为参数),在以坐标原点为极点、 x 轴的非负半轴为极轴建立 已知直线 l 的参数方程为 y 1 t 2
的极坐标系中,圆 C 的极坐标方程为 2 2 . (1)求直线 l 被圆 C 截得的弦长; (2)若 M 的坐标为 1, 0 ,直线 l 与圆 C 交于 A , B 两点,求 MA MB 的值. 23.选修 4-5:不等式选讲 已知 f x x 1 x a ( a 为常数). (1)若 f 2 f a 1,求实数 a 的取值范围; (2)若 f x 的值域为 A ,且 A 2,3 ,求实数 a 的取值范围.

若关于 x 的方程 f x kx
1 恰有四个不相等的实数根,则实 2
A.
1 , e 2
B. , e
1 2

河北省衡水中学2018届高三第十六次模拟考试数学(文)试题(解析版)

河北省衡水中学2018届高三第十六次模拟考试数学(文)试题(解析版)

2017-2018学年度第二学期十六模考试高三年级数学文科试卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B. C. D.【答案】D【解析】分析:利用指数函数的性质化简集合,利用一元二次不等式的解法化简集合,逐一验证选项即可.详解:,,,故选D.点睛:本题主要考查了解一元二次不等式,求集合的补集与交集,属于容易题,在解题过程中要注意在求补集与交集时要考虑端点是否可以取到,这是一个易错点,同时将不等式与集合融合,体现了知识点之间的交汇.2. 已知复数的共轭复数为,若,则()A. B. C. D.【答案】A【解析】分析:先设出复数,再求出共轭复数,由已知,利用可得结果.详解:设,则,,,故选A.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.3. 已知数列是各项为正数的等比数列,点、都在直线上,则数列的前项和为()A. B. C. D.【答案】C【解析】分析:由点、都在直线上,可求出,从而求出首项与公比,进而可得结果.详解:因为点、都在直线上,所以,可得,,可得,,故选C.点睛:本题主要考查等比数列的通项公式,属于中档题. 等比数列基本量的运算是等比数列的一类基本题型,数列中的五个基本量,一般可以“知二求三”,通过列方程组所求问题可以迎刃而解,解决此类问题的关键是熟练掌握等比数列的有关性质和公式,并灵活应用,在运算过程中,还应善于运用整体代换思想简化运算过程.4. 齐王和田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹进行一场比赛,则田忌马获胜的概率为()A. B. C. D.【答案】A【解析】设齐王的上,中,下三个等次的马分别为,田忌的上,中,下三个等次的马分别为记为,从双方的马匹中随机选一匹进行一场比赛的所有的可能为,根据题设其中是胜局共三种可能,则田忌获胜的概率为,故选A.5. 下面几个命题中,假命题是()A. “若,则”的否命题;B. “,函数在定义域内单调递增”的否定C. “是函数的一个周期”或“是函数的一个周期”D. “”是“”的必要条件【答案】D【解析】分析:对,利用否命题的定义可判断;对,利用指数函数的单调性即可得出;对,利用正弦函数的单调性与“或命题”的定义可判断;对,利用实数的性质和充分必要条件可判断.详解:对.“若,则”的否命题是“若,则” ,是真命题;对,“,函数在定义域内单调递增”的否定为“,函数在定义域内不单调递增”正确,例如时,函数在上单调递减,为真命题;对,“是函数的一个周期”,不正确,“是函数的一个周期”正确,根据或命题的定义可知,为真命题;对,“”“”反之不成立,因此“”是“”的充分不必要条件,是假命题,故选D. 点睛:本题通过判断命题的真假综合考查四种命题及其关系以及充分条件与必要条件、全称命题与特称命题,判断命题的真假应注意以下几个方面:(l)首先要分清命题的条件与结论,再比较每个命题的条件与结论之间的关系;(2)要注意四种命题关系的相对性,一旦一个命题定为原命题,也就相应地确定了它的“逆命题”“否命题”“逆否命题”,注意利用“原命题”与“逆否命题”同真假;(3)判断命题真假时,可直接依据定义、定理、性质直接判断,也可使用特值进行排除.6. 双曲线(,)的一条渐近线与圆相切,则此双曲线的离心率为()A. B. C. D.【答案】A【解析】因为双曲线的一条渐近线为,所以,因为,所以选A.7. 元朝著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,遇店添一倍,逢友饮一斗,店友经四处,没了壶中酒,借问此壶中,当原多少酒?”用程序框图表达如图所示,即最终输出的,则一开始输入的的值为()A. B. C. D.【答案】B【解析】分析:模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输出条件,即可得到输入的的值.详解:第一次输入;第二次输入;第三次输入; 第四次输入; 第五次输入;输出,解得,故选B.点睛:本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.8. 将数字,,,,,书写在每一个骰子的六个表面上,做成枚一样的骰子.分别取三枚同样的这种骰子叠放成如图A 和B 所示的两个柱体,则柱体A 和B 的表面(不含地面)数字之和分别是( )A. ,B. ,C. ,D. ,【答案】A【解析】分析:根据骰子中与与与分别相对,找出图与图的表面数字,分别求出数字和即可.详解:图中数字之和为, 图中数字之和为,故选A.点睛:本题主要考查棱柱的结构特征,意在考查空间想象能力,属于简单题.. 