河北省衡水中学2020届高三第八次调研考试数学理科数学参考解析答案

合集下载

2020届河北省衡水中学高三下学期第八次调研数学(文)试题(解析版)

2020届河北省衡水中学高三下学期第八次调研数学(文)试题(解析版)

2020届河北省衡水中学高三下学期第八次调研数学(文)试题一、单选题1.设全集为R ,集合{}2|20A x x x =-<,集合{}|1B x x =<,则A B =I ( ) A .()1,1- B .()1,2- C .()0,1 D .()0,2【答案】C【解析】化简集合,A B ,根据交集的定义,即可求解. 【详解】()0,2A =,()1,1B =-,所以()0,1A B =I ,故选:C. 【点睛】本题考查集合的运算,属于基础题. 2.已知复数()20201z i i =⋅+,则z 的模z =( )A .1 BC D .4【答案】B 【解析】由20201,1i z i ==+,根据模长公式,即可求解.【详解】已知()111z i i =⋅+=+,所以z =故选:B 【点睛】本题考查虚数的定义,以及复数的模长,属于基础题.3.在2019年的国庆假期中,重庆再次展现“网红城市”的魅力,吸引了3000多万人次的客流.北京游客小李慕名而来,第一天打算游览“洪崖洞”,“解放碑”,“朝天门”.如果随机安排三个景点的游览顺序,则最后游览“朝天门”的概率为( )A .16B .56 C .13D .23【答案】C【解析】“洪崖洞”,“解放碑”,“朝天门”分别记为,,A B C ,列出游览三个景点的所有安排顺序,确定最后游览“朝天门”安排个数,根据古典概型的概率即可求解. 【详解】“洪崖洞”,“解放碑”,“朝天门”分别记为,,A B C , 随机安排三个景点的游览顺序,有以下安排方法:{,,},{,,},{,,},{,,}A B C A C B B A C B C A , {,,},{,,}C B A C A B 共有6种安排方法,其中最后游览“朝天门”由2种安排方法 其概率为2163P ==. 故选:C 【点睛】本题考查古典概型的概率,属于基础题.4.已知非零向量a v ,b v 满足:()1,1a =v,1b =v ,()a b b -⊥v v v ,则向量a v ,b v 的夹角大小为( ) A .6πB .4π C .3π D .2π 【答案】B【解析】由()a b b -⊥r r r ,()1,1a =r ,1b =r ,求出a b ⋅r r,再由向量的夹角公式,即可求解. 【详解】由()a b b -⊥r r r ,有20a b b ⋅-=r r r ,则2cos a b b θ=r r r ,有2cos ,0,24b a bπθθπθ===≤≤=r r r . 故选:B【点睛】本题考查向量的数量积运算,考查向量的夹角,属于基础题.5.已知正方体1111ABCD A B C D -的棱长为1,其内切球与外接球的表面积分别为1S ,2S ,则12S S =( ) A .1 B .12 C .13D .14【答案】C【解析】根据正方体的内切球的直径为正方体的棱,求出其半径,外接球的直径为正方体的对角线,求出半径,由球的表面积公式,即可求解. 【详解】 内切球的半径112r =,外接球的半径2r = 所以表面积之比为2112213S r S r ⎛⎫== ⎪⎝⎭.故选:C. 【点睛】本题考查正方体的内切球和外接球的表面积,属于基础题. 6.已知tan 2θ=-,则sin sin 2πθθ⎛⎫+ ⎪⎝⎭的值为( ) A .25B .25-C .35D .45【答案】B【解析】首先利用诱导公式化简函数解析式,之后利用正余弦平方和等于1,得到关于弦的分式型二次齐次式,之后化成切的式子,代入求解得结果. 【详解】222cos sin tan 22sin sin cos sin 2cos sin 1tan 145πθθθθθθθθθθ-⎛⎫+=⋅====- ⎪+++⎝⎭,故选:B. 【点睛】该题考查的是有关三角函数化简求值的问题,涉及到的知识点有诱导公式,同角三角函数关系式,属于简单题目.7.如图所示的一个算法的程序框图,则输出d 的最大值为( )A .2B .2C .12+D .122+【答案】C 【解析】【详解】模拟程序的运行,可得程序框图的功能是 求半圆y =上的点到直线x ﹣y ﹣2=0的距离的最大值,如图:可得:d 的最大值为OP +r =+1.故选:C .8.已知()f x 是定义在[)0,+∞的函数,满足()()3f x f x +=-,当[)0,3x ∈时,()2x f x =,则()2log 192f =( )A .12B .13C .2D .3【答案】D【解析】根据条件确定函数的周期为6,利用函数周期性进行转化即可. 