(完整word)2018年河北省衡水中学高三一模理科数学试题(1)

合集下载

河北衡水金卷2018届高三理数高考一模试卷及解析

河北衡水金卷2018届高三理数高考一模试卷及解析

河北衡水金卷2018届高三理数高考一模试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题1.已知集合 A ={x|−x 2+4x ≥0} , B ={x|181<3x <27} , C ={x|x =2n,n ∈N} ,则 (A ∪B)∩C = ( )A.{2,4}B.{0,2}C.{0,2,4}D.{x|x =2n,n ∈N}2.设 i 是虚数单位,若 i(x +yi)=5i 2−i, x , y ∈R ,则复数 x +yi 的共轭复数是( ) A.2−i B.−2−i C.2+i D.−2+i3.已知等差数列 {a n } 的前 n 项和是 S n ,且 a 4+a 5+a 6+a 7=18 ,则下列命题正确的是( ) A.a 5 是常数 B.S 5 是常数 C.a 10 是常数 D.S 10 是常数4.七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形中任取一点,则此点取自黑色部分的概率是( )答案第2页,总19页订…………○…………线…………○内※※答※※题※※订…………○…………线…………○A.316 B.38 C.14 D.185.已知点 F 为双曲线 C : x 2a 2−y 2b 2=1 ( a >0 , b >0 )的右焦点,直线 x =a 与双曲线的渐近线在第一象限的交点为 A ,若 AF 的中点在双曲线上,则双曲线的离心率为( ) A.√5 B.1+√2 C.1+√5 D.−1+√5 6.已知函数 f(x)={sinx,x ∈[−π,0],√1−x 2,x ∈(0,1],则 ∫1−πf(x)dx = ( ) A.2+π B.π2 C.−2+π2D.π4−2………○…………线…………○…__________………○…………线…………○…7.执行如图所示的程序框图,则输出的 S 的值为( )A.√2021B.√2019C.2√505D.2√505−18.已知函数 f(x)=sinωxcosωx −√3cos 2ωx +√32( ω>0 )的相邻两个零点差的绝对值为 π4 ,则函数 f(x) 的图象( )A.可由函数 g(x)=cos4x 的图象向左平移 5π24 个单位而得 B.可由函数 g(x)=cos4x 的图象向右平移 5π24 个单位而得 C.可由函数 g(x)=cos4x 的图象向右平移 7π24 个单位而得 D.可由函数 g(x)=cos4x 的图象向右平移 5π6 个单位而得 9.(2x −3)(1+1x )6 的展开式中剔除常数项后的各项系数和为( )A.−73B.−61C.−55D.−6310.某几何体的三视图如图所示,其中俯视图中六边形 ABCDEF 是边长为1的正六边形,点 G 为 AF 的中点,则该几何体的外接球的表面积是( )答案第4页,总19页…订…………○…………线…………○※※内※※答※※题※※…订…………○…………线…………○A.31π6 B.31π8 C.481π64 D.31√31π4811.已知抛物线 C : y 2=4x 的焦点为 F ,过点 F 分别作两条直线 l 1 , l 2 ,直线 l 1 与抛物线 C 交于 A 、 B 两点,直线 l 2 与抛物线 C 交于 D 、 E 两点,若 l 1 与 l 2 的斜率的平方和为1,则 |AB|+|DE| 的最小值为( ) A.16 B.20 C.24 D.3212.若函数 y =f(x) , x ∈M ,对于给定的非零实数 a ,总存在非零常数 T ,使得定义域 M 内的任意实数 x ,都有 af(x)=f(x +T) 恒成立,此时 T 为 f(x) 的类周期,函数 y =f(x) 是 M 上的 a 级类周期函数.若函数 y =f(x) 是定义在区间 [0,+∞)内的2级类周期函数,且 T =2 ,当 x ∈[0,2) 时, f(x)={12−2x 2,0≤x ≤1,f(2−x),1<x <2,函数 g(x)=−2lnx +12x 2+x +m .若 ∃x 1∈[6,8] , ∃x 2∈(0,+∞) ,使 g(x 2)−f(x 1)≤0 成立,则实数 m 的取值范围是( )A.(−∞,52]B.(−∞,132]…………外……………………装…………○…………订校:___________姓名:___________班级:___________考…………内……………………装…………○…………订 C.(−∞,−32]D.[132,+∞)第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题(题型注释)13.已知向量 a ⇀=(2sinα,cosα) , b ⇀=(1,−1) ,且 a ⇀⊥b ⇀,则 (a ⇀−b ⇀)2= .14.已知 x , y 满足约束条件 {x −2y ≤0,2x −y ≥0,x +4y −18≤0,则目标函数 z =32x8y 的最小值为 .15.在等比数列 {a n } 中, a 2⋅a 3=2a 1 ,且 a 4 与 2a 7 的等差中项为17,设 b n =a 2n−1−a 2n , n ∈N ∗ ,则数列 {b n } 的前 2n 项和为 .16.如图,在直角梯形 ABCD 中, AB ⊥BC , AD//BC , AB =BC =12AD =1 ,点 E 是线段 CD 上异于点 C , D 的动点, EF ⊥AD 于点 F ,将 ΔDEF 沿 EF 折起到 Δ PEF 的位置,并使 PF ⊥AF ,则五棱锥 P −ABCEF 的体积的取值范围为 .三、解答题(题型注释)17.已知 ΔABC 的内角 A , B , C 的对边 a , b , c 分别满足 c =2b =2 ,2bcosA +acosC +ccosA =0 ,又点 D 满足 AD ⇀=13AB ⇀+23AC ⇀.答案第6页,总19页…○…………外…………○…………装…………○…………订…………○…………线…※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…○…………内…………○…………装…………○…………订…………○…………线…(1)求 a 及角 A 的大小; (2)求 |AD ⇀| 的值.18.在四棱柱 ABCD −A 1B 1C 1D 1 中,底面 ABCD 是正方形,且 BC =BB 1=√2 ,∠A 1AB =∠A 1AD =60° .(1)求证: BD ⊥CC 1 ;(2)若动点 E 在棱 C 1D 1 上,试确定点 E 的位置,使得直线 DE 与平面 BDB 1 所成角的正弦值为 √714 .19.“过大年,吃水饺”是我国不少地方过春节的一大习俗.2018年春节前夕, A 市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标,(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数 x ¯(同一组中的数据用该组区间的中点值作代表);(2)①由直方图可以认为,速冻水饺的该项质量指标值 Z 服从正态分布 N(μ,σ2) ,利用该正态分布,求 Z 落在 (14.55,38.45) 内的概率;②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于 (10,30) 内的包数为 X ,求 X 的分布列和数学期望.附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为σ=√142.75≈11.95;②若Z~N(μ,σ2),则P(μ−σ<Z≤μ+σ)=0.6826,P(μ−2σ<Z≤μ+2σ)=0.9544.20.已知椭圆C:x 2a2+y2b2=1(a>b>0)的离心率为√22,且以两焦点为直径的圆的内接正方形面积为2.(1)求椭圆C的标准方程;(2)若直线l:y=kx+2与椭圆C相交于A,B两点,在y轴上是否存在点D,使直线AD与BD的斜率之和k AD+k BD为定值?若存在,求出点D坐标及该定值,若不存在,试说明理由.21.已知函数f(x)=e x−2(a−1)x−b,其中e为自然对数的底数.(1)若函数f(x)在区间[0,1]上是单调函数,试求实数a的取值范围;(2)已知函数g(x)=e x−(a−1)x2−bx−1,且g(1)=0,若函数g(x)在区间[0,1]上恰有3个零点,求实数a的取值范围.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy中,圆C1的参数方程为{x=−1+acosθ,y=−1+asinθ,(θ为参数,a是大于0的常数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C2的极坐标方程为ρ=2√2cos(θ−π4).(1)求圆C1的极坐标方程和圆C2的直角坐标方程;(2)分别记直线l:θ=π12,ρ∈R与圆C1、圆C2的异于原点的焦点为A,B,若圆C1与圆C2外切,试求实数a的值及线段AB的长.23.选修4-5:不等式选讲已知函数f(x)=|2x+1|.(1)求不等式f(x)≤10−|x−3|的解集;(2)若正数m,n满足m+2n=mn,求证:f(m)+f(−2n)≥16.答案第8页,总19页…装…………○…………不※※要※※在※※装※※订※※线※※…装…………○…………参数答案1.C【解析】1.集合 A ={x|0≤x ≤4},B ={x|−4<x <3} ,故 A ∪B ={x|−4<x ≤4} ,集合 C 表示非负的偶数,故 (A ∪B)∩C ={0,2,4} ,故答案为:C.先解二次不等式和指数不等式求出集合,再进行交并运算. 2.A【解析】2. i(x +yi)=−y +xi,5i 2−i=5i(2+i)5=−1+2i ,根据两复数相等的充要条件得 x =2,y =1 ,即 x +yi =2+i ,其共轭复数为 x −yi =2−i .故答案为:A.对于复数方程,根据两复数相等的充要条件求出复数,再求共轭复数. 3.D【解析】3. ∵a 4+a 5+a 6+a 7=2(a 5+a 6)=18,∴a 5+a 6=9 , ∴S 10=10(a 2+a 10)2=5(a 5+a 6)=45 为常数,所以答案是:D.【考点精析】利用等差数列的通项公式(及其变式)和等差数列的前n 项和公式对题目进行判断即可得到答案,需要熟知通项公式:或;前n 项和公式:.4.A【解析】4.由七巧板的构造可知, ΔBIC ≅ΔGOH ,故黑色部分的面积与梯形 EFOH 的面积相等,则 S EFOH =34S ΔDOF =34×14S ABDF =316S ABDF ,∴ 所求的概率为 P =S EFOH S ABDF=316.所以答案是:A.【考点精析】根据题目的已知条件,利用几何概型的相关知识可以得到问题的答案,需要掌握几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等. 5.D………装…………○……__________姓名:___________班级:__………装…………○……【解析】5.由 {x =a y =b ax ,解得点 A(a,b) ,又 F(c,0) ,则 AF 的中点坐标为 (a+c 2,b2) ,于是 (a+c)24a 2−b 24b2=1,(a +c)2=5a 2 , c 2+2ac −4a 2=0 ,则 e 2+2e −4=0 ,解得 e =−1+√5 或 e =−1−√5 (舍去)。

河北省衡水市衡水中学2018届高三年级第一次月考理科数学(解析版)

河北省衡水市衡水中学2018届高三年级第一次月考理科数学(解析版)