9. 已知函数,,则下列不等式中正确的是( )A.B.C.D.【答案】D【解析】分析:由已知可得,可得函数是奇函数,并且可得函数在时单调递增,因此在上单调递增,利用单调性与奇偶性可得结果. 详解:,函数是奇函数,并且可得函数在时单调递增,因此在上单调递增,,,,即,故选D.点睛:本题主要考查函数的奇偶性与单调性应用的,以及对数的运算、对数函数的性质、不等式的性质,意在考查推理能力与计算能力以及综合运用所学知识解决问题的能力,属于中档题.10. 将函数的图象向右平移个单位,再将所得的图象所有点的横坐标缩短为原来的倍(纵坐标不变),则所得图象对应的函数的一个单调增区间为()A. B. C. D.【答案】C【解析】分析:根据函数的图象变换规律,正弦函数的图象的单调性,可得结论.详解:将函数的图象向右平移个单位,所得的图象对应的解析式为,再将所得的图象所有点的横坐标缩短为原来的倍(纵坐标不变),所得的图象对应的解析式为,令,解得,令时,所得图象对应的函数的一个单调递增区间为,故选C.点睛:本题主要考查三角函数的图象变换以及正弦函数的单调性,重点考查学生对三角函数图象变换规律的理解与掌握,能否正确处理先周期变换后相位变换这种情况下图象的平移问题,反映学生对所学知识理解的深度.11. 若平面内两定点,间的距离为,动点与、距离之比为,当,不共线时,面积的最大值是()A. B. C. D.【答案】A【解析】分析:建立坐标系,则设,由,化简得,当点到轴)距离最大时,面积的最大值,从而得结果.详解:建立如图所示的坐标系,则设,则,化简得,如图,当点到轴)距离最大时,面积的最大值,由圆的性质可得,面积的最大值,故选A.点睛:本题主要考查直接法求轨迹方程、圆的几何性质的应用,属于难题.求轨迹方程的常见方法有:①直接法,设出动点的坐标,根据题意列出关于的等式即可;②定义法,根据题意动点符合已知曲线的定义,直接求出方程;③参数法,把分别用第三个变量表示,消去参数即可;④逆代法,将代入.12. 已知函数的图象在点处的切线为,若也与函数,的图象相切,则必满足()A. B. C. D.【答案】D【解析】设与函数,的图象的切点为,则由得,所以.令,则由零点存在定理得,选D.点睛:(1)求曲线的切线要注意“过点P的切线”与“在点P处的切线”的差异,过点P的切线中,点P不一定是切点,点P也不一定在已知曲线上,而在点P处的切线,必以点P为切点.(2)利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解.二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知平面向量与的夹角为,且,,则__________.【答案】2【解析】试题分析:由,将的两边同时平方可得,,即,解得.考点:向量数量积及模长的运算.14. 将正整数对作如下分组,第1组为,第2组为,第3组为,第4组为……则第30组第个数对为__________.【答案】【解析】分析:由所给分组发现规律,可得第组的各对数和为,且各对数对应数字,按照顺序排列,即可得到所求数对,详解:由题意可得第一组的各对数和为,第二组的各对数和为,第三组的各对数和为,第四组的各对数和为,第组的各对数和为,且各对数对应数字按顺序排列,可得第组的各对数和为,则第组第个数为,故答案为.点睛:本题通过观察几组不等式,归纳出一般规律来考查归纳推理,属于中档题. 归纳推理的一般步骤: 一、通过观察个别情况发现某些相同的性质. 二、从已知的相同性质中推出一个明确表述的一般性命题(猜想). 常见的归纳推理分为数的归纳和形的归纳两类:(1) 数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2) 形的归纳主要包括图形数目的归纳和图形变化规律的归纳.15. 若变量,满足约束条件,且的最小值为,则_________.【答案】【解析】试题分析:画出如图所示的可行域,由可得,由图像可知当直线经过点A时,直线截距最小,即最小,则目标函数为因为解得即,因为点A也在直线上,所以考点:线性规划的应用视频16. 若存在两个正实数,使等式成立,(其中)则实数的取值范围是__________.【答案】【解析】,,设,设,那么,恒成立,所以是单调递减函数,当时,,当时,,函数单调递增,当,,函数单调递减,所以在时,取得最大值,,即,解得:或,写出区间为,故填:.【点睛】本题主要考察不等式恒成立的问题,根据参变分离,再利用换元法转化为方程有解,构造函数求导数,并且求构造函数的二阶导数,分析函数极值和单调性的关系和函数的图象和函数的的最值,得到参数的取值范围进行求解,综合性非常强,属于难题.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 如图,一山顶有一信号塔(所在的直线与地平面垂直),在山脚处测得塔尖的仰角为,沿倾斜角为的山坡向上前进来后到达处,测得的仰角为.(1)求的长;(2)若,,,,求信号塔的高度.【答案】(1);(2)【解析】分析:(1)在中,,,,由正弦定理可得;(2)结合(1),在三角形中,利用正弦定理化简求解即可.详解:(1)在中,,,.由正弦定理,;(2)由(1)及条件知,,,,.由正弦定理得点睛:本题主要考查正弦定理在解三角形中的应用,属于中档题.正弦定理是解三角形的有力工具,其常见用法有以下三种:(1)知道两边和一边的对角,求另一边的对角(一定要注意讨论钝角与锐角);(2)知道两角与一个角的对边,求另一个角的对边;(3)证明化简过程中边角互化;(4)求三角形外接圆半径.18. 