【详解】()()()()36f x f x f x f x +=-⇒+=,6T =,()()22log 192log 643f f =⨯()()2log 3226log 3log 323f f =+===,故选:D. 【点睛】该题考查的是有关函数值的求解问题,涉及到的知识点有函数的周期性,对数式的运算法则,属于简单题目.9.如图,网格纸上小正方形的边长为1,粗线画出的是某三棱锥的三视图,则该三棱锥的外接球的体积为( )A .1122πB .4411πC .4411πD .1122π【答案】B【解析】借助长方体作出棱锥,利用球心到顶点的距离相等确定O 的位置,利用球的性质求出半径,即可计算. 【详解】由三视图可知该几何体是如图所示的三棱锥A BCD -,F 为BD 的中点,外接球球心O 在过CD 的中点E 且垂直于平面BCD 的直线l 上, 又点O 到,,A B D 的距离相等,所以O 又在过左边正方体一对棱的中点,M N 所在直线上, 在OEN ∆中,由NF MF NE OE =,即223OE=,得3OE =, 所以三棱锥A BCD -外接球的球半径22223(2)11R OE BE =+=+=,44113V π=.【点睛】本题主要考查了三视图,棱锥的外接球,球的体积,属于中档题.10.已知函数(2),1()1,11f x x f x x x ->⎧=⎨--≤≤⎩,关于x 的方程()log (1)a f x x =+恰有5个解,则a 的取值范围为( ) A .1175a ≤< B .1175a << C .1164a << D .1164a ≤< 【答案】B【解析】根据()f x 求出()f x 有表达式,可用图象来分析,再由()f x 的图象与()log (1)a g x x =+有5个交点可得a 的范围.【详解】由题意函数()y f x =的图象与log (1)a y x =+的图象有5个交点.作出()f x 的图象,根据函数解析式,其图象在区间[21,21]n n -+(*n N ∈)上的图象与[1,1]-上相同,如图,若1a >,则log (1)a y x =+是增函数,它与()f x 的图象只有一个交点,不合题意,当01a <<时log (1)a y x =+是减函数,要有5个交点,,因此有log (41)1log (61)1a a +>-⎧⎨+<-⎩,解得1175a <<.故选:B. 【点睛】本题考查方程解的个数与函数零点问题.解题时转化为函数图象交点个数,通过数形结合思想求解.11.已知抛物线24x y =的焦点为F ,过直线2y x =-上任一点引抛物线的两条切线,切点为A ,B ,则点F 到直线AB 的距离( ) A .无最小值B .无最大值C .有最小值,最小值为1D .有最大值,【答案】D【解析】设()11,A x y ,()22,B x y ,可得2114x y =,2224x y =,即可求得A 为切点的切线方程1l 和以B 为切点的切线方程2l ,设过直线2y x =-上任一点为()00,P x y ,将()00,P x y 代入1l 和2l ,即可求得直线AB 的方程,进而求得点F 到直线AB 的距离.【详解】设()11,A x y ,()22,B x y ,可得2114x y =,2224x y =Q 以A 为切点的切线方程为1l :()1112x y y x x -=-,即112xy x y =-——① 同理可得,以B 为切点的切线方程为2l :222xy x y =- ——②设过直线2y x =-上任一点为()00,P x y∴ ()00,P x y 代入①②得10012002,2,2x y x y x y x y ⎧=-⎪⎪⎨⎪=-⎪⎩所以直线AB 的方程为002xy x y =-,即002x y x y =-, 又Q 002y x =-,即0122x y x ⎛⎫=-+⎪⎝⎭Q AB 过定点()2,2P ,∴ 当PF AB ⊥时,()0,1F 到l 的距离的最大值为=当AB 过点F 时,距离的最小值为0 故选:D . 【点睛】本题主要考查直线与圆锥曲线的综合应用能力,综合性强,本题涉及到轨迹方程的求法及直线与抛物线的相关知识,解题时要注意合理地进行等价转化.12.已知函数()()()()()22213122x x f x a a e a x e x =---+++有4个不同的零点,则实数a 的取值范围为( ) A .1,2e ⎛⎫⎪⎝⎭B .11,22e +⎛⎫⎪⎝⎭C .