2017~2018学年度上学期高三年级一调考试数学(理科)试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟第Ⅰ卷(选择题 共60分)一、选择题(本题共12小题,每小题5分,共60分.从每小题所给的四个选项中,选出最佳选项,并在答题纸上将该项涂黑)1.设集合2{1,2,4},{|40}A B x x x m ==-+=.若{1}AB =,则B =( )A .{1,3}-B .{1,0}C .{1,3}D .{1,5}1.答案:C解析:由题意可知1B ∈,将1x =代入240x x m -+=,得3m =,所以2430x x -+=,即(1)(3)0x x --=,解得1x =或3x =,所以{1,3}B = 2.已知i 是虚数单位,若复数i12ia -+为纯虚数,则实数a 的值是( ) A .12-B .0C .12D .22.答案:D解析:设ii,12i a b b R -=∈+,则i i(12i)2i a b b b -=+=-+,所以21a b b =-⎧⎨=-⎩,故2a = 3.执行如图所示的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为( )A .5B .4C .3D .23.答案:D 解析:1,100,0t M S ===→是100,10,2S M t →==-=→是90,1,3S M t →===→否→输出9091S =<,结束,所以正整数N 的最小值为2.4.已知点(2,0)A -,点(,)M x y 为平面区域220,240,33x y x y x y +-⎧⎪-+⎨⎪--⎩≥≥≤0上的一个动点,则AM 的最小值是( )A . 5B .3C.5D.4.答案:C解析:作可行域如图所示,则AM 的最小值为点A 到直线220x y +-=的距离,d ===5.已知ABC △的三个内角,,A B C 依次成等差数列,BC边上的中线2AD AB ==,则ABC S =△( )A .3B.C.D .65.答案:C解析:因为,,A B C 成等差数列,所以2B A C =+,又因为180A B C ++=︒,所以60B =︒, 在ABD △中,由余弦定理可得2222cos60AD AB BD AB BD =+-⋅⋅︒,即2230BD BD --=,所以(3)(1)0BD BD -+=,所以3BD =,故26BC BD ==,1sin 602ABC S AB BC =⨯⨯︒=△6.一个几何体的三视图如图所示,则该几何体的所有棱中,最长的棱为( )A .3B.C.D6.答案:A解析:该几何体的直观图如图所示,则1,2,3BC AC CD BD AB AD ======所以最长的棱为3ABCD7.已知数列{}n a满足110,()n a a n N *+==∈,则20a =( )A .0B.CD7.答案:B解析:解法1:123410,02a a a a a -======-,周期3T =,所以202a a == 解法2:设tan n n a α=,则1tan 0a =,11tan tan3tan 1tan tan 3n n n a πααπα++-===+tan 3n πα⎛⎫=- ⎪⎝⎭,所以13n n παα+=-,所以数列{}n α是一个首项为0,公差为3π-的等差数列,13n n απ-=-,所以2020201919,tan tan tan tan 3333a ππαπαπ⎛⎫⎛⎫=-==-=-=-= ⎪ ⎪⎝⎭⎝⎭8.已知0ω>,函数()sin 3f x x πω⎛⎫=- ⎪⎝⎭在,32ππ⎛⎫ ⎪⎝⎭内单调递减,则ω的取值范围是( )A .110,3⎛⎤⎥⎝⎦B .511,23⎡⎤⎢⎥⎣⎦C .10,2⎛⎤ ⎥⎝⎦D .13,24⎡⎤⎢⎥⎣⎦8.答案:B 解析:当,32x ππ⎛⎫∈⎪⎝⎭时,,33323x πππππωωω⎛⎫-∈-- ⎪⎝⎭,根据题意可得3,2,2,332322k k k Z ππππππωωππ⎛⎫⎛⎫--⊆++∈ ⎪ ⎪⎝⎭⎝⎭,所以2332,32232k k Z k πππωππππωπ⎧-+⎪⎪∈⎨⎪-+⎪⎩≥≤, 解得:125121123k k ω++≤≤,所以1251211023k k ++<≤,所以571212k -<≤,又因为k Z ∈,所以0k =,所以511,23ω⎡⎤∈⎢⎥⎣⎦9.设函数()2sin(),f x x x R ωϕ=+∈,其中0,ωϕπ><.若5112,088f f ππ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,且()f x 的最小正周期大于2π,则( )A .17,224πωϕ==B .211,312πωϕ==-C .111,324πωϕ==-D .2,312πωϕ==9.答案:D解析:根据题意1153(21),8844k T k Z πππ+-==∈,所以3,21T k Z k π=∈+,又因为2T π>,所以220,3,3k T T ππω====,当58x π=时,52,,122x k k Z ππωϕϕπ+=+=+∈212k πϕπ∴=+,又因为ϕπ<,所以12πϕ=10.已知函数31()xxf x e x e ⎛⎫=- ⎪⎝⎭,若实数a 满足()()20.5log log 2(1)f a f a f +≤,则实数a 的取值范围是( )A .1,(2,)2⎛⎫-∞+∞ ⎪⎝⎭ B .1,[2,)2⎛⎤-∞+∞ ⎥⎝⎦C .1,22⎡⎤⎢⎥⎣⎦D .1,22⎛⎫ ⎪⎝⎭10.答案:C解析:函数()f x 为偶函数,且在(0,)+∞上单调递增,0.52log log a a =-,所以()22log 2(1)f a f ≤,所以()2log (1)f a f ≤,所以21log 1a -≤≤,所以122a ≤≤11.已知函数32()1f x x ax =++的图像的对称中心的横坐标为00(0)x x >,且()f x 有三个零点,则实数a 的取值范围是( )A .(,0)-∞B.,2⎛-∞- ⎝⎭ C .(0,)+∞ D .(,1)-∞-11.答案:B解析:2()32f x x ax '=+,()f x '的对称轴为3a x =-,所以003ax =->,所以0a <,令 ()0f x '=,得1220,03a x x ==->,所以当0x =时,()f x 取得极大值1,当23ax =-时,()f x 取得极小值34127a +,要想使()f x 有三个零点,则必须341027a +<,解得2a <-12.定义在[1,)+∞内的函数()f x 满足:①当24x ≤≤时,()13f x x =--;②(2)()f x c f x =(c 为正常数).若函数的所有极大值点都落在同一直线上,则常数c 的值是( )A .1B .2±C .12或3 D .1或2 12.答案:D解析:在区间[2,4]上,当3x =时,()f x 取得极大值1,极大值点为(3,1)A ,当[4,8]x ∈时,[2,4]2x∈,()2x f x cf ⎛⎫= ⎪⎝⎭,所以在区间[4,8]上,当32x =,即6x =时,()f x 取得极大值c ,极大值点为(6,)B c ,当[1,2]x ∈时,2[2,4]x ∈,所以1()(2)f x f x c=,所以在区间[1,2]上,当23x =,即32x =时,()f x 取得极大值1c ,所以极大值点为31,2C c ⎛⎫⎪⎝⎭,根据题意,(3,1)A ,(6,)B c ,31,2C c ⎛⎫⎪⎝⎭三点共线,所以111332c c --=,解得1c =或2第Ⅱ卷(非选择题 共90分)二、填空题(本题共4小题,每小题5分,共20分)13.如图,正方形ABCD 中,,M N 分别是,BC CD 的中点,若AC AM BN λμ=+,则λμ+= . 13.答案:85解析:不妨设正方形边长为2,以A 为坐标原点建立如图所示平面直角坐标系,则(2,2)AC =,(2,1),(1,2)AM BN ==-,因为AC AM BN λμ=+,所以(2,2)(2,2)λμλμ-+=,所以2222λμλμ-=⎧⎨+=⎩,解得685,255λλμμ⎧=⎪⎪∴+=⎨⎪=⎪⎩AMx14.已知定义在实数集R 上的函数()f x 满足(1)4f =,且()f x 的导函数()3f x '<,则不等式(ln )3ln 1f x x >+的解集为 . 14.答案:(0,)e 解析:设ln t x =,则()31f t t >+,即()31f t t ->,设()()3g t f t t =-,则(1)(1)31g f =-=,且()()30g t f t ''=-<,所以函数()g t 是一个单调递减函数,不等式()31f t t ->等价于 ()(1)g t g >,所以1t <,即ln 1x <,解得(0,)x e ∈15.已知数列{}n a 的前n 项和为n S ,126,4,0n S S S ==>,且22122,,n n n S S S -+成等比数列,212221,,n n n S S S -++成等差数列,则2016a 等于 .15.答案:1009-解析:由题意可得2212222221212n n n n n n S S S S S S -++-+⎧=⎪⎨=+⎪⎩,因为0n S>,所以222n S +=,所以)n N *=∈,故数列为等差数列,又由126,4S S ==,2124S S S =⋅,可得49S =;4132S S S =+,可得312S =,所以数列2=为首1=1n =+,即22(1)n S n =+,故21(1)(2)n S n n -==++,故2201620151009,10091010S S ==⨯,所以2016201620151009a S S =-=-16.已知函数()y f x =是定义域为R 的偶函数,当0x ≥时,5sin ,01,42()11, 1.4xx x f x x π⎧⎛⎫⎪⎪⎝⎭⎪=⎨⎛⎫⎪+> ⎪⎪⎝⎭⎩≤≤, 若关于x 的方程25[()](56)()60()f x a f x a a R -++=∈有且仅有6个不同的实数根,则实数a的取值范围是 . 16.答案:01a <≤或54a =解析:由25[()](56)()60f x a f x a -++=可得[5()6][()]0f x f x a -⋅-=,所以6()5f x =或()f x a =,画出()y f x =的图像,当6()5f x =时,因为65154<<,所以该方程有4个根;因(2)求cos 2sin 22B --⎪⎝⎭的取值范围.17.解:(1cos (2)cos C b A =-及正弦定理可得:cos (2sin )cos 2sin cos cos A C B C A B A C A ==,故2sin cos cos sin cos ))B A A C C A A C B =+=+=,0πB <<,sin 0B ∴≠,cos A ∴=0πA <<,所以6πA = (2)25cos 2sin sin cos 1sin cos()122πCB BC B A B ⎛⎫--=+-=-+-⎪⎝⎭3sin coscos sinsin 1sin 116626πππB B B B B B ⎛⎫=-+-=-=-- ⎪⎝⎭由6πA =,可得50,6πB ⎛⎫∈ ⎪⎝⎭,所以2,663πππB ⎛⎫-∈- ⎪⎝⎭,从而1sin ,162πB ⎛⎫⎛⎤-∈- ⎪ ⎥⎝⎭⎝⎦,116πB ⎛⎤⎛⎫--∈ ⎥ ⎪ ⎝⎭⎝⎦, 故25cos 2sin 22C B π⎛⎫-- ⎪⎝⎭的取值范围是1⎛⎤ ⎥ ⎝⎦18.(本小题满分12分)高三某班12月月考语文成绩服从正态分布2(100,17.5)N ,数学成绩的频率分布直方图如图,如果成绩大于135分,则认为特别优秀.(1)这500名学生中本次考试语文、数学特别优秀的大约各多少人?(2)如果语文和数学两科都特别优秀的共有6人,从(1)中的这些同学中随机抽取3人,设三人中两科都特别优秀的有X 人,求X 的分布列和数学期望. 参考数据:若2(,)XN μσ,则()0.68,(22)0.96P X P X μσμσμσμσ-<<+=-<<+=18.解:因为语文成绩服从正态分布2(100,17.5)N ,所以语文成绩特别优秀的概率为11(135)(10.96)0.022p P X =>=-⨯=,数学成绩特别优秀的概率为230.0016200.0244p =⨯⨯= 所以语文成绩特别优秀的同学有5000.0210⨯=(人),数学特别优秀的同学有5000.02412⨯=(人)……………………(5分)(2)因为语文、数学两科都优秀的有6人,单科优秀的有10人,X 的所有可能取值为0,1,2,3321123101061066333316161616327151(0),(1),(2),(3),14565628C C C C C C P X P X P X P X C C C C ============所以的分布列为()0123145656288E X =⨯+⨯+⨯+⨯=…………………………(12分)19.(本小题满分12分)如图①,在平行四边形11ABB A 中,11160,4,2,,ABB AB AA C C ∠=︒==分别为11,AB A B 的中点,现把平行四边形11AACC 沿1CC 折起,如图②所示,连接1111,,B C B A B A ①②ACBA 1C 1B 1ACBA 1C 1B 1(1)求证:11AB CC ⊥;(2)若1AB 11C AB A --的余弦值.19.(1)证明:由已知可得,四边形1111,ACC A BCC B 均为边长为2的菱形,且11160ACC B C C ∠=∠=︒,取1CC 的中点O ,连接11,,AO B O AC ,则1ACC △是等边三角形,所以1AO CC ⊥,同理可得11B O CC ⊥.又因为1AOB O O =,所以1CC ⊥平面1AOB ,又因为1AB ⊂平面1AOB ,所以11AB CC ⊥.…………………………(5分)AC BA 1C 1B1O(2)由已知得1OA OB AB ===2221OA OB AB +=,故1OA OB ⊥,分别以11,,OB OCOA 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,得11(0,1,0),3)C B A A -.设平面1CAB 的法向量111(,,)m x y z =,1(3,0,3),(0,1,AB AC =-=-,1111130AB m x AC m y ⎧⋅=-=⎪∴⎨⋅=-=⎪⎩,令11x =,得 111,z y ==1CAB 的法向量(1,3,1)m =-.设平面11AA B 的法向量222(,,)n x y z =,11(3,0,3),(0,2,0)ABAA =-=,由122123020AB n x AA n y ⎧⋅==⎪⎨⋅==⎪⎩,令21x =,得221,0z y ==, 所以平面11AA B 的法向量(1,0,1)n =,于是cos ,5m n m n m n⋅===⨯⋅.因为二面角11C AB A --的平面角为钝角,所以二面角11C AB A --的余弦值为 20.(本小题满分12分)已知曲线2()ln f x ax bx x =+在点(1,(1))f 处的切线方程是21y x =-. (1)求实数,a b 的值;(2)若2()(1)f x kx k x +-≥对任意(0,)x ∈+∞恒成立,求实数k 的最大值.20.解:(1)()2ln f x a bx x bx '=++,由(1)1(1)2f a f a b ==⎧⎨'=+=⎩,可得1a b ==……(4分)(2)由22ln (1)x x x kx k x ++-≥对任意(0,)x ∈+∞恒成立,即2ln 1x x k x ++≤恒成立,令2ln ()(0)1x xg x x x +=>+,则22(ln 1)(1)2ln ln 1()(1)(1)x x x x x x g x x x ++--+-'==++, 显然ln 1y x x =+-单调递增,且有唯一零点1x =,所以()g x 在(0,1)内单调递减,在(1,)+∞内单调递增,所以min ()(1)1g x g ==, 所以1k ≤,故k 的最大值为1………………………………(12分)21.(本小题满分12分)已知函数211()ln 22f x ax x ax ⎛⎫=++- ⎪⎝⎭(a 为常数,0a >).(1)当1a =时,求函数()f x 的图像在1x =处的切线方程;(2)当()y f x =在12x =处取得极值时,若关于x 的方程()0f x b -=在[0,2]上恰有两个不相等的实数根,求实数b 的取值范围;(3)若对任意的(1,2)a ∈,总存在01,12x ⎡⎤∈⎢⎥⎣⎦,使不等式20()(23)f x m a a >+-成立,求实数m 的取值范围.21.解:(1)当1a =时,211()ln 22f x x x x ⎛⎫=++- ⎪⎝⎭,所以13()21,(1)12f x x f x ''=+-=+,又(1)0f =,即切点为(1,0),所以切线方程为3(1)2y x =-,即3230x y --=.……(3分)(2)()21a f x x a ax '=+-+,依题意,1101212a f a a⎛⎫'=+-= ⎪⎝⎭+,即220a a --=,因为 0a >,所以2a =,此时2(21)()12x x f x x -'=+,所以()f x 在10,2⎡⎤⎢⎥⎣⎦上单调递减,在1,22⎡⎤⎢⎥⎣⎦上单调递增,又1135(0)ln ,,(2)ln 2242f f f ⎛⎫==-= ⎪⎝⎭,所以31ln 42b -<≤.…………(6分)(3)2222(2)2(2)()2111x ax a a ax a x f x x a ax ax ax⎡⎤--+-⎣⎦'=+-==+++, 因为12a <<,所以221(2)(1)0222a a a a a --+-=<,即22122a a -<,所以()f x 在1,12⎡⎤⎢⎥⎣⎦上单调递增,所以max 11()(1)ln 122f x f a a ⎛⎫==++- ⎪⎝⎭.问题等价于对任意的(1,2)a ∈,不等式211ln 1(23)22a a m a a ⎛⎫++->+- ⎪⎝⎭恒成立,设211()ln 1(23)(12)22h a a a m a a a ⎛⎫=++--+-<< ⎪⎝⎭,则212(41)2()12211ma m a m h a ma m a a --+-'=---=++,又(1)0h =,所以()h a 在1a =右侧需先单调递增,所以(1)0h '≥,即18m -≤.当18m -≤时,设2()2(41)2g a ma m a m =--+-,其对称轴为1114a m=--<,又20m ->,开口向上,且(1)810g m =--≥,所以在(1,2)内,()0g a >,即()0h a '>,所以()h a 在(1,2)内单调递增,()(1)0h a h >=,即211ln 1(23)(12)22a a m a a a ⎛⎫++->+-<< ⎪⎝⎭.于是,对任意的(1,2)a ∈,总存在01,12x ⎡⎤∈⎢⎥⎣⎦,使不等式20()(23)f x m a a >+-成立.综上可知,18m -≤…………………………(12分)(二)选考题:共10分.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修4—4:坐标系与参数方程x 轴的非负半轴重合,直线l 的参数方程为1,12x y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),曲线C 的极坐标方程为4cos ρθ=. (1)写出曲线C 的直角坐标方程和直线l 的普通方程; (2)设直线l 与曲线C 相交于,P Q 两点,求PQ 的值.22.解:(1)将4c o s ρθ=化为24cos ρρθ=,由222,c o s ρρθx y x =+=,得224x y x +=,所以曲线C 的直角坐标方程为22(2)4x y-+=.由1,12x y t ⎧=-+⎪⎪⎨⎪=⎪⎩消去t 解得10x+=, 所以直线l10x +=……………………(5分)(2)把1,212x y t ⎧=-+⎪⎪⎨⎪=⎪⎩代入22(2)4x y -+=,整理得250t -+=,设其两根为12,t t ,则 12125tt t t +==,所以12PQ t t =-==10分)方法2,圆C 的圆心为(2,0)C ,半径2r =,圆心C 到直线l 的距离32d =, 所以PQ ==………………(10分)方法3,将1x =-代入22(2)4x y -+=,化简得:2450y -+=,由韦达定理得:1212524y y y y +==,PQ === 23.(本小题满分10分)选修4—5:不等式选讲 已知函数()223,()12f x x a x g x x =-++=-+.(1)解不等式()5g x <;(2)若对任意1x R ∈,都有2x R ∈,使得12()()f x g x =成立,求实数a 的取值范围.23.解:(1)由125x -+<,得5125x -<-+<,所以13x -<,即313x -<-<,解得: 24x -<<,所以原不等式的解集为{|24}x x -<<(2)因为对任意1x R ∈,都有2x R ∈,使得12()()f x g x =成立,所以{|()}{|()}y y f x y y g x =⊆=,又()223(2)(23)3f x x a x x a x a =-++--+=+≥,当且仅当(2)(23)0x a x -+≤时取等号,()122g x x =-+≥,所以32a +≥,解得:1a -≥或5a -≤,所以实数a 的取值范围是(,5][1,)-∞--+∞。