如图,在直三棱柱中,,分别是棱,的中点,点在棱上,且,,.(1)求证:平面;(2)当时,求三棱锥的体积.【答案】(1)见解析;(2)【解析】试题分析:(1)连接交于点,由重心性质可得,由相似可得,最后根据线面平行判定定理得结论(2)取上一点使,利用平行进行等体积代换,最后根据锥体体积公式求体积试题解析:解:(1)(法一)连接交于点,连接由分别是棱中点,故点为的重心在中,有,又平面平面(法二)取的中点,连接由是棱的中点,为的中点,为的中位线,即平面又为棱的中点,为的中点由,由,且为直三棱柱,进而得,即平面又平面平面又平面平面(2)取上一点使∵且直三棱柱∴,∵为中点∴,,平面∴而,点到平面的距离等于∴∴三棱锥的体积为19. 某学校高一、高二、高三三个年级共有名教师,为调查他们的备课时间的情况,通过分层抽样获得了名教师一周的备课时间,数据如下表(单位:小时).(1)试估计该校高三年级的教师人数;(2)从高一年级和高二年级抽出的教师中,各随机选取一人,高一年级选出的人记为甲,高二年级选取的人记为乙,求该周甲的备课时间不比乙的备课时间长的概率;(3)再从高一、高二、高三三个年级中各随机抽取一名教师,他们该周的备课时间分别为,,(单位:小时),这三个数据与表格中的数据构成的新样本的平均数记为,表格中的数据平均数记为,试判断与的大小,并说明理由.【答案】(1)120;(2);(3)【解析】分析:抽出的位教师中,来自高三年级的有名,根据分层抽样方法,能求出高三年级的教师共有多少人;(2)从高一、高二年级分别抽取一人,共有种基本结果,利用列举法求出该周甲的备课时间不比乙的备课时间长的基本结果种数为,由古典概型概率公式可得结果;(3)利用平均数公式求出平均数,能判断与的大小.详解:(1)抽出的位教师中,来自高三年级的有名,根据分层抽样方法,高三年级的教师共有(人)(2)从高一、高二年级分别抽取一人,共有种基本结果,该周甲的备课时间不比乙的备课时间长的基本结果有(3),三组总平均值.新加入的三个数,,的平均数为,比小.故拉低了平均值.∴点睛:本题主要考查平均数公式以及分层抽样的应用以及古典概型概率公式的应用,属于中档题.分层抽样适合总体中个体差异明显,层次清晰的抽样,其主要性质是,每个层次,抽取的比例相同.20. 已知椭圆()的左、右焦点分别为,.过且斜率为的直线与椭圆相交于点,.当时,四边形恰在以为直径,面积为的圆上.(1)求椭圆的方程;(2)若,求直线的方程.【答案】(1);(2)【解析】试题分析:(Ⅰ)当时,直线轴,由圆的面积得半径,进而得,由得,设,则,进而得,利用椭圆定义即可求解;(Ⅱ)将与椭圆方程联立得,设,,进而由韦达定理代入求解即可.试题解析:(Ⅰ)当时,直线轴,又四边形恰在以为直径,面积为的圆上,∴四边形为矩形,且.∴点的坐标为.又,∴.设,则.在中,,,∴,∴.∴,∴椭圆的方程为.(Ⅱ)将与椭圆方程联立得,设,,得,.故.又,∴,即,解得,∴直线的方程为.21. 已知函数(),.(1)当在处的切线与直线垂直时,方程有两相异实数根,求的取值范围;(2)若幂函数的图象关于轴对称,求使不等式在上恒成立的的取值范围. 【答案】(1);(2)【解析】分析:(1)由题设可得,令(),利用导数研究函数的单调性,可得,从而可得结果;(2)由题设有,令(),两次求导,分两种情况讨论,可得①时;②时,,综合两种情况可得结果.详解:(1)由题设可得,令()则令得.∵,,,且有两个不等实根,∴,即∴(2)由题设有,令(),则,令,则又,∴.∴在在单调递增.又,①,即时,.所以在内单调递增,,所以②,即时,由在内单调递增,且∵,.∴使得.所以的最小值为.又,所以.因此,要使当时,恒成立,只需,即即可.解得,此时,可得,以下求出的取值范围.设,,得.所以在上单调递减,从而.综上①②所述,的取值范围.点睛:本题是以导数的运用为背景的函数综合题,主要考查了函数思想,化归思想,抽象概括能力,综合分析问题和解决问题的能力,属于较难题,近来高考在逐年加大对导数问题的考查力度,不仅题型在变化,而且问题的难度、深度与广度也在不断加大,本部分的要求一定有三个层次:第一层次主要考查求导公式,求导法则与导数的几何意义;第二层次是导数的简单应用,包括求函数的单调区间、极值、最值等;第三层次是综合考查,包括解决应用问题,将导数内容和传统内容中有关不等式甚至数列及函数单调性有机结合,设计综合题.22. 在直角坐标系中,曲线的参数方程为,(其中为参数),曲线,以原点为极点,轴的正半轴为极轴建立极坐标系,射线()与曲线,分别交于点,(均异于原点)(1)求曲线,的极坐标方程;(2)当时,求的取值范围.【答案】(1),;(2)【解析】试题分析: (1)先分别求出曲线的普通方程,再利用化为极坐标方程; (2)分别求出的表达式,利用单调性求出范围.试题解析: (1)的普通方程为,的极坐标方程为的极坐标方程为(2)联立与的极坐标方程得联立与的极坐标方程得则则,在上单调递增,∴.23. 已知函数()(1)若不等式恒成立,求实数的最大值;(2)当时,函数有零点,求实数的取值范围.【答案】(1)1;(2)【解析】分析:(1)由,可得,∴,从而可得结果;(2)当时,将写成分段函数形式,由单调性可得,∴或,从而可得结果.详解:(1)∵,∴,∴,∴,∴,∴实数的最大值为.(2)当时,∴∴或∴,∴实数的取值范围是点睛:本题主要考查绝对值不等式以及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:① 分离参数恒成立(即可)或恒成立(即可);② 数形结合(图象在上方即可);③ 讨论最值或恒成立;④ 讨论参数.。