()1,11,2e ⎛⎫⎪⎝⎭UD .11,11,22e +⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭U 【答案】D【解析】因为()0f x =,故()()()()222131220x x a a e a x e x ---+++=,化简为:()()()e 221e 20xxa x a x ⎡⎤⎡⎤-+--+=⎣⎦⎣⎦,即2e x x a +=,221e xx a +-=,构造函数()2ex x g x +=,求其最值即可求得实数a 的取值范围. 【详解】Q 由()0f x =,()()()()222131220x x a a e a x e x ---+++=∴ 得()()()e 221e 20x xa x a x ⎡⎤⎡⎤-+--+=⎣⎦⎣⎦,可得:2e x x a +=,221ex x a +-=, 设()2e x x g x +=,则()()1ex x g x -+'=, Q 当()0g x '>时,1x <-当()<0g x '时,1x >-∴ ()g x 在(),1-∞-上单调递增,在()1,-+∞上单调递减,故()20g -=,()()max 1e g x g =-=,当2x >-,()0g x >.Q x →-∞,()g x →-∞,x →+∞,()0g x +→.要使方程有4个不同的零点,则0e021e 21a a a a<<⎧⎪<-<⎨⎪-≠⎩,可得11e 22a +<<,1a ≠, 故选:D. 【点睛】本题考查了函数零点问题,要将函数的求零点问题转化为求方程根的问题,就自变量取不同范围进行讨论求解这是解题关键.二、填空题13.设x ,y 满足约束条件3403400x y x y x y -+≥⎧⎪--≤⎨⎪+≥⎩,则2x y -的最小值是______.【答案】-3【解析】设2z x y =-,根据约束条件画出可行域,可知z 取最小值时,2y x z =-在y 轴截距最大;由图象可知当2y x z =-过A 时截距最大,求出A 点坐标,代入可得结果. 【详解】设2z x y =-,由约束条件可得可行域如下图阴影部分所示:则z 取最小值时,2y x z =-在y 轴截距最大 由图象可知,当2y x z =-过A 时,截距最大由3400x y x y -+=⎧⎨+=⎩得:()1,1A -min 213z ∴=--=-,即()min 23x y -=-本题正确结果:3- 【点睛】本题考查线性规划中最值问题的求解,关键是能够将问题转化为在y 轴截距的最值求解问题,根据图象平移求得结果.14.对于三次函数()()320ax bx d a f x cx =+++≠,定义:设()f x ''是()f x '的导数,若方程()0f x ''=有实数解0x ,则称()()00,x f x 为函数()f x 的拐点.某同学经过探索发现任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数()3211533212g x x x x =-+-,则122020202120212021g g g ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭______;()20201112021i i i g -=⎛⎫'= ⎝-⎪⎭∑______. 【答案】2020 0【解析】利用二阶导数求出三次函数()y g x =的拐点,进而可得出三次函数()y g x =图象的对称中心坐标,由此可计算出122020202120212021g g g ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭以及()20201120211i i i g -=⎛⎫' ⎪⎝-⎭∑的值. 【详解】()3211533212g x x x x =-+-Q ,()23g x x x '∴=-+,()21g x x ''=-,令()0g x ''=,得12x =,又112g ⎛⎫= ⎪⎝⎭, 所以,三次函数()y g x =图象的对称中心坐标为1,12⎛⎫⎪⎝⎭,即()()12g x g x +-=,所以,122020101022020202120212021g g g ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+=⨯=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()()2221212212112021202120212021n