2018届河北省衡水第一中学高三上学期分科综合考试数学(理)试题 Word版含解析

2018届河北省衡水第一中学高三上学期分科综合考试数学(理)试题 Word版含解析

2017~2018学年度高三分科综合测试卷理科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B. C. D.【答案】A【解析】,则,选A.2. 已知复数的实部为,则复数在复平面上对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】试题分析:,所以实部为,则,因此复数,则,在复平面内对应点的坐标为,位于第三象限。

考点:复数的运算。

3. 若,则()A. B. C. D.【答案】C【解析】,.选C.4. 已知实数满足约束条件,则的最大值为()A. 2B. 3C. 4D. 5【答案】B【解析】绘制目标函数表示的可行域,结合目标函数可得,目标函数在点处取得最大值 .本题选择B选项.5. 一直线与平行四边形中的两边分别交于点,且交其对角线于点,若,,,则()A. B. 1 C. D.【答案】A【解析】由几何关系可得:,则:,即:,则=.本题选择A选项.点睛:(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.6. 在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线为正态分布的密度曲线)的点的个数的估计值为()附:若,则,.A. 906B. 1359C. 2718D. 3413【答案】B【解析】由正态分布的性质可得,图中阴影部分的面积,则落入阴影部分(曲线为正态分布的密度曲线)的点的个数的估计值为.本题选择B选项.点睛:关于正态曲线在某个区间内取值的概率求法①熟记P(μ-σ<X≤μ+σ),P(μ-2σ<X≤μ+2σ),P(μ-3σ<X≤μ+3σ)的值.②充分利用正态曲线的对称性和曲线与x轴之间面积为1.7. 二分法是求方程近似解的一种方法,其原理是“一分为二、无限逼近”.执行如图所示的程序框图,若输入,则输出的值为()A. 6B. 7C. 8D. 9【答案】B【解析】根据二分法,程序运行中参数值依次为:,,,,,,,,此时满足判断条件,输出,注意是先判断,后计算,因此输出的,故选B.8. 已知函数,其中表示不超过的最大整数,则关于函数的性质表述正确的是()A. 定义域为B. 偶函数C. 周期函数D. 在定义域内为减函数【答案】C【解析】由于表示不超过的最大整数,如,,则,所以定义域为错误;当时,,,,,是偶函数错误,由于,所以函数的的图象是一段一段间断的,所以不能说函数是定义域上的减函数,但函数是周期函数,其周期为1,例如任取,则,,则,则,选C.9. 已知5件产品中有2件次品,现逐一检测,直至能确定所有次品为止,记检测的次数为,则()A. 3B.C.D. 4【答案】B10. 已知函数的图像与坐标轴的所有交点中,距离原点最近的两个点的坐标分别为和,则该函数图像距离轴最近的一条对称轴方程是()A. B. C. D.【答案】B【解析】函数的图像过,则,,则或,又距离原点最近的两个点的坐标分别为和,则,,过,则,,,,取,得,则,其对称轴为,即,当时,该函数图像距离轴最近的一条对称轴方程是,选B.11. 某棱锥的三视图如图所示,则该棱锥的外接球的表面积为()A. B. C. D.【答案】A【解析】根据三视图恢复原几何体为三棱锥P-ABC如图,其中,,平面,计算可得,,放在外接球中,把直角三角形恢复为正方形,恰好在一个球小圆中,AC为球小圆的直径,分别过和做圆的垂面,得出矩形和矩形,两矩形对角线交点分别为,连接并取其中点为,则为球心,从图中可以看出点共面且都在的外接圆上,在中,,,利用正弦定理可以求出的外接圆半径,,,平面,则,则球的半径,外接球的表面积为,选A. 【点睛】如何求多面体的外接球的半径?基本方法有种,第一种:当三棱锥的三条侧棱两两互相垂直时,可还原为长方体,长方体的体对角线就是外接圆的直径;第二种:“套球”当棱锥或棱柱是较特殊的形体时,在球内画出棱锥或棱柱,利用底面的外接圆为球小圆,借助底面三角形或四边形求出小圆的半径,再利用勾股定理求出球的半径,第三种:过两个多面体的外心作两个面的垂线,交点即为外接球的球心,再通过关系求半径.本题使用“套球”的方法,恢复底面为正方形,放在一个球小圆里,这样画图方便一些,最主要是原三视图中的左试图为直角三角形,告诉我们平面平面,和我们做的平面是同一个平面,另外作平面和平面的作用是找球心,因为这两个矩形平面对角线的交点所连线段的中点就是球心,再根据正、余弦进行计算就可解决.12. 已知是方程的实根,则关于实数的判断正确的是()A. B. C. D.【答案】C【解析】令,则,函数在定义域内单调递增,方程即:,即,结合函数的单调性有: .本题选择C选项.点睛:(1)利用导数研究函数的单调性的关键在于准确判定导数的符号.(2)若可导函数f(x)在指定的区间D上单调递增(减),求参数范围问题,可转化为f′(x)≥0(或f′(x)≤0)恒成立问题,从而构建不等式,要注意“=”是否可以取到.二、填空题:本题共4小题,每小题5分,共20分.13. 已知边长为的正的三个顶点都在球的表面上,且与平面所成的角为,则球的表面积为__________.【答案】【解析】设正的外接圆圆心为,连接,则,角是与平面所成的角为,由正的边长为可知,所以在中,球的表面积为,故答案为.14. 若的展开式中含有常数项,则的最小值等于__________.【答案】2【解析】的展开式中,,令,展开式中含有常数项,当时,取最小值为;令,展开式中含有常数项,当时,取最小值为2;综上可知:取最小值为2;15. 在中,角的对边分别为,且,若的面积为,则的最小值为__________.【答案】3【解析】,,,,,,,则,又,则,;当且仅当时取等号,则的最小值为3.16. 已知抛物线的焦点为,准线为,过上一点作抛物线的两条切线,切点分别为,若,则__________.【答案】【解析】设,则,将代入可得:,即,由题意直线与抛物线相切,则其判别式,即,所以切线的方程为,即.同理可得: .所以,即.又两切线都经过点可得,则是方程的两根,故,所以,因又因为,同理可得,即共线,而,则,即,故在中,高,应填答案。

2018年高考数学模拟试卷(衡水中学理科)

2018年高考数学模拟试卷(衡水中学理科)