河北省衡水中学2018届高三数学下学期全国统一联合考试3月试题理无答案

河北省衡水中学2018届高三数学下学期全国统一联合考试3月试题理无答案

河北省衡水中学2018届高三数学下学期全国统一联合考试(3月)试题 理一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{}1,2,3,4,5,6,7,8U =,{}3,4,5A =,{}1,3,6B =,则集合{}2,7,8是( ) A.ABB.ABC.()U C ABD.()U C A B2.已知复数z 的实部不为0,且1z =,设1z z ω=+,则ω在复平面上对应的点在( )A.实轴上B.虚轴上C.第三象限D.第四象限3.将()2nx -的展开式按x 的升幂排列,若倒数第三项的系数是40-,则n 的值是( )4.如图所示是三棱柱与球的组合体的三视图,则三棱柱的体积与球的体积之比是( )33B.6πC.9π435.设1F ,2F 分别是双曲线()2222:10,0x y C a b a b -=>>的左、右焦点,以1F 为圆心、12F F 为半径的圆与双曲线左支的其中一个交点为A ,若12120AF F =∠°,则该双曲线的离心率是( ) 233131+6.若函数()()()2sin 20f x a x θθπ=+<<,a 是不为零的常数)在R 上的值域为[]2,2-,且在区间5,1212ππ⎡⎤-⎢⎥⎣⎦上是单调减函数,则a 和θ的值是( )A.1a =,3πθ=B.1a =-,3πθ=C.1a =,6πθ=D.1a =-,6πθ=7.已知函数()32f x x ax bx c =+++(a ,b ,c 均为常数)的图象关于点()1,0-对称,则b c -的值是( ) A.4-B.4C.2-8.已知“x a x b ≥⇒>”,且“x a x c <⇒≤”,则“x c ≤”是“x b ≤”的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件9.“三个臭皮匠,楔个诸葛亮”,这是我们常说的口头禅,主要是说集体智慧的强大,假设李某智商较高,他独自一人解决项目M 的概率为10.3P =;同时,有n 个水平相同的人也在研究项目M ,他们各自独立地解决项目M 的概率都是0.1.现在李某单独研究项目M ,且这n 个人组成的团队也同时研究项目M ,设这个n 人团队解决项目M 的概率为2P ,若21P P ≥,则n 的最小值是( )10.已知向量()cos ,sin AB αα=,()cos ,sin BC ββ=,()cos ,sin CA γγ=,其中02αβγπ<<<<,则AB BC ⋅的值是( )A.12B.12-C.3-D.3 11.设函数()f x 定义如下表: x1 2 3 4 5 ()f x14253执行如图所示的程序框图,则输出的x 的值是( )12.已知异面直线a ,b 所成的角为90°,直线AB 与a ,b 均垂直,且垂足分别为A ,B ,若动点P 在直线a 上运动,动点Q 在直线b 上运动,4PA QB +=,则线段PQ 的中点M 的轨迹所围成的平面区域的面积是( )二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.抛物线24y x =-的焦点到它的准线的距离是____________.14.若实数x ,y 满足100x y x y +≥-⎧⎪≤⎨⎪≤⎩,则2z x y =+取得最大值时对应的最优解是____________.15.已知在ABC △中,角,,A B C 的对边分别是,,a b c ,5cos A =,10cos B =,2c =,则a =____________.16.已知函数()xxf x e =,关于x 的方程()()220f x f x c -+=⎡⎤⎣⎦有以下四个结论: ①当0c =时,方程有3个实根;②当221c c e -=时,方程有3个实根;③当2211e c e -<<时,方程有2个实根;④当221e c e -<时,方程有4个实根. 以上结论中正确的有____________(填序号).三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.已知正项等比数列{}n a 满足()*14n n n a a n N +=∈. (1)求数列{}n a 的通项公式; (2)设2211log log n n n b a a +=,求数列{}n b 的前n 项和n S .18.如图,在三棱柱111ABC A B C -中,1AC BC AB AA ===,过1AA 的平面分别交BC ,11B C 于点D ,1D .(1)求证:四边形11ADD A 为平行四边形;(2)若1AA ⊥平面ABC ,D 为BC 中点,E 为1DD 中点,求二面角1A C E C --的余弦值.19.最近,在“我是演说家”第四季这档节目中,英国华威大学留学生游斯彬的“数学之美”的演讲视频在微信朋友圈不断被转发,点赞的人数更是不断增加,对一周(7天)内演讲视频被转发的天数x 与点赞的人数y 进行了统计,数据见下表: x1 2 3 4 5 6 7 y611213466114210根据所给数据(),x y ,画出了散点图以后,发现演讲视频被转发的天数x 与点赞的人数y 的关系可以近似地表示为x y a b =⋅(,a b 均为正常数). (题中所有数据的最后计算结果都精确到0.01) (1) 建立y 关于x 的回归方程;(2) 试预测,至少经过多少天,点赞的人数超过12000?附:①对于一组数据()11,x y ,()22,x y ,…,(),n n x y ,其回归直线y x a β=+的斜率和截距的最小二乘估计分别为()()()121nii i nii xx y yxxβ==--=-∑∑,a y x β=-.②参考数据: lg2lg3lg6lg11lg 21lg34lg66lg114lg 2100.30 0.48 0.78 1.04 1.32 1.53 1.82 2.06 2.3220.已知椭圆()2222:10x y E a b a b +=>>的左、右焦点分别为1F 、2F ,椭圆E 上一点A 在x 轴上的射影恰好为1F ,且直线2AF 的斜率为3(1)求椭圆E 的离心率;(2)当2a =时,过点()0,2Q -的射线与椭圆E 交于不同的两点M ,N ,若点P 在射线QM 上,且满足2QM QN QP ⋅=,求点P 的横坐标0x 的取值范围. 21.已知函数()ln f x x =.(1)设()()()()'F x f k x k f k =-+(其中0k >),求证:()()f x F x ≤.(2)若曲线()y f x =与抛物线()22y ax a x =+-有两个公共点,求实数a 的取值范围.22.已知圆C 的极坐标方程为222sin 104πρρθ⎛⎫+++= ⎪⎝⎭,直角坐标系xOy 的坐标原点O 与极点重合,x轴的正半轴与极轴重合.(1)求圆C的标准方程和它的一个参数方程;(2)设()P x y是圆C上的任意一点,求xy的最大值.,23.已知函数()1=+-.f x x x(1)解不等式()3f x≥;(2)若()()2f x f y+≤,求x y+的取值范围.。

(word完整版)河北省衡水中学2018年高三下学期期初试卷

(word完整版)河北省衡水中学2018年高三下学期期初试卷

第一部分听力(共两节,满分30分)做题时,先将答案标在试卷上。

录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。

第一节(共5小题;每小题1.5分.满分7.5分)听下面5段对话。

每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项。

听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

例:How much is the shirt?A. £ 19.15.B. £ 9.18.C. £ 9.15.答案是C。

1. When did the taxi arrive?A. At 7:10.B. At 7:25.C. At 7:45.2. How is Frank getting on with his project?A. Very poorly.B. Quite smoothly.C. Just so-so.3. Where does the conversation probably take place?A. In a bank.B. In a shop.C. In a restaurant.4. What are the speakers talking about?A. A website.B. A PPT.C. Some photos.5. What will the man do?A. Go to the party.B. Watch a DVD.C. Attend his brother.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。

每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项。

听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。

每段对话或独白读两遍。

听第6段材料,回答第6、7题。

6. What is the probable relationship between the speakers?A. Boss and employee.B. Husband and wife.C. Colleagues.7. Why does Dave go to Seattle?A. To get a new job.B. To look after his daughter.C. To attend a party.听第7段材料,回答第8、9题。