n n n n n g g g g ----⎛⎫⎛⎫⎛⎫⎛⎫''''-+-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭Q 222212122202243320212021202120212021n n n n n ⎡⎤---⎛⎫⎛⎫=-+--+=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦, 因此,()()()202010102211121212111202120220211n n i i n g n n g i g =--=--⎛⎫⎛⎫''-⎡-+-⎢ ⎤⎪ ⎪⎝⎭⎭⎝⎭⎛⎫'= ⎪⎥⎝⎣⎦∑∑()1010221101011010202210104202242020212021n n=⨯+⨯-⨯-===∑. 故答案为:2020;0. 【点睛】本题考查新定义“拐点”的应用,涉及三次函数的对称中心以及等差数列求和问题,考查计算能力,属于难题.15.已知双曲线C :22221x y a b-=(0a >,0b >)的左,右焦点为1F ,2F ,以12F F 为直径的圆与双曲线C 的渐近线在第一象限交于点P ,线段2PF 与双曲线的交点M 为2PF 的中点,则双曲线C 的离心率为______.1【解析】因为以12F F 为直径的圆与双曲线C 的渐近线在第一象限交于点P ,故222x y c b y xa ⎧+=⎪⎨=⎪⎩解得,,x a y b =⎧⎨=⎩,求得(),P a b ,由中点坐标公式解得,22a c b M +⎛⎫⎪⎝⎭,将其代入22221x y a b-=,即可求得双曲线C 的离心率. 【详解】Q 以12F F 为直径的圆与双曲线C 的渐近线在第一象限交于点P ,∴ 222x y c by xa ⎧+=⎪⎨=⎪⎩解得:,,x a y b =⎧⎨=⎩ 故(),P a b , 又Q ()2,0F c ,∴,22a c b M +⎛⎫⎪⎝⎭,代入双曲线方程22221x y a b-= 可得:22240c ac a +-=,化简可得2240e e +-=∴1e =-,又1e >,∴1e =.故答案为1. 【点睛】本题考查了求双曲线离心率的问题,解题关键双曲线的几何性质及离心率的求法,数形结合是本题的关键,查分析能力和计算能力,属于中档题. 16.已知数列{}n a ,满足()()*112n n na n a n +--=∈N,{}na 的前n 项和为nS,对任意的*n ∈N ,当5n ≠时,都有5n S S <,则5S 的取值范围为______.【答案】()5,6【解析】由()112n n na n a +--=,当1n =,得12a =.由()()1121212n n n n na n a n a na +++⎧--=⎪⎨+-=⎪⎩ 可得212n n n a a a +++=,即可求得{}n a 为等差数列,结合当5n ≠时,都有5n S S <,即可求得5S 的取值范围. 【详解】Q 由()112n n na n a +--=,∴ 当1n =,得12a =.Q ()112n n na n a +--=——①可得()1212n n n a na +++-=——②∴ 由①②得:212n n n a a a +++=,故{}n a 为等差数列.又Q 120a =>,5S 最大,则0d <,50a >,60a <, 即240,250d d +>⎧⎨+<⎩1225d ⇒-<<-,又51010S d =+,可得()55,6S ∈ 故答案为:()5,6. 【点睛】本题解题关键是根据已知条件判断出数量是等差数列,掌握数列单调性是解本题的关键,考查了分析能力和计算能力,属于基础题.三、解答题17.已知数列{}n a ,是一个等差数列,且22a =,145a a +=,数列{}n b 是各项均为正数的等比数列,且满足:112b =,24164b b ⋅=. (1)求数列{}n a 与{}n b 的通项公式; (2)求证:11222n n a b a b a b ++⋅⋅⋅+<.【答案】(1)n a n =,12nn b ⎛⎫= ⎪⎝⎭(2)证明见解析【解析】(1)因为{}n a 为等差数列,设公差为d ,则1112,35,a d a a d +=⎧⎨++=⎩即可求得首项和公差,即可求得{}n a .因为{}n b 为等比数列,2243164b b b ⋅==,23118b b q ==,即可求得公比,进而求得{}n b .