2018年衡水中学高考数学全真模拟试卷(理科)第1卷一、选择题(本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)(2018?衡中模拟)已知集合A={x|x 2<1},B={y|y=|x|},则A∩B=()A.?B.(0,1)C.[0,1)D.[0,1]2.(5分)(2018?衡中模拟)设随机变量ξ~N(3,σ2),若P(ξ>4)=0.2,则P(3<ξ≤4)=()A.0.8B.0.4C.0.3D.0.23.(5分)(2018?衡中模拟)已知复数z=(i为虚数单位),则3=()A.1B.﹣1C.D.4.(5分)(2018?衡中模拟)过双曲线﹣=1(a>0,b>0)的一个焦点F作两渐近线的垂线,垂足分别为P、Q,若∠PFQ=π,则双曲线的渐近线方程为()A.y=±xB.y=±xC.y=±xD.y=±x5.(5分)(2018?衡中模拟)将半径为1的圆分割成面积之比为1:2:3的三个扇形作为三个圆锥的侧面,设这三个圆锥底面半径依次为r1,r2,r3,那么r1+r2+r3的值为()A.B.2C.D.16.(5分)(2018?衡中模拟)如图是某算法的程序框图,则程序运行后输出的结果是()A.2B.3C.4D.57.(5分)(2018?衡中模拟)等差数列{a n}中,a3=7,a5=11,若b n=,则数列{b n}的前8项和为()A.B.C.D.8.(5分)(2018?衡中模拟)已知(x﹣3)0+a1(x+1)+a2(x+1)10=a10=a 2+⋯+a1010(x+1),2+⋯+a10则a8=()A.45B.180C.﹣180D.720积为()A BC的三视图,其表面锥S﹣9.(5分)(2018?衡中模拟)如图为三棱A.16B.8+6C.16D.16+610.(5分)(2018?衡中模拟)已知椭圆E:+=1(a>b>0)的左焦点F(﹣3,0),为P F+PM的最大值为17,则椭圆的离心率部点M(﹣1,3)满足P为椭圆上一动点,椭圆内()A.B.C.D.11.(5分)(2018?衡中模拟)已知f(x)=,若函数y=f(x)﹣k x恒有一个零点,则k的取值范围为()A.k≤0B.k≤0或k≥1C.k≤0或k≥eD.k≤0或k≥2n+p,数列{bn}的通项公式12.(5分)(2018?衡中模拟)已知数列{an}的通项公式为an=﹣n﹣4*为b n=2,设c n=,若在数列{c n}中c6<c n(n∈N,n≠6),则p的取值范围()A.(11,25)B.(12,22)C.(12,17)D.(14,20)第2卷二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.)||=2||=2,|﹣|=,则在上13.(5分)(2018?衡中模拟)若平面向量、满足的投影为.a1=a2=1,an+2=,14.(5分)(2018?衡中模拟)若数列{an}满足S2n=.则数列{a n}前2n项和a=0把区域分成面2)y+4﹣15.(5分)(2018?衡中模拟)若直线ax+(a﹣积相等的两部分,则的最大值为.2 16.(5分)(2018?衡中模拟)已知函数f(x)=(a+1)lnx+x(a<﹣1)对.x2|,则a的取值范围为f(x2)|≥4|x1﹣任意的x1、x2>0,恒有|f(x1)﹣.)三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤c=1,17.(12分)(2018?衡中模拟)在△ABC中,角A,B,C所对的边分别为a,b,c,满足且cosBsinC+(a﹣s inB)cos(A+B)=0(1)求C的大小;2+b2(2)求a的最大值,并求取得最大值时角A,B的值.A BCD中,侧棱PA⊥底面ABCD,AD∥BC,P﹣18.(12分)(2018?衡中模拟)如图,在四棱锥∠ABC=90°,PA=AB=BC=,2AD=1,M是棱PB中点.(Ⅰ)求证:平面PBC⊥平面PCD;(Ⅱ)设点N是线段C D上一动点,且=λ,当直线MN与平面PAB所成的角最大时,求λ的值.19.(12分)(2018?衡中模拟)如图是两个独立的转盘(A)、(B),在两个图中三个扇形区时转动两个域的圆心角分别为60°、120°、180°.用这两个转盘进行游戏,规则是:同无效,重新开下(当两个转盘中任意一个指针恰好落在分界线时,则这次转动转盘待指针停域为y,x、y∈{1,2,3},域为x,转盘(B)指针所对的区始),记转盘(A)指针所对的区设x+y的值为ξ.(Ⅰ)求x<2且y>1的概率;(Ⅱ)求随机变量ξ的分布列与数学期望.20.(12分)(2018?衡中模拟)已知椭圆E:+=1(a>b>0),倾斜角为45°的直线1,).过椭圆E内一点P(1,)的与椭圆相交于M、N两点,且线段M N的中点为(﹣两条直线分别与椭圆交于点A、C和B、D,且满足=λ,=λ,其中λ为实数.当直线AP平行于x轴时,对应的λ=.(Ⅰ)求椭圆E的方程;.(Ⅱ)当λ变化时,kAB是否为定值?若是,请求出此定值;若不是,请说明理由2 21.(12分)(2018?衡中模拟)已知函数f(x)=,曲线y=f(x)在点x=e 处的切线与直线x﹣2y+e=0平行.(Ⅰ)若函数g(x)=f(x)﹣ax在(1,+∞)上是减函数,求实数a的最小值;(Ⅱ)若函数F(x)=f(x)﹣无零点,求k的取值范围.[选修4-1:几何证明选讲]22.(10分)(2018?衡中模拟)如图所示,AC为⊙O的直径,D为的中点,E为BC的中点.(Ⅰ)求证:DE∥AB;(Ⅱ)求证:AC?BC=2AD?CD.[选修4-4:坐标系与参数方程]23.(2018?衡中模拟)在平面直角坐标系中,直线l的参数方程为(t为参数),C的极坐标方程在以直角坐标系的原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线为ρ=C的直角坐标方程和直线l的普通方程;(1)求曲线l与曲线C相交于A,B两点,求△AOB的面积.(2)若直线4-5:不等式选讲][选修3|.l|+|x﹣24.(2018?衡中模拟)已知函数f(x)=|x﹣(I)解不等式f(x)≤6;x∈R恒成立,求实数a的取值范围.(Ⅱ)若不等式f(x)≥ax﹣1对任意参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只 有一项是符合题目要求的.)1.(5分)(2018?衡中模拟)已知集合A={x|x2<1},B={y|y=|x|},则A ∩B=()A .?B .(0,1)C .[0,1)D .[0,1]【解答】解:A={x|x 2 <1}={x|﹣1<x <1},B={y|y=|x|≥0}, 则A ∩B=[0,1), 故选:C .2.(5分)(2018?衡中模拟)设随机变量ξ~N (3,σ2),若P (ξ>4)=0.2,则P (3<ξ≤4)=()A .0.8B .0.4C .0.3D .0.2【解答】解:∵随机变量X 服从正态分布N (3,σ 2 ),∴μ=3,得对称轴是x=3. ∵P (ξ>4)=0.2∴P (3<ξ≤4)=0.5﹣0.2=0.3. 故选:C3.(5分)(2018?衡中模拟)已知复数z=(i 为虚数单位),则 3=()A .1B .﹣1C .D . 【解答】解:复数z=, 可得=﹣=cos+isin . 则 3=cos4π+isin4π=1. 故选:A .4.(5分)(2018?衡中模拟)过双曲线﹣=1(a >0,b >0)的一个焦点F 作两渐近线的垂线,垂足分别为P 、Q ,若∠PFQ=π,则双曲线的渐近线方程为() A .y=±xB .y=±xC .y=±xD .y=±x 【解答】解:如图若∠PFQ=π, 则由对称性得∠QFO=, 则∠QOx=,即OQ的斜率k==tan=,则双曲线渐近线的方程为y=±x,故选:B5.(5分)(2018?衡中模拟)将半径为1的圆分割成面积之比为1:2:3的三个扇形作为三个圆锥的侧面,设这三个圆锥底面半径依次为r1,r2,r3,那么r1+r2+r3的值为()A.B.2C.D.1【解答】解:∵2πr1=,∴r1=,同理,∴r1+r2+r3=1,故选:D.6.(5分)(2018?衡中模拟)如图是某算法的程序框图,则程序运行后输出的结果是()A.2B.3C.4D.5【解答】解:第一次循环,sin>sin0,即1>0成立,a=1,T=1,k=2,k<6成立,第二次循环,sinπ>sin,即0>1不成立,a=0,T=1,k=3,k<6成立,第三次循环,sin>sinπ,即﹣1>0不成立,a=0,T=1,k=4,k<6成立,第四次循环,sin2π>sin,即0>﹣1成立,a=1,T=1+1=2,k=5,k<6成立,第五次循环,sin>sin2π,即1>0成立,a=1,T=2+1=3,k=6,k<6不成立,输出T=3,故选:B7.(5分)(2018?衡中模拟)等差数列{a n}中,a3=7,a5=11,若b n=,则数列{b n}的前8项和为()A.B.C.D.【解答】解:设等差数列{a n}的公差为d,a3=7,a5=11,∴,解得a1=3,d=2,∴a n=3+2(n﹣1)=2n+1,∴,∴b8=(1﹣+﹣+⋯+﹣)=(1﹣)=故选B.8.(5分)(2018?衡中模拟)已知(x﹣3)0+a1(x+1)+a2(x+1)10=a10=a 2+⋯+a1010(x+1),2+⋯+a10则a8=()A.45B.180C.﹣180D.720【解答】解:(x﹣3)10=[(x+1)﹣4]10,∴,故选:D.9.(5分)(2018?衡中模拟)如图为三棱锥S﹣A BC的三视图,其表面积为()A.16B.8+6C.16D.16+6【解答】解:由三视图可知该三棱锥为边长为2,4,4的长方体切去四个小棱锥得到的几何体.word完美格式∴表面积为4×=16.故选:C.10.(5分)(2018?衡中模拟)已知椭圆E:+=1(a>b>0)的左焦点F(﹣3,0),P F+PM的最大值为17,则椭圆的离心率为部点M(﹣1,3)满足P为椭圆上一动点,椭圆内()A.B.C.D.【解答】解:设右焦点为Q,由F(﹣3,0),可得Q(3,0),由椭圆的定义可得|PF|+|PQ|=2a,即|PF|=2a﹣|PQ|,则|PM|+|PF|=2a+(|PM|﹣|PQ|)≤2a+|MQ|,当P,M,Q共线时,取得等号,即最大值2a+|MQ|,由|MQ|==5,可得2a+5=17,所以a=6,则e===,故选:A.11.(5分)(2018?衡中模拟)已知f(x)=,若函数y=f(x)﹣k x恒有一个零点,则k的取值范围为()A.k≤0B.k≤0或k≥1C.k≤0或k≥eD.k≤0或k≥【解答】解:由y=f(x)﹣k x=0得f(x)=kx,作出函数f(x)和y=kx的图象如图,由图象知当k≤0时,函数f(x)和y=kx恒有一个交点,当x≥0时,函数f(x)=ln(x+1)的导数f′(x)=,则f′(0)=1,xx0=1,当x<0时,函数f(x)=e﹣1的导数f′(x)=e,则f′(0)=e即当k=1时,y=x是函数f(x)的切线,则当0<k<1时,函数f(x)和y=kx有3个交点,不满足条件.当k≥1时,函数f(x)和y=kx有1个交点,满足条件.k≤0或k≥1,围为综上k的取值范故选:B.2n+p,数列{bn}的通项公式12.(5分)(2018?衡中模拟)已知数列{an}的通项公式为a n=﹣n﹣4*围为b n=2,设c n=,若在数列{c n}中c6<c n(n∈N,n≠6),则p的取值范()A.(11,25)B.(12,22)C.(12,17)D.(14,20)n﹣42【解答】解:∵an﹣b n=﹣2n+p﹣,∴a n﹣b n随着n变大而变小,又∵a n=﹣2n+p随着n变大而变小,n﹣4bn=2随着n变大而变大,∴,(1)当(2)当,综上p∈(14,20),故选D.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.)|=,则在上13.(5分)(2018?衡中模拟)若平面向量、满足||=2||=2,|﹣的投影为﹣1.【解答】解:根据条件,=word完美格式=7;∴;∴在上的投影为.故答案为:﹣1.14.(5分)(2018?衡中模拟)若数列{an}满足a1=a2=1,an+2=,则数列{a n}前2n项和S2n=2﹣1.n+n2【解答】解:∵数列{an}满足a1=a2=1,an+2=,∴n=2k﹣1时,a2k+1﹣a2k﹣1=2,为等差数列;n=2k时,a2k+2=2a2k,为等比数列.∴.n2故答案为:2+n﹣1.15.(5分)(2018?衡中模拟)若直线ax+(a﹣2)y+4﹣a=0把区域分成面积相等的两部分,则的最大值为2.【解答】解:由ax+(a﹣2)y+4﹣a=0得a(x+y﹣1)+4﹣2y=0,则得,即直线恒过C(﹣1,2),若将区域分成面积相等的两部分,则直线过AB的中点D,由得,即A(1,6),∵B(3,0),∴中点D(2,3),代入a(x+y﹣1)+4﹣2y=0,得4a﹣2=0,则,则的几何意义是区域内的点到点(﹣2,0)的斜率,由图象过AC的斜率最大,此时最大值为2.故答案为:2.216.(5分)(2018?衡中模拟)已知函数f (x )=(a+1)lnx+x (a <﹣1)对 任意的x 1、x 2>0,恒有|f (x 1)﹣f (x 2)|≥4|x 1﹣x 2|,则a 的取值范围为(﹣∞,﹣2]. 【解答】解:由f ′(x )=+x ,得f ′(1)=3a+1,所以f (x )=(a+1)lnx+ax 2,(a <﹣1)在(0,+∞)单调递减,不妨设0<x1<x2, 则f (x 1)﹣f (x 2)≥4x 2﹣4x 1,即f (x 1)+4x 1≥f (x 2)+4x 2, 令F (x )=f (x )+4x ,F ′(x )=f ′(x )+4=+2ax+4, 等价于F (x )在(0,+∞)上单调递减, 故F'(x )≤0恒成立,即+2ax+4≤0, 所以恒成立, 得a ≤﹣2.故答案为:(﹣∞,﹣2].三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)(2018?衡中模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,满足c =1, 且cosBsinC+(a ﹣sinB )cos (A+B )=0 (1)求C 的大小;(2)求a 的最大值,并求取得最大值时角A ,B 的值.2+b 2 【解答】解:(1)cosBsinC+(a ﹣sinB )cos (A+B )=0 可得:cosBsinC ﹣(a ﹣sinB )cosC=0 即:sinA ﹣acosC=0. 由正弦定理可知:, ∴,c=1,word完美格式∴asinC﹣acosC=0,sinC﹣cosC=0,可得sin(C﹣)=0,C是三角形内角,∴C=.(2)由余弦定理可知:c﹣2abcosC,2=a2+b2得1=a﹣ab2+b2又,∴,即:.当时,a2+b取到最大值为2+.2+b218.(12分)(2018?衡中模拟)如图,在四棱锥P﹣ABCD中,侧棱PA⊥底面ABCD,AD∥BC,∠ABC=90°,PA=AB=BC=,2AD=1,M是棱PB中点.(Ⅰ)求证:平面PBC⊥平面PCD;(Ⅱ)设点N是线段CD上一动点,且=λ,当直线MN与平面PAB所成的角最大时,求λ的值.【解答】证明:(1)取PC的中点E,则连接DE,∵ME是△PBC的中位线,∴ME,又AD,∴MEAD,∴四边形AMED是平行四边形,∴AM∥DE.∵PA=AB,M是PB的中点,∴AM⊥PB,∵PA⊥平面ABCD,BC?平面ABCD,∴PA⊥BC,又BC⊥AB,PA∩AB=A,∴BC⊥平面PAB,∵AM?平面PAB,∴BC⊥AM,又PB?平面PBC,BC?平面PBC,PB∩BC=B,∴AM⊥平面PBC,∵AM∥DE,∴DE⊥平面PBC,又DE?平面PCD,∴平面PBC⊥平面PCD.(2)以A为原点,以AD,AB,AP为坐标轴建立空间直角坐标系,如图所示:则A(0,0,0),B(0,2,0),M(0,1,1),P(0,0,2),C(2,2,0),D(1,0,0).∴=(1,2,0),=(0,1,1),=(1,0,0),∴=λ=(λ,2λ,0),=(λ+1,2λ,0),1).==(λ+1,2λ﹣1,﹣∵AD⊥平面PAB,∴为平面PAB的一个法向量,∴cos<>=====设MN与平面PAB所成的角为θ,则sinθ=.∴当即时,sinθ取得最大值,∴MN与平面PAB所成的角最大时.19.(12分)(2018?衡中模拟)如图是两个独立的转盘(A)、(B),在两个图中三个扇形区两个域的圆心角分别为60°、120°、180°.用这两个转盘进行游戏,规则是:同时转动,重新开转盘待指针停下(当两个转盘中任意一个指针恰好落在分界线时,则这次转动无效域为y,x、y∈{1,2,3},始),记转盘(A)指针所对的区域为x,转盘(B)指针所对的区设x+y的值为ξ.(Ⅰ)求x<2且y>1的概率;(Ⅱ)求随机变量ξ的分布列与数学期望.【解答】解:(1)记A指针指向1,2,3区域的事件为A1,A2,A3,转盘1,2,3区域的事件为B1,B2,B3,同理转盘B指针指向∴P(A1)=,P(A2)=,P(A3)=,P(B1)=,P(B2)=,P(B3)=,P=P(A1)P(1﹣P(B1))=×(1﹣)==.⋯(5分)(2)由已知得ξ的可能取值为2,3,4,5,6,P(ξ=2)=P(A1)P(B1)===,P(ξ=3)=P(A1)P(B2)+P(A2)P(B1)==,P(ξ=4)=P(A1)P(B3)+P(A2)P(B2)+P(A3)P(B1)==,P(ξ=5)=P(A2)P(B3)+P(A3)P(B2)=+=,P(ξ=6)=P(A3)P(B3)==,∴ξ的分布列为:ξ23456PEξ==.⋯(12分)20.(12分)(2018?衡中模拟)已知椭圆E:+=1(a>b>0),倾斜角为45°的直线与椭圆相交于M、N两点,且线段1,).过椭圆E内一点P(1,)的M N的中点为(﹣两条直线分别与椭圆交于点A、C和B、D,且满足=λ,=λ,其中λ为实数.当直线AP平行于x轴时,对应的λ=.(Ⅰ)求椭圆E的方程;(Ⅱ)当λ变化时,kAB是否为定值?若是,请求出此定值;若不是,请说明理由.,【解答】解:(Ⅰ)设M(m1,n1)、N(m2,n2),则两式相减,故a⋯(2分)2=3b2A P平行于x轴时,设|AC|=2d,当直线∵,,则,解得,故点A(或C)的坐标为.代入椭圆方程,得⋯4分22a=3,b=1,所以方程为⋯(6分)(Ⅱ)设A(x1,y1)、B(x2,y2)、C(x3,y3)、D(x4,y4)由于,可得A(x1,y1)、B(x2,y2)、C(x3,y3)、D(x4,y4),⋯①同理可得⋯②⋯(8分)由①②得:⋯③得,程将点A、B的坐标代入椭圆方两式相减得(x1+x2)(x1﹣x2)+3(y1+y2)(y1﹣y2)=0,于是3(y1+y2)k AB=﹣(x1+x2)⋯④同理可得:3(y3+y4)k CD=﹣(x3+x4),⋯(10分)于是3(y3+y4)k AB=﹣(x3+x4)(∵AB∥CD,∴k AB=k CD)所以3λ(y3+y4)kAB=﹣λ(x3+x4)⋯⑤由④⑤两式相加得到:3[y1+y2+λ(y3+y4)]k AB=﹣[(x1+x2)+λ(x3+x4)]把③代入上式得3(1+λ)k AB=﹣2(1+λ),解得:,当λ变化时,k AB为定值,.⋯(12分)2 21.(12分)(2018?衡中模拟)已知函数f(x)=,曲线y=f(x)在点x=e 处的切线x﹣2y+e=0平行.与直线(Ⅰ)若函数g(x)=f(x)﹣ax在(1,+∞)上是减函数,求实数a的最小值;.(Ⅱ)若函数F(x)=f(x)﹣无零点,求k的取值范围【解答】解:(Ⅰ)由,得,解得m=2,,函数g(x)的定义域为(0,1)∪(1,+∞),故,则而,又函数g(x)在(1,+∞)上是减函数,∴在(1,+∞)上恒成立,∴当x∈(1,+∞)时,的最大值.而,即右边的最大值为,∴,故实数a的最小值;(Ⅱ)由题可得,且定义域为(0,1)∪(1,+∞),word完美格式要使函数F(x)无零点,即在(0,1)∪(1,+∞)内无解,亦即在(0,1)∪(1,+∞)内无解.构造函数,则,(1)当k≤0时,h'(x)<0在(0,1)∪(1,+∞)内恒成立,∴函数h(x)在(0,1)内单调递减,在(1,+∞)内也单调递减.又h(1)=0,∴当x∈(0,1)时,h(x)>0,即函数h(x)在(0,1)内无零点,同理,当x∈(1,+∞)时,h(x)<0,即函数h(x)在(1,+∞)内无零点,故k≤0满足条件;(2)当k>0时,.①若0<k<2,则函数h(x)在(0,1)内单调递减,在内也单调递减,在内单调递增.又h(1)=0,∴h(x)在(0,1)内无零点;又,而,故在内有一个零点,∴0<k<2不满足条件;②若k=2,则函数h(x)在(0,1)内单调递减,在(1,+∞)内单调递增.又h(1)=0,∴当x∈(0,1)∪(1,+∞)时,h(x)>0恒成立,故无零点.∴k=2满足条件;③若k>2,则函数h(x)在内单调递减,在内单调递增,在(1,+∞)内也单调递增.又h(1)=0,∴在及(1,+∞)内均无零点.﹣kk=2e k22=?(k),k﹣k)﹣2+2e﹣易知,又h(e)=k×(﹣k26>则?'(k)=2(e﹣k)>0,则?(k)在k>2为增函数,∴?(k)>?(2)=2e﹣0.故函数h(x)在内有一零点,k>2不满足.综上:k≤0或k=2.4-1:几何证明选讲][选修22.(10分)(2018?衡中模拟)如图所示,AC为⊙O的直径,D为的中点,E为BC的中点.word完美格式..(Ⅰ)求证:DE ∥AB ;(Ⅱ)求证:AC?BC=2AD?CD .【解答】证明:(Ⅰ)连接B D ,因为D 为的中点,所以BD=DC .因为E 为BC 的中点,所以DE ⊥BC .因为AC 为圆的直径,所以∠ABC=90°,所以AB ∥DE .⋯(5分)(Ⅱ)因为D 为的中点,所以∠BAD=∠DAC ,又∠BAD=∠DCB ,则∠DAC=∠DCB .又因为AD ⊥DC ,DE ⊥CE ,所以△DAC ∽△ECD .所以=,AD?CD=AC?CE ,2AD?CD=AC?2CE ,因此2AD?CD=AC?BC .⋯(10分)[选修4-4:坐标系与参数方程]23.(2018?衡中模拟)在平面直角坐标系中,直线l 的参数方程为(t 为参数),在以直角坐标系的原点O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线C 的极坐标方程为ρ=(1)求曲线C 的直角坐标方程和直线l 的普通方程;(2)若直线l 与曲线C 相交于A ,B 两点,求△AOB 的面积.【解答】解:(1)由曲线C 的极坐标方程为ρ=得ρ2sin 2 θ=2ρcos θ. 2∴由曲线C 的直角坐标方程是:y=2x .由直线l 的参数方程为(t 为参数),得t=3+y 代入x=1+t 中消去t 得:x ﹣y ﹣4=0,所以直线l 的普通方程为:x ﹣y ﹣4=0⋯(5分)(2)将直线l 的参数方程代入曲线C 的普通方程y 2=2x ,得t 2=2x ,得t 2 ﹣8t+7=0, 设A ,B 两点对应的参数分别为t 1,t 2,word完美格式..所以|AB|===,y﹣4=0的距离d=,因为原点到直线x﹣所以△AOB的面积是|AB|d==12.⋯(10分)[选修4-5:不等式选讲]3|.l|+|x﹣24.(2018?衡中模拟)已知函数f(x)=|x﹣(I)解不等式f(x)≤6;(Ⅱ)若不等式f(x)≥ax﹣1对任意x∈R恒成立,求实数a的取值范围.l|+|x﹣3|=的图象如图所示,【解答】解:函数f(x)=|x﹣(I)不等式f(x)≤6,即①或②,或③.解①求得x∈?,解②求得3<x≤5,解③求得﹣1≤x≤3.1,5].综上可得,原不等式的解集为[﹣(Ⅱ)若不等式f(x)≥ax﹣1对任意x∈R恒成立,则函数f(x)的图象不能在y=ax﹣1的图象的下方.如图所示:由于图中两题射线的斜率分别为﹣2,2,点B(3,2),∴3a﹣1≤2,且a≥﹣2,求得﹣2≤a≤1.欢迎您的光临,Word文档下载后可修改编辑双击可删除页眉页脚谢谢!希望您提出您宝贵的意见,你的意见是我进步的动力。