2018届河北省衡水中学高三大联考数学(文)试题

2018届河北省衡水中学高三大联考数学(文)试题

2018届河北省衡水中学高三大联考数学(文)试题一、单选题1.已知集合M = x |x 2−5x +4≤0 ,N = 0,1,2,3 ,则集合M ∩N 中元素的个数为( )A. 1B. 2C. 3D. 4 【答案】C【解析】由题得,集合M = x x 2−5x +4≤0 ={x |1≤x ≤4},所以M ∩N ={1,2,3}.集合M ∩N 中元素的个数为3. 故选C.2.已知命题p :x R ∀∈,()1220x -<,则命题p ⌝为( ) A. 0x R ∃∈,()12020x -> B. x R ∀∈,()1210x -> C. x R ∀∈,()1210x -≥ D. 0x R ∃∈,()12020x -≥ 【答案】D【解析】全称命题的否定是特称命题,则:若命题p :x R ∀∈,()1220x -<,则命题p ⌝为0x R ∃∈,()12020x -≥. 本题选择D 选项. 3.已知复数521iz i =-(i 为虚数单位),则复数z 在复平面内对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 【答案】D【解析】结合复数的运算法则可得:()()2121522121i i i iz i i i +-==-=---, 即复数z 在复平面内对应的点位于第四象限.本题选择D 选项.4.已知双曲线C :x 2a −y 216=1 a >0 的一个焦点为 5,0 ,则双曲线C 的渐近线方程为( )A. 4x ±3y =0B. 16x ±9y =0C. 4x ± 41y =0D. 4x ±3y =12 【答案】A【解析】由题意得,c =5,则a 2=c 2−16=9,即a =3. 所以双曲线C 的渐近线方程为y =±43x ,即4x ±3y =0. 故选A.5.2017年8月1日是中国人民解放军建军90周年,中国人民银行为此发行了以此为主题的金银纪念币.如图所示是一枚8克圆形金质纪念币,直径22mm ,面额100元.为了测算图中军旗部分的面积,现用1粒芝麻向硬币内投掷100次,其中恰有30次落在军旗内,据此可估计军旗的面积大约是( )A.27265mm π B. 236310mm π C. 23635mm π D. 236320mm π【答案】B【解析】利用古典概型近似几何概型可得,芝麻落在军旗内的概率为30310010p ==, 设军旗的面积为S ,由题意可得:()22233363,1111101010S S mm πππ=∴=⨯⨯=⨯. 本题选择B 选项.6.下列函数中,与函数122x x y =-的定义域.单调性与奇偶性均一致的函数是( )A. sin y x =B. 3y x = C. 1y x = D. 22,0{ ,0x x y x x -≥=<【答案】D 【解析】函数122x x y =-为奇函数,且在R 上单调递减, 对于A ,sin y x =是奇函数,但不在R 上单调递减; 对于B ,3y x =是奇函数,但在R 上单调递增; 对于C ,1y x=定义域不同; 对于D ,画出函数图象可知函数()()220{ 0x x y x x -≥=<是奇函数,且在R 上单调递减, 故选D.7.如图是一个空间几何体的正视图和俯视图,则它的侧视图为( )A. B.C. D. 【答案】A 【解析】由正视图和俯视图可知,该几何体是一个圆柱挖去一个圆锥构成的,结合正视图的宽及俯视图的直径可知其侧视图为A. 故选A.点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.8.设a =log 54−log 52,b =ln 23+ln 3,c =1012lg 5,则a , b , c 的大小关系为( )A. a <b <cB. b <c <aC. c <a <bD. b <a <c 【答案】A【解析】由题意得,a =log 54−log 52=log 52,b =ln 23+ln 3=ln 2,c =1012lg 5= 5.得a =1l o g25,b =1l o g 2e,而l o g25> l o g 2e >1.所以0<1l o g25<1l o g 2e<1,即0<a <b <1.又c = 5>1.故a <b <c . 选A.9.执行如图所示的程序框图,则输出的S 值为( )A. 1819 B. 1920 C. 2021 D. 120 【答案】B【解析】由框图可知,S =1−12+12−13+⋯+119−120=1−120=1920. 故选B.10.将函数()2sin 43f x x π⎛⎫=- ⎪⎝⎭的图象向左平移6π个单位,再把所有点的横坐标伸长到原来的2倍,得到函数()y g x =的图象,则下列关于函数()g x 的说法错误的是( )A. 最小正周期为πB. 图象关于直线12x π=对称C. 图象关于点,012π⎛⎫⎪⎝⎭对称 D. 初相为3π【答案】C【解析】易求得()223g x sin x π⎛⎫=+ ⎪⎝⎭,其最小正周期为π,初相位3π,即A ,D 正确,而π2sin 2122g π⎛⎫== ⎪⎝⎭.故函数()y g x =的图象关于直线12x π=对称,即B 项正确,故C 错误.选C.11.抛物线有如下光学性质:由焦点射出的光线经抛物线反射后平行于抛物线的对称轴;反之,平行于抛物线对称轴的入射光线经抛物线发射后必经过抛物线的焦点.已知抛物线y 2=4x 的焦点为F ,一平行于x 轴的光线从点M 3,1 射出,经过抛物线上的点A 反射后,再经抛物线上的另一点B 射出,则直线A B 的斜率为( )A. 43B. −43C. ±43D. −169 【答案】B【解析】令y =1,代入y 2=4x 可得x =14,即A (14,1). 由抛物线的光学性质可知,直线A B 经过焦点F (1,0),所以k =1−014−1=−43.故选B.点睛:抛物线的光学性质:从抛物线的焦点发出的光线或声波在经过抛物线周上反射后,反射光线平行于抛物线的对称轴.12.已知ABC ∆的内角A ,B ,C 的对边分别是a ,b ,c ,且()()222cos cos ab c a B b A abc +-⋅+=,若2a b +=,则c 的取值范围为( )A. ()0,2B. [)1,2C. 1,22⎡⎫⎪⎢⎣⎭D. (]1,2【答案】B【解析】由题意可得:222cos cos 122a b c a B b A ab c +-+⨯=, 且222cos 2a b c C ab +-=,cos cos sin cos sin cos sin 1sin sin a B b A A B B A Cc C C ++===, 据此可得:1cos 2C =,即:2222221,22a b c a b c ab ab +-=+-=, 据此有:()222223434312a b c a b ab a b ab ab +⎛⎫=+-=+-=-≥-= ⎪⎝⎭,当且仅当1a b ==时等号成立;三角形满足两边之和大于第三边,则2c a b <+=, 综上可得:c 的取值范围为[)1,2.本题选择B 选项.点睛:1.在解三角形的问题中,三角形内角和定理起着重要作用,在解题时要注意根据这个定理确定角的范围及三角函数值的符号,防止出现增解或漏解.2.正、余弦定理在应用时,应注意灵活性,尤其是其变形应用时可相互转化.如a 2=b 2+c 2-2bccosA 可以转化为sin 2 A =sin 2B +sin 2 C -2sinBsinCcosA ,利用这些变形可进行等式的化简与证明.