(2)因为n a n =,12nn b ⎛⎫= ⎪⎝⎭,所以()23111111123122222n nn T n n -⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+⋅⋅⋅+-⨯+⨯ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭,根据数列求和错位相减法,即可求得n T ,进而求得答案. 【详解】(1)Q {}n a 为等差数列,设公差为d ,∴1112,35,a d a a d +=⎧⎨++=⎩∴11,1,a d =⎧⎨=⎩∴()11n a a n d n =+-=.Q {}n b 为等比数列,0n b >,设公比为q ,则0q >,∴2243164b b b ⋅==,23118b b q ==, ∴12q =,1111222n nn b -⎛⎫⎛⎫=⋅= ⎪ ⎪⎝⎭⎝⎭. (2)令112233n n n T a b a b a b a b =+++⋅⋅⋅+,∴ ()23111111123122222n nn T n n -⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+⋅⋅⋅+-⨯+⨯ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭——①可得:()2311111112122222nn n T n n +⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⋅⋅⋅+-⨯+⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭——②∴由①-②得:23111112211111111222222212nn n n n T n n ++⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎝⎭=+++⋅⋅⋅+-⨯=-⨯ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭-,∴1112222n nn T n -⎛⎫⎛⎫=--⨯< ⎪ ⎪⎝⎭⎝⎭.故11222n n a b a b a b ++⋅⋅⋅+<. 【点睛】本题考查求等差数列通项公式和数列求和.错位相减法求数列和,适用于通项公式为等差的一次函数乘以等比的数列形式,考查了学生的计算能力,属于基础题型.18.如图,已知在四棱锥P ABCD -中,底面ABCD 为正方形,PD PA =,E 点为AD 的中点,PE CD ⊥.(1)求证:平面PAD ⊥平面ABCD ;(2)若正方形的边长为4,求D 点到平面PEC 的距离. 【答案】(1)见解析;(2)455DH =【解析】(1)PD PA =,E 点为AD 的中点,可知PE AD ⊥,再由已知条件PE CD ⊥,可证PE ⊥平面ABCD ,即可证明结论;(2)连CE ,由(1)可得平面PEC ⊥平面ABCD ,过D 作DH CE ⊥与H ,根据面面垂直的性质定理,可得DH ⊥平面PCE ,即DH 为所求,且DH 为Rt CDE ∆斜边上的高,可得出结论 【详解】(1)证明:由PD PA =,E 点为AD 的中点, 可知PE AD ⊥,再已知PE CD ⊥,且AD ,CD 相交于D ,则PE ⊥平面ABCD . 又PE ⊂平面ADP ,所以平面PAD ⊥平面ABCD . (2)解:由(1)知PE ⊥平面ABCD , 则平面PEC ⊥平面ABCD ,相交于EC .作DH EC ⊥,可知DH 为D 点到平面PEC 的距离, 且2245524DH ==+ 【点睛】本题考查面面垂直的证明以及面面垂直性质的应用,考查空间垂直的转化,属于基础题. 19.2019年双十一落下帷幕,天猫交易额定格在268(单位:十亿元)人民币(下同),再创新高,比去年218(十亿元)多了50(十亿元),这些数字的背后,除了是消费者买买买的表现,更是购物车里中国新消费的奇迹,为了研究历年销售额的变化趋势,一机构统计了2010年到2019年天猫双十一的销售额数据y (单位:十亿元),绘制如下表1: 表1 年份 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 编号x 1 2 3 4 5 6 7 8 9 10 销售额y 0.98.722.4416594132.5172.5218268根据以上数据绘制散点图,如图所示.