2018年河北省衡水中学高三一模理科数学试题(1)

2018年河北省衡水中学高三一模理科数学试题(1)

6•设x,y满足约束条件3x y 620,0, 若目标函数z ax by (a,b 0)的最大值是12,则x,y 0,a2 b2的最小值是(6A.—13 36D.36137.已知三棱锥的三视图如图所示,则它的外接球表面积为()A . 16B . 4 &已知函数f x C. 8 D. 22sin( x ) ( 0,的一部分(如图所示),则与的值分别为(11 5_ 10’ 67 _10, 6)图像)4 _5' 3 2B . 1,一双曲线C的左右焦点分别为F1,F2 ,且F2恰为抛物线的焦点,设双曲线C与该抛物线的一个交点为为底边的等腰三角形,则双曲线C的离心率为( )A .10.已知函数f (x)是定义在R上的奇函数,若对于任意给定的不等实数x1,x2,不等式X1f(xj X2f(X2) X1f(X2)X2f(xJ 恒成立,则不等式f(1 x) 0 的解集为(9.y2 4x1 2C. 1 3D. 2A,若ARF2是以河北省衡水中学2018高三第一次模拟理科数学试题12小题,每小题5分,共60分)3 ,则图中阴影部分表示的集合是4. 在某地区某高传染性病毒流行期间,为了建立指标显示疫情已受控制,以便向该地区居众显示可以过正常生活,有公共卫生专家建议的指标是连续7天每天新增感染人数不超过5人”,根据连续7天的新增病例数计算,下列各选项中,一定符合上述指标的是( )①平均数x 3 :②标准差|S 2 :③平均数x 3且标准差S 2 ;④平均数x 3且极差小于或等于2;⑤众数等于1且极差小于或等于A .①②B .③④C.③④⑤D .④⑤5. 在长方体ABCD —A1B1C1D1中,对角线B1D与平面A1BC1相交于点E,则点E A1BC 1 的()A .垂心B.内心2 x 1 B . X2x21 x2 D . X X 2”是2•设a R,i是虚数单位,则为纯虚数”的(A.充分不必要条件C.充要条件3. 若{a n}是等差数列,首项和S n 0成立的最大正整数A. 2011B. 2012B.必要不充分条件D.既不充分又不必要条件0,31 0, 32011 32012n是( )C. 4022a2011a20120,则使前n项D. 4023一、选择题(本大题共1.设全集为实数集R, xx2 4 , N1。

2018年高三最新 河北衡水中学2018学年第二学期第一次

2018年高三最新 河北衡水中学2018学年第二学期第一次

河北衡水中学2018-2018学年第二学期第一次调研考试高三数学试题(理)一、选择题(每小题5分,共60分,下列每小题年给选项只有一项符合题意) 1、已知集合M={0,1},N={y|x 2+y 2=1,x ∈M}则M 与N 的关系是( ) A 、M=N B 、M ≠⊂N C 、M ≠⊃N D 、M ⊇N2、若i 2321-=ω,则=++124ωω A.1 B.0 C.i 33+ D.-1+i 3 3、命题P :点(127π,0)是函数y=sin(2x -6π)的图象的一个对称中心,Q :2π是y=|sinx|的最小正周期。

下列复合命题:(1)P 或Q (2)P 且Q (3)非P (4)非Q ,其中真命题有()A .0个B 。

1个C 。

2个D 。

3个4、若(1+5x n )的展开式中二项式系数之和为a n ,(7x 2+5n )的展开式中各项系数之和为b n ,则nn nnn b a b a 432lim +-∞→的值为: A 。

21 B 。

-21C 。

1D 。

-1 5、在下列命题中,真命是( )A 、若直线m 、n 都平行于平面α,则m ∥n ;B 、设βα-l -是直二面角,若直线m ⊥n ,m ⊥β,则n ⊥α;C 、若直线m ,n 在α内的射影是一个点和一直线,且m ⊥n ,则n 在α内或n 与α平行;D 、设m ,n 是异面直线,若m 平行于平面α,则n 必与α相交。

6、设函数y=f(x)图象关于(1、23)对称,且存在反函数y=f -1(x),若f(3)=0,则f -1(3)=( )A 、-1B 、1C 、-2D 、27.设随机变量ξ服从正态分布N (0,1),记)()(x P x <=Φξ,下列结论不.正确的是: A 。

Φ(0)=21B 。

)(1)(x x --=ΦφC 。

P (|ξ|<a )=2)(a φ-1(a>0) D. P (|ξ|>a )=1-)(a φ(a>0) 8、如图,正方体ABCD -A 1B 1C 1D 1中,E 1F 1分别为棱A 1B 1、C 1D 1上的点且B 1E 1=D 1F 1=4BA 11,则BE 1与DF 1所成的角的余弦值为( )A 、1715 B 、21 C 、178 D 、23 9、一个三位数,其十位上的数字既小于百位上数字也小于个位上的数字,这样的三数字共有( )个A 、240B 、249C 、285D 、33010、在数列{a n }中,a 1=2,a n+1=1-a n (n ∈N *),设S n 为数列{a n }的前n 项和,则S 2018-2S 2018+S 2018= A -3 B 、-2 C 、3 D 、2 11、已知点M (-3,0),N (3,0),⊙C 与直线MN 切于点B(1,0),过M 、N 与⊙C 相切的两条直线相交于点P ,则点P 的轨迹方程为( )A 、x 2-8y 2=1(x>1) B 、x 2-8y 2=1(x ≠±1) C 、x 2+8y 2=1 D 、x 2+10y 2=112、有长度为1,2,3,…,99的99根木棒,用这些木棒组成四边形的边,不可折断,要都 用上,可以连接,不可重叠,那么:A 。

2018高考数学模拟试卷(衡水中学理科)

2018高考数学模拟试卷(衡水中学理科)