二、填空题13.已知向量a = sin π3,cos π6 ,b = k ,1 ,若a ∥b ,则k =__________.【答案】1【解析】由a //b ,得sin π3− k cos π6=0.即 32− 32k =0. 解得k =1.14.已知函数()32f x x x =-,若曲线()f x 在点()()1,1f 处的切线经过圆C :()222x y a +-=的圆心,则实数a 的值为__________.【答案】2-【解析】结合函数的解析式可得:()311211f =-⨯=-,对函数求导可得:()2'32f x x =-,故切线的斜率为()2'13121k f ==⨯-=, 则切线方程为:()111y x +=⨯-,即2y x =-,圆C :()222x y a +-=的圆心为()0,a ,则:022a =-=-.15.已知实数x , y 满足约束条件 3x +y ≤π,x ≥π6,y ≥0, 则sin x +y 的取值范围为__________(用区间表示). 【答案】 12,1【解析】作出约束条件表示的平面区域(如图阴影部分表示)设z =x +y ,作出直线l :x +y =z ,当直线l 过点B (π6,0)时,z 取得最小值π6;当直线l 过点A (π6,π2)时,z 取得最大值2π3. 即π6≤x +y ≤2π3,所以sin x +y ∈[12,1]. 点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一、准确无误地作出可行域;二、画标准函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三、一般情况下,目标函数的最大或最小会在可行域的端点或边界上取得.16.在《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马.若四棱锥M −A B C D 为阳马,侧棱M A ⊥底面A B C D ,且M A =B C =A B =2,则该阳马的外接球与内切球表面积之和为__________. 【答案】36π−16 2π【解析】设该阳马的外接球与内切球的半径分别R 与r ,则2R = M A 2+A B 2+B C2=2 3.即R = 3.由13S M −A B C D表∙r =13S A B C D ∙M A .得r =S A B C D∙M AS M −A B C D 表=2×2×22×2+12×(2×2×2+2×2 2×2)=2− 2.所以该阳马的外接球与内切球表面积之和为4π R 2+r 2 =36π−16 2π.三、解答题17.在递增的等比数列{}n a 中,1632a a ⋅=,2518a a +=,其中*N n ∈. (1)求数列{}n a 的通项公式;(2)记21log n n n b a a +=+,求数列{}n b 的前n 项和n T . 【答案】(1)12n n a -=;(2)2212nn n+-+.【解析】试题分析:(1)由251632a a a a ⋅=⋅=及2518a a +=得22a =,516a =,进而的q ,可得通项公式;(2)12n n b n -=+利用分组求和即可,一个等差数列和一个等比数列. 试题解析:(1)设数列{}n a 的公比为q , 则251632a a a a ⋅=⋅=, 又2518a a +=,∴22a =,516a =或216a =,52a =(舍). ∴3528a q a ==,即2q =. 故2122n n n a a q --==(*N n ∈). (2)由(1)得,12n n b n -=+. ∴12n n T b b b =+++()()211222123n n -=+++++++++()112122n n n +-=+- 2212nn n +=-+.18.如图,在三棱柱A B C −A 1B 1C 1中,A A 1⊥平面A B C ,A C ⊥B C ,A C =B C =C C 1=2,点D 为A B 的中点. (1)证明:A C 1∥平面B 1C D ; (2)求三棱锥A 1−C D B 1的体积.【答案】(1)见解析;(2)43.【解析】试题分析:(I)连接BC1交B1C于点O,连接O D,通过证明O D∥A C1,利用直线与平面平行的判定定理证明AC1∥平面CDB1.(II)要求三棱锥A1−C D B1的体积,转化为V A1−C D B1=V C−A1DB1=1 3SΔA1DB1×C D即可求解.试题解析:(1)连接BC1交B1C于点O,连接O D.在三棱柱A B C−A1B1C1中,四边形B C C1B1是平行四边形.∴点O是BC1的中点.∵点D为A B的中点,∴O D∥A C1.又O D⊂平面B1C D,A C1⊄平面B1C D,∴A C1∥平面B1C D.(2)∵A C=B C,A D=B D,∴C D⊥A B.在三棱柱A B C−A1B1C1中,由A A1⊥平面A B C,得平面A B B1A1⊥平面A B C.又平面A B B1A1∩平面A B C=A B.∴C D⊥平面A B B1A1.∴点C到平面A1DB1的距离为C D,且C D=A C sinπ4=2.∴V A1−C D B1=V C−A1DB1=13SΔA1DB1×C D=13×12×A1B1×A A1×C D=16×22×2×2=43.19.随着资本市场的强势进入,互联网共享单车“忽如一夜春风来”,遍布了一二线城市的大街小巷.为了解共享单车在A市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中抽取了200人进行抽样分(1)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为A 市使用共享单车情况与年龄有关?(2)现从所抽取的30岁以上的网友中利用分层抽样的方法再抽取5人. (i )分别求这5人中经常使用、偶尔或不用共享单车的人数;(ii )从这5人中,再随机选出2人赠送一件礼品,求选出的2人中至少有1人经常使用共享单车的概率. 参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.【答案】(1)能在犯错误的概率不超过0.15的前提下认为A 市使用共享单车情况与年龄有关;(2)(i)经常使用共享单车的有3人,偶尔或不用共享单车的有2人.(ii)910【解析】试题分析:(1)由列联表可得2 2.198 2.072K ≈>,所以能在犯错误的概率不超过0.15的前提下认为A 市使用共享单车情况与年龄有关. (2)(i )依题意可知,经常使用共享单车的有6053100⨯=(人),偶尔或不用共享单车的有4052100⨯=(人). (ii )由题意列出所有可能的结果,结合古典概型公式和对立事件公式可得选出的2人中至少有1人经常使用共享单车的概率910P =.试题解析:(1)由列联表可知,()2220070406030 2.19813070100100K ⨯⨯-⨯=≈⨯⨯⨯.因为2.198 2.072>,所以能在犯错误的概率不超过0.15的前提下认为A 市使用共享单车情况与年龄有关.(2)(i)依题意可知,所抽取的5名30岁以上的网友中,经常使用共享单车的有6053100⨯=(人),偶尔或不用共享单车的有4052100⨯=(人).(ii)设这5人中,经常使用共享单车的3人分别为a,b,c;偶尔或不用共享单车的2人分别为d,e.则从5人中选出2人的所有可能结果为(),a b,(),a c,(),a d,(),a e,(),b c,(),b d,(),b e,(),c d,(),c e,(),d e共10种.