2018年衡水中学高考数学全真模拟试卷(理科)第1卷一、选择题(本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)(2018•衡中模拟)已知集合A={x|x2<1},B={y|y=|x|},则A∩B=()A.∅B.(0,1)C.[0,1)D.[0,1]2.(5分)(2018•衡中模拟)设随机变量ξ~N(3,σ2),若P(ξ>4)=0.2,则P(3<ξ≤4)=()A.0.8 B.0.4 C.0.3 D.0.23.(5分)(2018•衡中模拟)已知复数z=(i为虚数单位),则3=()A.1 B.﹣1 C.D.4.(5分)(2018•衡中模拟)过双曲线﹣=1(a>0,b>0)的一个焦点F作两渐近线的垂线,垂足分别为P、Q,若∠PFQ=π,则双曲线的渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x5.(5分)(2018•衡中模拟)将半径为1的圆分割成面积之比为1:2:3的三个扇形作为三个圆锥的侧面,设这三个圆锥底面半径依次为r1,r2,r3,那么r1+r2+r3的值为()A.B.2 C.D.16.(5分)(2018•衡中模拟)如图是某算法的程序框图,则程序运行后输出的结果是()A.2 B.3 C.4 D.57.(5分)(2018•衡中模拟)等差数列{a n}中,a3=7,a5=11,若b n=,则数列{b n}的前8项和为()A.B.C.D.8.(5分)(2018•衡中模拟)已知(x﹣3)10=a0+a1(x+1)+a2(x+1)2+…+a10(x+1)10,则a8=()A.45 B.180 C.﹣180 D.7209.(5分)(2018•衡中模拟)如图为三棱锥S﹣ABC的三视图,其表面积为()A.16 B.8+6C.16D.16+610.(5分)(2018•衡中模拟)已知椭圆E:+=1(a>b>0)的左焦点F(﹣3,0),P为椭圆上一动点,椭圆内部点M(﹣1,3)满足PF+PM的最大值为17,则椭圆的离心率为()A.B.C.D.11.(5分)(2018•衡中模拟)已知f(x)=,若函数y=f(x)﹣kx恒有一个零点,则k的取值范围为()A.k≤0 B.k≤0或k≥1 C.k≤0或k≥e D.k≤0或k≥12.(5分)(2018•衡中模拟)已知数列{a n}的通项公式为a n=﹣2n+p,数列{b n}的通项公式为b n=2n﹣4,设c n=,若在数列{c n}中c6<c n(n∈N*,n≠6),则p的取值范围()A.(11,25)B.(12,22)C.(12,17)D.(14,20)第2卷二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.)13.(5分)(2018•衡中模拟)若平面向量、满足||=2||=2,|﹣|=,则在上的投影为.14.(5分)(2018•衡中模拟)若数列{a n}满足a1=a2=1,a n+2=,则数列{a n}前2n项和S2n=.15.(5分)(2018•衡中模拟)若直线ax+(a﹣2)y+4﹣a=0把区域分成面积相等的两部分,则的最大值为.16.(5分)(2018•衡中模拟)已知函数f(x)=(a+1)lnx+x2(a<﹣1)对任意的x1、x2>0,恒有|f(x1)﹣f(x2)|≥4|x1﹣x2|,则a的取值范围为.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)(2018•衡中模拟)在△ABC中,角A,B,C所对的边分别为a,b,c,满足c=1,且cosBsinC+(a﹣sinB)cos(A+B)=0(1)求C的大小;(2)求a2+b2的最大值,并求取得最大值时角A,B的值.18.(12分)(2018•衡中模拟)如图,在四棱锥P﹣ABCD中,侧棱PA⊥底面ABCD,AD ∥BC,∠ABC=90°,PA=AB=BC=2,AD=1,M是棱PB中点.(Ⅰ)求证:平面PBC⊥平面PCD;(Ⅱ)设点N是线段CD上一动点,且=λ,当直线MN与平面PAB所成的角最大时,求λ的值.19.(12分)(2018•衡中模拟)如图是两个独立的转盘(A)、(B),在两个图中三个扇形区域的圆心角分别为60°、120°、180°.用这两个转盘进行游戏,规则是:同时转动两个转盘待指针停下(当两个转盘中任意一个指针恰好落在分界线时,则这次转动无效,重新开始),记转盘(A)指针所对的区域为x,转盘(B)指针所对的区域为y,x、y∈{1,2,3},设x+y的值为ξ.(Ⅰ)求x<2且y>1的概率;(Ⅱ)求随机变量ξ的分布列与数学期望.20.(12分)(2018•衡中模拟)已知椭圆E:+=1(a>b>0),倾斜角为45°的直线与椭圆相交于M、N两点,且线段MN的中点为(﹣1,).过椭圆E内一点P(1,)的两条直线分别与椭圆交于点A、C和B、D,且满足=λ,=λ,其中λ为实数.当直线AP平行于x轴时,对应的λ=.(Ⅰ)求椭圆E的方程;(Ⅱ)当λ变化时,k AB是否为定值?若是,请求出此定值;若不是,请说明理由.21.(12分)(2018•衡中模拟)已知函数f(x)=,曲线y=f(x)在点x=e2处的切线与直线x﹣2y+e=0平行.(Ⅰ)若函数g(x)=f(x)﹣ax在(1,+∞)上是减函数,求实数a的最小值;(Ⅱ)若函数F(x)=f(x)﹣无零点,求k的取值范围.[选修4-1:几何证明选讲]22.(10分)(2018•衡中模拟)如图所示,AC为⊙O的直径,D为的中点,E为BC的中点.(Ⅰ)求证:DE∥AB;(Ⅱ)求证:AC•BC=2AD•CD.[选修4-4:坐标系与参数方程]23.(2018•衡中模拟)在平面直角坐标系中,直线l的参数方程为(t为参数),在以直角坐标系的原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为ρ=(1)求曲线C的直角坐标方程和直线l的普通方程;(2)若直线l与曲线C相交于A,B两点,求△AOB的面积.[选修4-5:不等式选讲]24.(2018•衡中模拟)已知函数f(x)=|x﹣l|+|x﹣3|.(I)解不等式f(x)≤6;(Ⅱ)若不等式f(x)≥ax﹣1对任意x∈R恒成立,求实数a的取值范围.参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)(2018•衡中模拟)已知集合A={x|x2<1},B={y|y=|x|},则A∩B=()A.∅B.(0,1)C.[0,1)D.[0,1]【解答】解:A={x|x2<1}={x|﹣1<x<1},B={y|y=|x|≥0},则A∩B=[0,1),故选:C.2.(5分)(2018•衡中模拟)设随机变量ξ~N(3,σ2),若P(ξ>4)=0.2,则P(3<ξ≤4)=()A.0.8 B.0.4 C.0.3 D.0.2【解答】解:∵随机变量X服从正态分布N(3,σ2),∴μ=3,得对称轴是x=3.∵P(ξ>4)=0.2∴P(3<ξ≤4)=0.5﹣0.2=0.3.故选:C3.(5分)(2018•衡中模拟)已知复数z=(i为虚数单位),则3=()A.1 B.﹣1 C.D.【解答】解:复数z=,可得=﹣=cos+isin.则3=cos4π+isin4π=1.故选:A.4.(5分)(2018•衡中模拟)过双曲线﹣=1(a>0,b>0)的一个焦点F作两渐近线的垂线,垂足分别为P、Q,若∠PFQ=π,则双曲线的渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x【解答】解:如图若∠PFQ=π,则由对称性得∠QFO=,则∠QOx=,即OQ的斜率k==tan=,则双曲线渐近线的方程为y=±x,故选:B5.(5分)(2018•衡中模拟)将半径为1的圆分割成面积之比为1:2:3的三个扇形作为三个圆锥的侧面,设这三个圆锥底面半径依次为r1,r2,r3,那么r1+r2+r3的值为()A.B.2 C.D.1【解答】解:∵2πr1=,∴r1=,同理,∴r1+r2+r3=1,故选:D.6.(5分)(2018•衡中模拟)如图是某算法的程序框图,则程序运行后输出的结果是()A.2 B.3 C.4 D.5【解答】解:第一次循环,sin>sin0,即1>0成立,a=1,T=1,k=2,k<6成立,第二次循环,sinπ>sin,即0>1不成立,a=0,T=1,k=3,k<6成立,第三次循环,sin>sinπ,即﹣1>0不成立,a=0,T=1,k=4,k<6成立,第四次循环,sin2π>sin,即0>﹣1成立,a=1,T=1+1=2,k=5,k<6成立,第五次循环,sin>sin2π,即1>0成立,a=1,T=2+1=3,k=6,k<6不成立,输出T=3,故选:B7.(5分)(2018•衡中模拟)等差数列{a n}中,a3=7,a5=11,若b n=,则数列{b n}的前8项和为()A.B.C.D.【解答】解:设等差数列{a n}的公差为d,a3=7,a5=11,∴,解得a1=3,d=2,∴a n=3+2(n﹣1)=2n+1,∴,∴b8=(1﹣+﹣+…+﹣)=(1﹣)=故选B.8.(5分)(2018•衡中模拟)已知(x﹣3)10=a0+a1(x+1)+a2(x+1)2+…+a10(x+1)10,则a8=()A.45 B.180 C.﹣180 D.720【解答】解:(x﹣3)10=[(x+1)﹣4]10,∴,故选:D.9.(5分)(2018•衡中模拟)如图为三棱锥S﹣ABC的三视图,其表面积为()A.16 B.8+6C.16D.16+6【解答】解:由三视图可知该三棱锥为边长为2,4,4的长方体切去四个小棱锥得到的几何体.三棱锥的三条边长分别为,∴表面积为4×=16.故选:C.10.(5分)(2018•衡中模拟)已知椭圆E:+=1(a>b>0)的左焦点F(﹣3,0),P为椭圆上一动点,椭圆内部点M(﹣1,3)满足PF+PM的最大值为17,则椭圆的离心率为()A.B.C.D.【解答】解:设右焦点为Q,由F(﹣3,0),可得Q(3,0),由椭圆的定义可得|PF|+|PQ|=2a,即|PF|=2a﹣|PQ|,则|PM|+|PF|=2a+(|PM|﹣|PQ|)≤2a+|MQ|,当P,M,Q共线时,取得等号,即最大值2a+|MQ|,由|MQ|==5,可得2a+5=17,所以a=6,则e===,故选:A.11.(5分)(2018•衡中模拟)已知f(x)=,若函数y=f(x)﹣kx恒有一个零点,则k的取值范围为()A.k≤0 B.k≤0或k≥1 C.k≤0或k≥e D.k≤0或k≥【解答】解:由y=f(x)﹣kx=0得f(x)=kx,作出函数f(x)和y=kx的图象如图,由图象知当k≤0时,函数f(x)和y=kx恒有一个交点,当x≥0时,函数f(x)=ln(x+1)的导数f′(x)=,则f′(0)=1,当x<0时,函数f(x)=e x﹣1的导数f′(x)=e x,则f′(0)=e0=1,即当k=1时,y=x是函数f(x)的切线,则当0<k<1时,函数f(x)和y=kx有3个交点,不满足条件.当k≥1时,函数f(x)和y=kx有1个交点,满足条件.综上k的取值范围为k≤0或k≥1,故选:B.12.(5分)(2018•衡中模拟)已知数列{a n}的通项公式为a n=﹣2n+p,数列{b n}的通项公式为b n=2n﹣4,设c n=,若在数列{c n}中c6<c n(n∈N*,n≠6),则p的取值范围()A.(11,25)B.(12,22)C.(12,17)D.(14,20)【解答】解:∵a n﹣b n=﹣2n+p﹣2n﹣4,∴a n﹣b n随着n变大而变小,又∵a n=﹣2n+p随着n变大而变小,b n=2n﹣4随着n变大而变大,∴,(1)当(2)当,综上p∈(14,20),故选D.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.)13.(5分)(2018•衡中模拟)若平面向量、满足||=2||=2,|﹣|=,则在上的投影为﹣1.【解答】解:根据条件,==7;∴;∴在上的投影为.故答案为:﹣1.14.(5分)(2018•衡中模拟)若数列{a n}满足a1=a2=1,a n+2=,则数列{a n}前2n项和S2n=2n+n2﹣1.【解答】解:∵数列{a n}满足a1=a2=1,a n+2=,∴n=2k﹣1时,a2k+1﹣a2k﹣1=2,为等差数列;n=2k时,a2k+2=2a2k,为等比数列.∴.故答案为:2n+n2﹣1.15.(5分)(2018•衡中模拟)若直线ax+(a﹣2)y+4﹣a=0把区域分成面积相等的两部分,则的最大值为2.【解答】解:由ax+(a﹣2)y+4﹣a=0得a(x+y﹣1)+4﹣2y=0,则得,即直线恒过C(﹣1,2),若将区域分成面积相等的两部分,则直线过AB的中点D,由得,即A(1,6),∵B(3,0),∴中点D(2,3),代入a(x+y﹣1)+4﹣2y=0,得4a﹣2=0,则,则的几何意义是区域内的点到点(﹣2,0)的斜率,由图象过AC的斜率最大,此时最大值为2.故答案为:2.16.(5分)(2018•衡中模拟)已知函数f(x)=(a+1)lnx+x2(a<﹣1)对任意的x1、x2>0,恒有|f(x1)﹣f(x2)|≥4|x1﹣x2|,则a的取值范围为(﹣∞,﹣2] .【解答】解:由f′(x)=+x,得f′(1)=3a+1,所以f(x)=(a+1)lnx+ax2,(a<﹣1)在(0,+∞)单调递减,不妨设0<x1<x2,则f(x1)﹣f(x2)≥4x2﹣4x1,即f(x1)+4x1≥f(x2)+4x2,令F(x)=f(x)+4x,F′(x)=f′(x)+4=+2ax+4,等价于F(x)在(0,+∞)上单调递减,故F'(x)≤0恒成立,即+2ax+4≤0,所以恒成立,得a≤﹣2.故答案为:(﹣∞,﹣2].三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)(2018•衡中模拟)在△ABC中,角A,B,C所对的边分别为a,b,c,满足c=1,且cosBsinC+(a﹣sinB)cos(A+B)=0(1)求C的大小;(2)求a2+b2的最大值,并求取得最大值时角A,B的值.【解答】解:(1)cosBsinC+(a﹣sinB)cos(A+B)=0可得:cosBsinC﹣(a﹣sinB)cosC=0即:sinA﹣acosC=0.由正弦定理可知:,∴,c=1,∴asinC﹣acosC=0,sinC﹣cosC=0,可得sin(C﹣)=0,C是三角形内角,∴C=.(2)由余弦定理可知:c2=a2+b2﹣2abcosC,得1=a2+b2﹣ab又,∴,即:.当时,a2+b2取到最大值为2+.18.(12分)(2018•衡中模拟)如图,在四棱锥P﹣ABCD中,侧棱PA⊥底面ABCD,AD ∥BC,∠ABC=90°,PA=AB=BC=2,AD=1,M是棱PB中点.(Ⅰ)求证:平面PBC⊥平面PCD;(Ⅱ)设点N是线段CD上一动点,且=λ,当直线MN与平面PAB所成的角最大时,求λ的值.【解答】证明:(1)取PC的中点E,则连接DE,∵ME是△PBC的中位线,∴ME,又AD,∴ME AD,∴四边形AMED是平行四边形,∴AM∥DE.∵PA=AB,M是PB的中点,∴AM⊥PB,∵PA⊥平面ABCD,BC⊂平面ABCD,∴PA⊥BC,又BC⊥AB,PA∩AB=A,∴BC⊥平面PAB,∵AM⊂平面PAB,∴BC⊥AM,又PB⊂平面PBC,BC⊂平面PBC,PB∩BC=B,∴AM⊥平面PBC,∵AM∥DE,∴DE⊥平面PBC,又DE⊂平面PCD,∴平面PBC⊥平面PCD.(2)以A为原点,以AD,AB,AP为坐标轴建立空间直角坐标系,如图所示:则A(0,0,0),B(0,2,0),M(0,1,1),P(0,0,2),C(2,2,0),D(1,0,0).∴=(1,2,0),=(0,1,1),=(1,0,0),∴=λ=(λ,2λ,0),=(λ+1,2λ,0),==(λ+1,2λ﹣1,﹣1).∵AD⊥平面PAB,∴为平面PAB的一个法向量,∴cos<>=====设MN与平面PAB所成的角为θ,则sinθ=.∴当即时,sinθ取得最大值,∴MN与平面PAB所成的角最大时.19.(12分)(2018•衡中模拟)如图是两个独立的转盘(A)、(B),在两个图中三个扇形区域的圆心角分别为60°、120°、180°.用这两个转盘进行游戏,规则是:同时转动两个转盘待指针停下(当两个转盘中任意一个指针恰好落在分界线时,则这次转动无效,重新开始),记转盘(A)指针所对的区域为x,转盘(B)指针所对的区域为y,x、y∈{1,2,3},设x+y的值为ξ.(Ⅰ)求x<2且y>1的概率;(Ⅱ)求随机变量ξ的分布列与数学期望.【解答】解:(1)记转盘A指针指向1,2,3区域的事件为A1,A2,A3,同理转盘B指针指向1,2,3区域的事件为B1,B2,B3,∴P(A1)=,P(A2)=,P(A3)=,P(B1)=,P(B2)=,P(B3)=,P=P(A1)P(1﹣P(B1))=×(1﹣)==.…(5分)(2)由已知得ξ的可能取值为2,3,4,5,6,P(ξ=2)=P(A1)P(B1)===,P(ξ=3)=P(A1)P(B2)+P(A2)P(B1)==,P(ξ=4)=P(A1)P(B3)+P(A2)P(B2)+P(A3)P(B1)==,P(ξ=5)=P(A2)P(B3)+P(A3)P(B2)=+=,P(ξ=6)=P(A3)P(B3)==,∴ξ的分布列为:ξ 2 3 4 5 6PEξ==.…(12分)20.(12分)(2018•衡中模拟)已知椭圆E:+=1(a>b>0),倾斜角为45°的直线与椭圆相交于M、N两点,且线段MN的中点为(﹣1,).过椭圆E内一点P(1,)的两条直线分别与椭圆交于点A、C和B、D,且满足=λ,=λ,其中λ为实数.当直线AP平行于x轴时,对应的λ=.(Ⅰ)求椭圆E的方程;(Ⅱ)当λ变化时,k AB是否为定值?若是,请求出此定值;若不是,请说明理由.【解答】解:(Ⅰ)设M(m1,n1)、N(m2,n2),则,两式相减,故a2=3b2…(2分)当直线AP平行于x轴时,设|AC|=2d,∵,,则,解得,故点A(或C)的坐标为.代入椭圆方程,得…4分a2=3,b2=1,所以方程为…(6分)(Ⅱ)设A(x1,y1)、B(x2,y2)、C(x3,y3)、D(x4,y4)由于,可得A(x1,y1)、B(x2,y2)、C(x3,y3)、D(x4,y4),…①同理可得…②…(8分)由①②得:…③将点A、B的坐标代入椭圆方程得,两式相减得(x1+x2)(x1﹣x2)+3(y1+y2)(y1﹣y2)=0,于是3(y1+y2)k AB=﹣(x1+x2)…④同理可得:3(y3+y4)k CD=﹣(x3+x4),…(10分)于是3(y3+y4)k AB=﹣(x3+x4)(∵AB∥CD,∴k AB=k CD)所以3λ(y3+y4)k AB=﹣λ(x3+x4)…⑤由④⑤两式相加得到:3[y1+y2+λ(y3+y4)]k AB=﹣[(x1+x2)+λ(x3+x4)]把③代入上式得3(1+λ)k AB=﹣2(1+λ),解得:,当λ变化时,k AB为定值,.…(12分)21.(12分)(2018•衡中模拟)已知函数f(x)=,曲线y=f(x)在点x=e2处的切线与直线x﹣2y+e=0平行.(Ⅰ)若函数g(x)=f(x)﹣ax在(1,+∞)上是减函数,求实数a的最小值;(Ⅱ)若函数F(x)=f(x)﹣无零点,求k的取值范围.【解答】解:(Ⅰ)由,得,解得m=2,故,则,函数g(x)的定义域为(0,1)∪(1,+∞),而,又函数g(x)在(1,+∞)上是减函数,∴在(1,+∞)上恒成立,∴当x∈(1,+∞)时,的最大值.而,即右边的最大值为,∴,故实数a的最小值;(Ⅱ)由题可得,且定义域为(0,1)∪(1,+∞),要使函数F(x)无零点,即在(0,1)∪(1,+∞)内无解,亦即在(0,1)∪(1,+∞)内无解.构造函数,则,(1)当k≤0时,h'(x)<0在(0,1)∪(1,+∞)内恒成立,∴函数h(x)在(0,1)内单调递减,在(1,+∞)内也单调递减.又h(1)=0,∴当x∈(0,1)时,h(x)>0,即函数h(x)在(0,1)内无零点,同理,当x∈(1,+∞)时,h(x)<0,即函数h(x)在(1,+∞)内无零点,故k≤0满足条件;(2)当k>0时,.①若0<k<2,则函数h(x)在(0,1)内单调递减,在内也单调递减,在内单调递增.又h(1)=0,∴h(x)在(0,1)内无零点;又,而,故在内有一个零点,∴0<k<2不满足条件;②若k=2,则函数h(x)在(0,1)内单调递减,在(1,+∞)内单调递增.又h(1)=0,∴当x∈(0,1)∪(1,+∞)时,h(x)>0恒成立,故无零点.∴k=2满足条件;③若k>2,则函数h(x)在内单调递减,在内单调递增,在(1,+∞)内也单调递增.又h(1)=0,∴在及(1,+∞)内均无零点.易知,又h(e﹣k)=k×(﹣k)﹣2+2e k=2e k﹣k2﹣2=ϕ(k),则ϕ'(k)=2(e k﹣k)>0,则ϕ(k)在k>2为增函数,∴ϕ(k)>ϕ(2)=2e2﹣6>0.故函数h(x)在内有一零点,k>2不满足.综上:k≤0或k=2.[选修4-1:几何证明选讲]22.(10分)(2018•衡中模拟)如图所示,AC为⊙O的直径,D为的中点,E为BC的中点.(Ⅰ)求证:DE∥AB;(Ⅱ)求证:AC•BC=2AD•CD.【解答】证明:(Ⅰ)连接BD,因为D为的中点,所以BD=DC.因为E为BC的中点,所以DE⊥BC.因为AC为圆的直径,所以∠ABC=90°,所以AB∥DE.…(5分)(Ⅱ)因为D为的中点,所以∠BAD=∠DAC,又∠BAD=∠DCB,则∠DAC=∠DCB.又因为AD⊥DC,DE⊥CE,所以△DAC∽△ECD.所以=,AD•CD=AC•CE,2AD•CD=AC•2CE,因此2AD•CD=AC•BC.…(10分)[选修4-4:坐标系与参数方程]23.(2018•衡中模拟)在平面直角坐标系中,直线l的参数方程为(t为参数),在以直角坐标系的原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为ρ=(1)求曲线C的直角坐标方程和直线l的普通方程;(2)若直线l与曲线C相交于A,B两点,求△AOB的面积.【解答】解:(1)由曲线C的极坐标方程为ρ=得ρ2sin2θ=2ρcosθ.∴由曲线C的直角坐标方程是:y2=2x.由直线l的参数方程为(t为参数),得t=3+y代入x=1+t中消去t得:x﹣y﹣4=0,所以直线l的普通方程为:x﹣y﹣4=0…(5分)(2)将直线l的参数方程代入曲线C的普通方程y2=2x,得t2﹣8t+7=0,设A,B两点对应的参数分别为t1,t2,所以|AB|===,. . . .. . ..s . .. 因为原点到直线x ﹣y ﹣4=0的距离d=, 所以△AOB 的面积是|AB |d==12.…(10分)[选修4-5:不等式选讲]24.(2018•衡中模拟)已知函数f (x )=|x ﹣l |+|x ﹣3|.(I )解不等式f (x )≤6;(Ⅱ)若不等式f (x )≥ax ﹣1对任意x ∈R恒成立,求实数a 的取值范围.【解答】解:函数f (x )=|x ﹣l |+|x ﹣3|= 的图象如图所示,(I )不等式f (x )≤6,即①或②,或③. 解①求得x ∈∅,解②求得3<x ≤5,解③求得﹣1≤x ≤3.综上可得,原不等式的解集为[﹣1,5].(Ⅱ)若不等式f (x )≥ax ﹣1对任意x ∈R 恒成立,则函数f (x )的图象不能在y=ax ﹣1的图象的下方.如图所示:由于图中两题射线的斜率分别为﹣2,2,点B (3,2),∴3a ﹣1≤2,且 a ≥﹣2,求得﹣2≤a ≤1.。

2018届河北省模拟试题(一)数学(理)试卷(含答案)

2018届河北省模拟试题(一)数学(理)试卷(含答案)

衡水金卷2018年普通高等学校招生全国统一考试模拟试题(一)理数第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2|20A x x x =-≤,{}|1381x B x =<<,{}|2,C x x n n N ==∈,则()A B C =U I ( ) A .{}2B .{}0,2C .{}0,2,4D .{}2,42.设i 是虚数单位,若5()2ii x yi i+=-,x ,y R ∈,则复数x yi +的共轭复数是( ) A .2i -B .2i --C .2i +D .2i -+3.已知等差数列{}n a 的前n 项和是n S ,且456718a a a a +++=,则下列命题正确的是( ) A .5a 是常数B .5S 是常数C .10a 是常数D .10S 是常数4.七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形,现从该正方形中任取一点,则此点取自黑色部分的概率是( )A .316B .38C .14D .185.已知点F 为双曲线C :22221x y a b-=(0a >,0b >)的右焦点,点F 到渐近线的距离是点F 到左顶点的距离的一半,则双曲线C 的离心率为( )A.2或5 3B.53C.2D.26.已知函数[]2sin,,0,()1,(0,1],x xf xx xπ⎧∈-⎪=⎨-∈⎪⎩则1()f x dxπ-=⎰()A.2π+B.2πC.22π-+D.24π-7.执行如图程序框图,则输出的S的值为()A2021B2019C.505D.50518.已知函数23()sin cos30)f x x x xωωωω=->的相邻两个零点差的绝对值为4π,则函数()f x的图象()A.可由函数()cos4g x x=的图象向左平移524π个单位而得B.可由函数()cos4g x x=的图象向右平移524π个单位而得C.可由函数()cos2g x x=的图象向右平移724π个单位而得D.可由函数()cos2g x x=的图象向右平移56π个单位而得9.61(23)(1)xx-+的展开式中剔除常数项后的各项系数和为()A.73-B.61-C.55-D.63-10.某几何体的三视图如图所示,其中俯视图为一个正六边形及其三条对角线,则该几何体的外接球的表面积是()A .4πB .8πC .16πD .32π11.设O 为坐标原点,点P 为抛物线C :22(0)y px p =>上异于原点的任意一点,过点P 作斜率为0的直线交y 轴于点M ,点P 是线段MN 的中点,连接ON 并延长交抛物线于点H ,则||||OH ON 的值为( ) A .pB .12C .2D .3212.若函数()y f x =,x M ∈,对于给定的非零实数a ,总存在非零常数T ,使得定义域M 内的任意实数x ,都有()()af x f x T =+恒成立,此时T 为()f x 的类周期,函数()y f x =是M 上的a 级类周期函数,若函数()y f x =是定义在区间[0,)+∞内的2级类周期函数,且2T =,当[0,2)x ∈时,212,01,()2(2),12,x x f x f x x ⎧-≤≤⎪=⎨⎪-<<⎩函数21()2ln 2g x x x x m =-+++,若[]16,8x ∃∈,2(0,)x ∃∈+∞,使21()()0g x f x -≤成立,则实数m 的取值范围是( )A .5(,]2-∞B .13(,]2-∞ C .3(,]2-∞-D .13[,)2+∞ 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知向量(2sin ,cos )a αα=r ,(1,1)b =-r ,且a b ⊥r r ,则2()a b -=r r .14.已知x ,y 满足约束条件20,20,4180,x y x y x y -≤⎧⎪-≥⎨⎪+-≤⎩则目标函数53z x y =-的最小值为 .15.在等比数列{}n a 中,2412a a a ⋅=,且4a 与72a 的等差中项为17,设(1)nn n b a =-,*n N ∈,则数列{}n b 的前2018项和为 .16.有一个容器,下部是高为5.5cm 的圆柱体,上部是与圆柱共底面且母线长为6cm 的圆锥,现不考虑该容器内壁的厚度,则该容器的最大容积为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知ABC ∆的内角A ,B ,C 的对边a ,b ,c 分别满足22c b ==,2cos cos cos 0b A a C c A ++=,又点D 满足1233AD AB AC =+u u u r u u u r u u u r .(1)求a 及角A 的大小;(2)求||AD u u u r的值.18.在四棱柱1111ABCD A B C D -中,底面ABCD 是正方形,且12BC BB ==,1160A AB A AD ∠=∠=︒.(1)求证:1BD CC ⊥;(2)若动点E 在棱11C D 上,试确定点E 的位置,使得直线DE 与平面1BDB 所成角的正弦值为7. 19.“过大年,吃水饺”是我国不少地方过春节的一大习俗.2018年春节前夕,A 市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标,检测结果如频率分布直方图所示.(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数x (同一组中数据用该组区间的中点值作代表);(2)①由直方图可以认为,速冻水饺的该项质量指标值Z 服从正态分布2(,)N μσ,利用该正态分布,求Z 落在(14.55,38.45)内的概率;②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于(10,30)内的包数为X ,求X 的分布列和数学期望.附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为142.7511.95σ=≈; ②若2~(,)Z N μσ,则()0.6826P Z μσμσ-<≤+=,(22)0.9544P Z μσμσ-<≤+=.20.已知椭圆C :22221(0)x y a b a b+=>>的离心率为22,且以两焦点为直径的圆的内接正方形面积为2.(1)求椭圆C 的标准方程;(2)若直线l :2y kx =+与椭圆C 相交于A ,B 两点,点D 的坐标为1(0,)2,问直线AD 与BD 的斜率之和AD BD k k +是否为定值?若是,求出该定值,若不是,试说明理由. 21.已知函数()2(1)xf x e a x b =---,其中e 为自然对数的底数. (1)若函数()f x 在区间[]0,1上是单调函数,试求实数a 的取值范围;(2)已知函数2()(1)1xg x e a x bx =----,且(1)0g =,若函数()g x 在区间[]0,1上恰有3个零点,求实数a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,圆1C 的参数方程为1cos ,1sin x a y a θθ=-=⎧⎨=-+⎩(θ是参数,a 是大于0的常数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,圆2C 的极坐标方程为)4πρθ=-.(1)求圆1C 的极坐标方程和圆2C 的直角坐标方程; (2)分别记直线l :12πθ=,R ρ∈与圆1C 、圆2C 的异于原点的交点为A ,B ,若圆1C 与圆2C 外切,试求实数a 的值及线段||AB 的长. 23.选修4-5:不等式选讲 已知函数()|21|f x x =+.(1)求不等式()10|3|f x x ≤--;(2)若正数m ,n 满足2m n mn +=,求证:()(2)16f m f n +-≥.2018年普通高等学校招生全国统一考试模拟试题理数(一)答案一、选择题1-5:BADAB 6-10:DCBAB 11、12:CB二、填空题13.185 14.2- 15.100841312- 16.312256cm π三、解答题17.解:(1)由2cos cos cos 0b A a C c A ++=及正弦定理得2sin cos sin cos cos sin B A A C A C -=+,即2sin cos sin()sin B A A C B -=+=, 在ABC ∆中,sin 0B >, 所以1cos 2A =-, 又(0,)A π∈,所以23A π=. 在ABC ∆中,由余弦定理得222222cos 7a b c bc A b c bc =+-=++=,所以a =(2)由1233AD AB AC =+u u u r u u u r u u u r ,得2212()33AD AB AC =+u u u r u u u r u u u r 4441421()99929=++⨯⨯⨯-=,所以2||3AD =u u u r .18.解:(1)连接1A B ,1A D ,AC ,因为1AB AA AD ==,1160A AB A AD ∠=∠=︒, 所以1A AB ∆和1A AD ∆均为正三角形, 于是11A B A D =.设AC 与BD 的交点为O ,连接1A O ,则1A O BD ⊥, 又四边形ABCD 是正方形,所以AC BD ⊥,而1AO AC O =I ,所以BD ⊥平面1A AC , 又1AA ⊂平面1A AC ,所以1BD AA ⊥, 又11//CC AA ,所以1BD CC ⊥.(2)由112A B A D ==,及22BD AB ==,知11A B A D ⊥,于是111222AO A O BD AA ===,从而1A O AO ⊥, 结合1A O BD ⊥,AO BD O =I , 得1A O ⊥底面ABCD , 所以OA 、OB 、OA 两两垂直.如图,以点O 为坐标原点,OA u u u r的方向为x 轴的正方向,建立空间直角坐标系O xyz -,则(1,0,0)A ,(0,1,0)B ,(0,1,0)D -,1(0,0,1)A ,(1,0,0)C -,(0,2,0)DB =u u u r,11(1,0,1)BB AA ==-u u u r u u u r ,11(1,1,0)DC DC ==-u u u u r u u u r, 由11(1,0,1)DD AA ==-u u u u r u u u r ,易求得1(1,1,1)D --. 设111D E DC λ=u u u u r u u u u r ([]0,1λ∈),则(1,1,1)(1,1,0)E E E x y z λ++-=-,即(1,1,1)E λλ---. 设平面1B BD 的一个法向量为(,,)n x y z =r,由10,0,n DB n BB ⎧⋅=⎪⎨⋅=⎪⎩r u u u r r u u u r得0,0,y x z =⎧⎨-+=⎩令1x =,得(1,0,1)n =r , 设直线DE 与平面1BDB 所成角为θ,则sin |cos ,|DE n θ=<>u u u r r 227142(1)1λλ==⨯+--+, 解得12λ=或13λ=-(舍去). 所以当E 为11D C 的中点时,直线DE 与平面1BDB 所成角的正弦值为7.19.解:(1)所抽取的100包速冻水饺该项质量指标值的样本平均数x 为:50.1150.2250.3350.25450.1526.5x =⨯+⨯+⨯+⨯+⨯=.(2)①∵Z 服从正态分布2(,)N μσ,且26μ=,11.95σ≈,∴(14.5538.45)(26.511.9526.511.95)0.6826P Z P Z <<=-<<+=, ∴Z 落在(14.55,38.45)内的概率是0.6826. ②根据题意得1~(4,)2X B ,04411(0)()216P X C ===;14411(1)()24P X C ===;24413(2)()28P X C ===;34411(3)()24P X C ===;44411(4)()216P X C ===.∴X 的分布列为∴1()422E X =⨯=. 20.解:(1)由已知可得22222sin 4,c ac a b c π⎧=⎪⎪⎪=⎨⎪⎪=+⎪⎩解得22a =,221b c ==,故所求的椭圆方程为2212x y +=. (2)由221,22,x y y kx ⎧+=⎪⎨⎪=+⎩得22(12)860k x kx +++=,则2226424(12)16240k k k ∆=-+=->,解得k <或k >. 设11(,)A x y ,22(,)B x y ,则122812k x x k +=-+,122612x x k=+, 则1112AD y k x -=,2212BDy k x -=,所以122112121()2AD BDy x y x x x k k x x +-++=12121232()2kx x x x x x ++=6603k k -==,所以AD BD k k +为定值,且定值为0. 21.解:(1)'()2(1)xf x e a =--,当函数()f x 在区间[]0,1上单调递增时,'()2(1)0xf x e a =--≥在区间[]0,1上恒成立,∴min 2(1)()1xa e -≤=(其中[]0,1x ∈),解得32a ≤; 当函数()f x 在区间[]0,1上单调递减时,'()2(1)0xf x e a =--≤在区间[]0,1上恒成立,∴max 2(1)()xa e e -≥=(其中[]0,1x ∈),解得12ea ≥+. 综上所述,实数a 的取值范围是3(,][1,)22e -∞++∞U . (2)'()2(1)()xg x e a x b f x =---=.由(0)(1)0g g ==,知()g x 在区间(0,1)内恰有一个零点, 设该零点为0x ,则()g x 在区间0(0,)x 内不单调, 所以()f x 在区间0(0,)x 内存在零点1x , 同理,()f x 在区间0(,1)x 内存在零点2x , 所以()f x 在区间(0,1)内恰有两个零点. 由(1)知,当32a ≤时,()f x 在区间[]0,1上单调递增,故()f x 在区间(0,1)内至多有一个零点,不合题意. 当12ea ≥+时,()f x 在区间[]0,1上单调递减,故()f x 在区间(0,1)内至多有一个零点,不合题意,所以3122e a <<+. 令'()0f x =,得ln(22)(0,1)x a =-∈,所以函数()f x 在区间[]0,ln(22)a -上单调递减,在区间(ln(22),1]a -内单调递增. 记()f x 的两个零点为1x ,2x 12()x x <,因此1(0,ln(22)]x a ∈-,2(ln(22),1)x a ∈-,必有(0)10f b =->,(1)220f e a b =-+->. 由(1)0g =,得a b e +=,所以1()1()102f a b e =-+=-<,又(0)10f a e =-+>,(1)20f a =->,所以12e a -<<.综上所述,实数a 的取值范围为(1,2)e -.22.解:(1)圆1C :1cos ,1sin x a y a θθ=-+⎧⎨=-+⎩(θ是参数)消去参数θ,得其普通方程为222(1)(1)x y a +++=,将cos x ρθ=,sin y ρθ=代入上式并化简,得圆1C 的极坐标方程为22sin()204a πρθ++-+=.由圆2C 的极坐标方程)4πρθ=-,得22cos 2sin ρρθρθ=+. 将cos x ρθ=,sin y ρθ=,222x y ρ+=代入上式,得圆2C 的直角坐标方程为22(1)(1)2x y -+-=.(2)由(1)知圆1C 的圆心1C (1,1)--,半径1r a =;圆2C 的圆心2(1,1)C ,半径2r =12||C C == ∵圆1C 与圆2C 外切,a =a =即圆1C的极坐标方程为)4πρθ=-+, 将12πθ=代入1C,得sin()124ππρ=-+,得ρ= 将12πθ=代入2C,得cos()124ππρ=-,得ρ=故12||||AB ρρ=-=23.解:(1)此不等式等价于1,221(3)10,x x x ⎧<-⎪⎨⎪--+-≤⎩或13,221(3)10,x x x ⎧-≤≤⎪⎨⎪++-≤⎩或3,21310.x x x >⎧⎨++-≤⎩ 解得8132x -≤<-或132x -≤≤,或34x <≤, 即不等式的解集为8,43⎡⎤-⎢⎥⎣⎦. (2)∵0m >,0n >,2m n mn +=,21(2)2(2)28m n m n m n ++=⋅≤,即28m n +≥, 当且仅当2,2,m n m n mn =⎧⎨+=⎩即4,2m n =⎧⎨=⎩时取等号.∴()(2)|21||41|f m f n m n +-=++-+|(21)(41)|m n ≥+--+|24|m n =+2(2)16m n =+≥, 当且仅当410n -+≤,即14n ≥时取等号, ∴()(2)16f m f n +-≥.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河北省衡水中学2018高三第一次模拟理科数学试题一、选择题(本大题共12小题,每小题5分,共60分)1.设全集为实数集R ,{}24M x x =>,{}13N x x =<≤,则图中阴影部分表示的集合是( )A .{}21x x -≤<B .{}22x x -≤≤C .{}12x x <≤D .{}2x x <2.设,a R i ∈是虚数单位,则“1a =”是“a ia i+-为纯虚数”的( ) A.充分不必要条件 C.充要条件 D.既不充分又不必要条件3.若{}n a 是等差数列,首项10,a >201120120a a +>,201120120a a ⋅<,则使前n 项和0n S >成立的最大正整数n 是( )A .2011B .2012C .4022D .40234. 在某地区某高传染性病毒流行期间,为了建立指标显示疫情已受控制,以便向该地区居众显示可以过正常生活,有公共卫生专家建议的指标是“连续7天每天新增感染人数不超过5人”,根据连续天的新增病例数计算,下列各选项中,一定符合上述指标的是( ) ①平均数3x ≤;②标准差2S ≤;③平均数3x ≤且标准差2S ≤;④平均数3x ≤且极差小于或等于2;⑤众数等于1且极差小于或等于1。