其中没有1人经常使用共享单车的可能结果为(),d e共1种,故选出的2人中至少有1人经常使用共享单车的概率1911010 P=-=.20.已知椭圆C:x2a +y2b=1a>b>0过点 −2,1,离心率为22,直线l:k x−y+2=0与椭圆C交于A , B两点.(1)求椭圆C的标准方程;(2)是否存在实数k,使得O A+O B=O A−O B(其中O为坐标原点)成立?若存在,求出实数k的值;若不存在,请说明理由.【答案】(1)x 24+y22=1;(2)k=±2.【解析】试题分析:(1)根据题意得2a+1b=1,ca=22,a2=b2+c2,,从而可得方程;(2)直线和椭圆联立得1+2k2x2+8k x+4=0,设A x1,y1,B x2,y2,由O A+O B=O A−O B,得O A⋅O B=0,即x1x2+y1y2=0,由韦达定理代入即得.试题解析:(1)依题意,得2a+1b=1,ca=22,a2=b2+c2,解得a2=4,b2=2,c2=2,故椭圆C的标准方程为x24+y22=1.(2)假设存在符合条件的实数k.依题意,联立方程y=k x+2, x2+2y2=4,消去y并整理,得1+2k2x2+8k x+4=0.则Δ=64k2−161+2k2>0,即k >22或k <− 22. 设A x 1,y 1 ,B x 2,y 2 ,则x 1+x 2=−8k1+2k ,x 1x 2=41+2k . 由 O A +O B = O A −O B , 得O A ⋅O B=0. ∴x 1x 2+y 1y 2=0.∴x 1x 2+ k x 1+2 k x 2+2 =0. 即 1+k 2 x 1x 2+2k x 1+x 2 +4=0. ∴4 1+k 2 1+2k −16k 21+2k +4=0.即8−4k 21+2k =0.即k 2=2,即k =± 2.故存在实数k =± O A +O B = O A −O B 成立. 21.已知函数()2ln 23f x x x =-+,()()'4ln g x f x x a x =++()0a ≠. (1)求函数()f x 的单调区间;(2)若关于x 的方程()g x a =有实数根,求实数a 的取值范围.【答案】(1)单调递增区间为10,2⎛⎫ ⎪⎝⎭,单调递减区间为1,2⎛⎫+∞ ⎪⎝⎭;(2)()[),01,-∞⋃+∞.【解析】试题分析:(1)结合函数的解析式可得()()()1212'x x f x x+-=,()0,x ∈+∞,结合导函数与原函数的单调性的关系可得函数()f x 的单调递增区间为10,2⎛⎫⎪⎝⎭,单调递减区间为1,2⎛⎫+∞ ⎪⎝⎭.(2)原问题等价于方程10alnx a x +-=有实数根,构造函数()1h x alnx a x=+-,利用导函数研究函数存在零点的充要条件可得:当()[),01,a ∈-∞⋃+∞时,方程()g x a =有实数根.试题解析:(1)依题意,得()()()21212114'4x x x f x x x x x+--=-==,()0,x ∈+∞. 令()'0f x >,即120x ->,解得102x <<; 令()'0f x <,即120x -<,解得12x >, 故函数()f x 的单调递增区间为10,2⎛⎫ ⎪⎝⎭,单调递减区间为1,2⎛⎫+∞ ⎪⎝⎭.(2)由题得,()()'4g x f x x alnx =++1alnx x=+. 依题意,方程10alnx a x +-=有实数根,即函数()1h x alnx a x=+-存在零点,又()2211'a ax h x x x x-=-+=,令()'0h x =,得1x a=.当0a <时,()'0h x <,即函数()h x 在区间()0,+∞上单调递减,而()110h a =->,1111111a ah e a a a e --⎛⎫⎛⎫=+-- ⎪ ⎪⎝⎭⎝⎭1111110ae e -=-<-<,所以函数()h x 存在零点;当0a >时,()'h x ,()h x 随x 的变化情况如表:极小值所以11h a aln a alna a a ⎛⎫=+-=- ⎪⎝⎭为函数()h x 的极小值,也是最小值.当10h a ⎛⎫> ⎪⎝⎭,即01a <<时,函数()h x 没有零点;当10h a ⎛⎫≤ ⎪⎝⎭,即1a ≥时,注意到()110h a =-≤,()110h e a a e e =+-=>,所以函数()h x 存在零点.综上所述,当()[),01,a ∈-∞⋃+∞时,方程()g x a =有实数根.点睛:导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,本专题在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用.22.选修4-4:坐标系与参数方程已知曲线C 的参数方程为 x =2cos αy =sin α(α为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为 2ρsin θ+π4 =3. (1)求曲线C 的普通方程及直线l 的直角坐标方程; (2)求曲线C 上的点到直线l 的距离的最大值.【答案】(1)曲线C 的普通方程为x 24+y 2=1,直线l 的普通方程为x +y −3=0;(2)10+3 22. 【解析】试题分析:(1)利用sin 2α+cos 2α=1消去参数得曲线C 的普通方程为x 24+y 2=1,利用x =ρcos θ,y =ρsin θ得直线l 的普通方程为x +y −3=0;(2)利用圆的参数方程得d = 2=5sin 2,进而由三角求最值即可. 试题解析:(1)由曲线C 的参数方程x =2co sαy =si n α(α为参数),得曲线C 的普通方程为x 24+y 2=1. 由 ρsin θ+π4 =3,得ρ sin θ+cos θ =3, 即x +y =3.∴直线l 的普通方程为x +y −3=0. (2)设曲线C 上的一点为 2cos α,sin α , 则该点到直线l 的距离d = 2=5sin 2(其中tan φ=2).当sin α+φ =−1时,d max =5+ 2=10+3 22. 即曲线C 上的点到直线l 的距离的最大值为 10+3 22. 23.已知函数()211f x x x =-++. (1)解不等式()3f x ≤;(2)记函数()()1g x f x x =++的值域为M ,若t M ∈,试证明:223t t -≥. 【答案】(1){}|11x x -≤≤;(2)证明见解析. 【解析】试题分析:(1)结合函数的解析式零点分段可得不等式()3f x ≤的解集为{}|11x x -≤≤. (2)结合绝对值三角不等式的性质可得[)3,M =+∞,结合二次函数的性质可得30t -≥,10t +>,则223t t -≥.试题解析:(1)依题意,得()3,1,1{2,1, 213,,2x x f x x x x x -≤-=--<<≥则不等式()3f x ≤,即为1,{ 33,x x ≤--≤或11,{ 223x x -<<-≤或1,{ 233,x x ≥≤解得11x -≤≤. 故原不等式的解集为{}|11x x -≤≤.(2)由题得,()()1g x f x x =++212221223x x x x =-++≥---=, 当且仅当()()21220x x -+≤, 即112x -≤≤时取等号, ∴[)3,M =+∞,∴()()22331t t t t --=-+, ∵t M ∈,∴30t -≥,10t +>, ∴()()310t t -+≥, ∴223t t -≥.。