A C .③④⑤D .④⑤ 5. 在长方体ABCD —A 1B 1C 1D 1中,对角线B 1D 与平面A 1BC 1相交于点E ,则点E 为△A 1BC 1的( )A .垂心B .内心C .外心D .重心6.设y x ,满足约束条件⎪⎩⎪⎨⎧≥≥+-≤--,0,,02,063y x y x y x 若目标函数y b ax z +=)0,(>b a 的最大值是12,则22a b +的最小值是( )A .613B . 365C .65D .3613( )A .16πB .4πC .8πD .2π8.已知函数()2sin()f x x =+ωϕ(0,)ω>-π<ϕ<π图像的一部分(如图所示),则ω与ϕ的值分别为( ) A .115,106π- B .21,3π-C .7,106π-D .4,53π- 9. 双曲线C 的左右焦点分别为12,F F ,且2F 恰为抛物线24y x =的焦点,设双曲线C 与该抛物线的一个交点为A ,若12AF F ∆是以1AF 为底边的等腰三角形,则双曲线C 的离心率为( ) A .2B .12+C .13+D .23+10. 已知函数)(x f 是定义在R 上的奇函数,若对于任意给定的不等实数12,x x ,不等式)()()()(12212211x f x x f x x f x x f x +<+恒成立,则不等式0)1(<-x f 的解集为( )1A. )0,(-∞B. ()+∞,0C. )1,(-∞D. ()+∞,111.已知圆的方程422=+y x ,若抛物线过点A (0,-1),B (0,1)且以圆的切线为准线,则抛物线的焦点轨迹方程是( ) A.x 23+y 24=1(y ≠0) B.x 24+y 23=1(y ≠0) C.x 23+y 24=1(x ≠0) D.x 24+y 23=1 (x ≠0) 12. 设()f x 是定义在R 上的函数,若(0)2008f = ,且对任意x ∈R ,满足 (2)()32x f x f x +-≤⋅,(6)()632x f x f x +-≥⋅,则)2008(f =( )A.200722006+ B .200622008+ C .200722008+ D .200822006+二、填空题(本大题共4小题,每小题5分,共20分)13.在区间[-6,6],内任取一个元素x O ,若抛物线y=x 2在x=x o 处的切线的倾角为α,则3,44ππα⎡⎤∈⎢⎥⎣⎦的概率为 。

.某程序框图如图所示,该程序运行后输出的S 的值是 15. 在ABC ∆中,P 是BC 边中点,角A ,B ,C 的对边分别是a ,b ,c ,若0cAC aPA bPB ++=u u u r u u u r u u u r r,则ABC ∆的形状为 。

16.在x 轴的正方向上,从左向右依次取点列 {}Λ,2,1,=j A j ,以及在第一象限内的抛物线x y 232=上从左向右依次取点列 {}Λ,2,1,=k B k ,使k k k A B A 1-∆(Λ,2,1=k )都是等边三角形,其中0A 是坐标原点,则第2005个等边三角形的边长是 。

三、解答题(本大题共6小题,共70分)17.(本小题满分12分)在△ABC 中,c b a ,,是角C B A ,,对应的边,向量),(c b a m +=,()c b a n -+=,,且ab n m )23(+=•. (1)求角C ;(2)函数)(021)2sin()cos()(cos )sin(2)(2>-+-+=ωωωx B A x B A x f 的相邻两个极值的横坐标分别为20π-x 、0x ,求)(x f 的单调递减区间.18.已知四边形ABCD 满足1//,2AD BC BA AD DC BC a ====,E 是BC 的中点,将△BAE 沿AE 翻折成11,B AE B AE AECD ∆⊥使面面,F 为1B D 的中点.(1)求四棱锥1B AECD -的体积; (2)证明:1//B E ACF 面;(3)求面11ADB ECB 与面所成锐二面角的余弦值.19.(本小题满分12分)现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择,为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏. (1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(3)用X ,Y 分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X -Y |,求随机变量ξ的分布列与数学期望Eξ. 20.,当(]0,x e ∈时, ()ln f x ax x =+(其中e (1(2时,且[)0,e x -∈, (3时,()f x 的最小值是3 ?如果存在,求出实数a请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.答题时用2B 铅笔在答题卡上把所选的题号涂黑.21. (本小题满分10分) 选修4—1:几何证明选讲已知PQ 与圆O 相切于点A ,直线PBC 交圆于B 、C 两点,D 是圆上一点,且AB ∥CD ,DC 的延长线交PQ 于点Q(1)求证:AB CQ AC⋅=2(2)若AQ=2AP ,AB=3,BP=2,求QD.22.(本小题满分10分) 选修4—4:坐标系与参数方程在平面直角坐标系中,曲线C 1的参数方程为 ⎩⎨⎧==ϕϕsin cos b y a x (a >b >0,ϕ为参数),以Ο为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2是圆心在极轴上且经过极点的圆,已知曲线C 1上的点M )3,2( 对应的参数ϕ=3π,4πθ=与曲线C 2交于点D )4,2(π(1)求曲线C 1,C 2的方程; (2)A (ρ1,θ),Β(ρ2,θ+2π)是曲线C 1上的两点,求222111ρρ+的值。

23.(本小题满分l0分) 选修4—5:不等式选讲已知关于x 的不等式a x x 2log |1||12|≤--+(其中0>a ). (1)当4=a 时,求不等式的解集;(2)若不等式有解,求实数a 的取值范围 数学(理科)答案一、选择题 (A )卷CACDD DBABC CC (B )CCADD BDACB CC 13、1112 14、21- 15、等边三角形 16. 2005 17、解:(1)因为ab n m c b a n c b a m )23(),,(),,(+=⋅-+=+=,所以ab c b a 3222=-+, 故23cos =C ,6,0ππ=∴<<C C Θ. ---------5分(2)21)2sin()cos()(cos )sin(2)(2-+-+=x B A x B A x f ωω =21)2sin(cos )(cos sin 22-+x C x C ωω =21)2sin(23)(cos 2-+x x ωω =)62sin(πω+x ----------8分 因为相邻两个极值的横坐标分别为20π-x 、0x ,所以)(x f 的最小正周期为π=T ,1=ω所以)62sin()(π+=x x f ---------10分由Z k k x k ∈+<+<+,2326222πππππ 所以)(x f 的单调递减区间为Z k k k ∈++],32,6[ππππ. ---------12分 18、解:(1)取AE 的中点M ,连结B 1M ,因为BA=AD=DC=21BC=a ,△ABE 为等边三角形,则B 1M=a 23,又因为面B 1AE ⊥面AECD ,所以B 1M ⊥面AECD , 所以 43sin 23313a a a a V =⨯⨯⨯⨯=π ---------4分 AECD 为菱形,OE=OD 所以FO ∥B 1E , 所以1//B E ACF 面。

---------7分(3)连结MD ,则∠AMD=090,分别以ME,MD,MB 1为x,y,z 轴建系,则)0,0,2(aE ,)0,23,(a a C )0,0,2(a A -,)0,23,0(a D ,)23,0,0(1a B ,所以1,)23,0,2(1aa EB -=,)0,23,2(a a AD =,)23,0,2(1a a AB =,设面ECB 1的法向量为),,(z y x u =,⎪⎪⎩⎪⎪⎨⎧=+-=+02320232az x aay x a ,令x=1, )33,33,1(-=u ,同理面ADB 1的法向量为)33,33,1(--=v , 所以53313113131131311,cos =++⨯++-+>=<v u , 故面11ADB ECB 与面所成锐二面角的余弦值为53.--------12分19.解:依题意,这4个人中,每个人去参加甲游戏的概率为13,去参加乙游戏的概率为23.设“这4个人中恰有i 人去参加甲游戏”为事件i A (i =0,1,2,3,4),则i i ii C A P -=44)32()31()((1)这4个人中恰有2人去参加甲游戏的概率278)32()31()(22242==C A P 3分 (2)设“这4个人中去参加甲游戏的B ,则所以,这4个人去参加甲游戏的人数大于去参加乙游戏的人数的概率为1. 7分因为AQ 为切线,所以∠QAC=∠CBA,所以△ACB ∽△CQA,所以AB CQ AC⋅=2………5分。

相关文档
最新文档