2018年河北省衡水市武邑中学高三高考三模数学(文科)试题word版含解析

2018年河北省衡水市武邑中学高三高考三模数学(文科)试题word版含解析

2018年河北省衡水市武邑中学 高三高考三模数学(文科)试题数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、单选题1.设集合 , ,则A .B .C .D . 2.已知i 是虚数单位, ,则复数z 的共轭复数为 A . B . C . D . 3.命题:“若 ,则 ”的逆否命题是A .若 ,则 ,或B .若 ,则C .若 ,或 ,则D .若 ,或 ,则 4.已知等差数列 的前n 和为 ,若 , ,则 A .23 B .24 C .25 D .265.运行如图所示框图的相应程序,若输入 的值分别为 和 ,则输出M 的值是A .0B .1C .2D .-16.已知,则A .B .C .D .7.函数(其中 为自然对数的底数)的图象大致为A .B .C .D .8.已知函数 相邻两条对称轴间的距离为,且,则下列说法正确的是A .B .函数 为偶函数C .函数 在上单调递增 D .函数 的图象关于点对称 9.一个几何体的三视图如图所示,该几何体的各个表面中,最大面的面积为A .B .C .2D .410.我国南宋数学家杨辉所著的《详解九章算术》一书中,用图 的数表列出了一些正整数在三角形中的一种几何排列,俗称“杨辉三角形”,该数表的规律是每行首尾数字均为1,从第三行开始,其余的数字是它“上方”左右两个数字之和 现将杨辉三角形中的奇数换成1,偶数换成0,得到图 所示的由数字0和1组成的三角形数表,由上往下数,记第n 行各数字的和为 ,如 , , , , ,则此卷只装订不密封班级 姓名 准考证号 考场号 座位号A .2B .4C .8D .16 11.已知离心率为的双曲线 :的左、右焦点分别为 , ,M 是双曲线C 的一条渐近线上的点,且 ,O 为坐标原点,若 ,则A .32B .16C .8D .412.若关于x 的方程 存在三个不等实根,则实数a 的取值范围是 A .B .C .D .二、填空题13.平面内有三点 , , ,且 ,则x 为______. 14.若x ,y 满足约束条件,则 的最小值为______.15.已知抛物线2:2(0)C y px p =>的焦点为F ,点M 在抛物线C 上,点A 在准线l 上,若MA l ⊥,且直线AF 的斜率,则AFM ∆的面积为__________.16.如图,在三棱锥P ABC -中, PC ⊥平面ABC , AC CB ⊥,已知2AC =,则当PA AB +最大时,三棱锥P ABC -的体积为__________.三、解答题17.在 中,角 所对的边分别为 ,已知.(1)证明: ;(2)若,求 的面积.18.某城市为鼓励人们绿色出行,乘坐地铁,地铁公司决定按照乘客经过地铁站的数量实施分段优惠政策,不超过9站的地铁票价如下表:现有甲、乙两位乘客同时从起点乘坐同一辆地铁,已知他们乘坐地铁都不超过9站,且他们各自在每个站下车的可能性是相同的.(1)若甲、乙两人共付费2元,则甲、乙下车方案共有多少种? (2)若甲、乙两人共付费4元,求甲比乙先到达目的地的概率.19.如图,四棱锥 中,底面ABCD 为矩形,点E 在线段PA 上, 平面BDE . 求证: ;若 是等边三角形, ,平面 平面ABCD ,四棱锥 的体积为 ,求点E 到平面PCD 的距离.20.已知椭圆C : 的左、右焦点分别为()1,0F c -和()2,0F c ,离心率,直线l 过点()0,P c -交椭圆于A , B 两点,当直线l 过点2F 时, 1F AB ∆的周长为8. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)当直线l 绕点P 运动时,试求.21.已知函数()ln 1xf x me x =--.(Ⅰ)当1m =时,求曲线()y f x =在点()()11f ,处的切线方程; (Ⅱ)当1m ≥时,证明: ()1f x >.22.在直角坐标系xOy 中,曲线C 的参数方程为为参数 . 求曲线C 的普通方程;在以O 为极点,x 正半轴为极轴的极坐标系中,直线l 方程为,已知直线l 与曲线C 相交于A 、B 两点,求 .23.设函数 .(1)当 时,解不等式 ;(2)当 时,若 ,使得不等式 成立,求实数 的取值范围.2018年河北省衡水市武邑中学高三高考三模数学(文科)试题数学答案参考答案1.B【解析】由题意,,故选B。

2018届河北省衡水中学高三下学期期中考试理科数学试题及答案精品

2018届河北省衡水中学高三下学期期中考试理科数学试题及答案精品
(2)抽出 100 人的数学与语文的水平测试成绩如下表:
成绩分为优秀、良好、及格三个等级,横向、纵向分别表示语文成绩
与数学成绩,若在该样本中,数学成绩优秀率是 30%,求 a、b 的值;
( 3)在语文成绩为及格的学生中,已知
a 10,b 8 ,设随机变量
a b ,求① 的分布列、期望 ; ②数学成绩为优秀的人数比及格的
24. (本小题满分 10 分)选修 4-5 ,不等式选讲 在平面直角坐标系中,定义点 P(x1, y1) 、 Q( x2 , y2 ) 之间的直角距离
为 L( P,Q ) | x1 x2 | | y1 y2 |,点 A(x,1) , B(1,2) , C (5, 2) (1)若 L ( A, B) L( A,C) ,求 x 的取值范围; (2)当 x R 时,不等式 L ( A, B) t L( A, C ) 恒成立,求 t 的最小值 .
∴ O 为 B1C 中点又 D 为 AC 中点 , 从而 DO // AB1 (4 分)
∵ AB1 平面 BDC 1 , DO 平面 BDC1 ∴ AB1 // 平面 BDC1 (6 分) (Ⅱ)建立空间直角坐标系 B xyz 如图所示 ,
33
则 B(0,0,0) , A(
3,1,0) ,
C (0,2,0)
4
D.2k 或 2k 一 1 ( k∈Z)
4
C. 0
第Ⅱ卷(非选择题 共 90 分) 二、 填空题(每题 5分,共 20分。把答案填在答题纸的横线上)
13.设等比数列 { an} 满足公比 q N * ,a n N * ,且 { a n } 中的任意两项之积
也 是 该 数 列 中 的 一 项 , 若 a1 281 , 则 q 的 所 有 可 能 取 值 的 集 合
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档