(1)把销售额超过100(十亿元)的年份叫“畅销年”,把销售额超过200(十亿元)的年份叫“狂欢年”,从2010年到2019年这十年的“畅销年”中任取2个,求至少取到一个“狂欢年”的概率;(2)根据散点图判断,y a bx =+与2y cx d =+哪一个适宜作为销售额y 关于x 的回归方程类型?(给出判断即可,不必说明理由);(3)根据(2)的判断结果及下表中的数据,建立y 关于x 的回归方程,并预测2020年天猫双十一的销售额.(注:数据保留小数点后一位)参考数据:2i i t x =,参考公式:对于一组数据(),i i u v ,()22,u v ,…,(),n n u v ,其回归直线µµvu αβ=+$的斜率和截距的最小二乘估计公式分别为µ1221ni i i nii u v nuvunuβ==-=-∑∑,µµv u αβ=-. 【答案】(1)56(2)2y cx d =+更适宜.(3)22.7 2.0y x =-$,324.7十亿元. 【解析】(1)由表中数据可记畅销年中不是狂欢年为,a b ,狂欢年为,A B ,列举出基本事件个数,根据古典概型的概率计算公式即可求解. (2)由散点图可得出回归方程类型.(3)根据公式代入数据,求出b$、$a ,得出回归方程,从而可求解. 【详解】解:(1)畅销年个数:4,其中的狂欢年个数:2,记畅销年中不是狂欢年为,a b ; 狂欢年为,A B ,则总共有(,)a b ,(,)a A ,(,)b A ,(,)a B ,(,)b B ,(,)A B 则5()6P A =(2)由题意2y cx d =+更适宜.(3)1011022110677701038.5102285005702.725380148301055021110i ii i i t y t ybt t==--⨯⨯====≈--∑∑$,$102 2.738.5 2.0ay bt =-=-⨯≈-$, $22.7 2.0y x ∴=-,当11x =时,$324.7y =(十亿元), ∴预测2020年双十一的销售额为324.7十亿元.【点睛】本题考查了古典概型的概率计算公式、回归方程的求法,考查了学生的数据分析与处理能力,属于中档题.20.已知椭圆C :22221x y a b+=()0a b >>的两个焦点为1F ,2F ,焦距为直线l :1y x =-与椭圆C 相交于A ,B 两点,31,44P ⎛⎫-⎪⎝⎭为弦AB 的中点. (1)求椭圆的标准方程;(2)若直线l :y kx m =+与椭圆C 相交于不同的两点M ,N ,()0,Q m ,若3OM ON OQ λ+=u u u u v u u u v u u u v(O 为坐标原点),求m 的取值范围.【答案】(1)2213x y +=(2)113m <<或113m -<<-【解析】(1)因为31,44P ⎛⎫-⎪⎝⎭为弦AB 的中点,设()11,A x y ,()22,B x y ,将其代入22221x y a b+=利用点差法,即可求得答案. (2)因为M ,Q ,N 三点共线,133OQ OM ON λ=+u u u r u u u u r u u u r, 根据三点共线性质可得:1133λ+=,则2λ=,将直线l 和椭圆C 联立方程22,33y kx m x y =+⎧⎨+=⎩消掉y ,结合已知,利用韦达定理即可求得答案. 【详解】(1)Q焦距为则c =设()11,A x y ,()22,B x y ,Q 31,44P ⎛⎫- ⎪⎝⎭为弦AB 的中点,根据中点坐标公式可得:1232x x +=,1212y y +=-,又Q 将其()11,A x y ,()22,B x y 代入椭圆C :22221x ya b+=∴ 2222221122222222b x a y a b b x a y a b⎧+=⎨+=⎩ ∴ 将两式作差可得:()()()()22121212120b x x x x a y y y y +-++-=,∴()()22121222121231ABb x x y y b k x x a y y a+-==-==-+, ∴223a b =——①. Q 222a c b -=——②由①②得: 2231a b ⎧=⎨=⎩ ∴椭圆的标准方程为2213x y +=.(2)Q M ,Q ,N 三点共线,133OQ OM ON λ=+u u u ru u u ur u u u r∴ 根据三点共线性质可得:1133λ+=,则2λ= 设()11,M x y ,()22,N x y ,则1212033x x +=,∴122x x =-.将直线l 和椭圆C 联立方程22,33y kx m x y =+⎧⎨+=⎩消掉y . 可得:()222136330kxkmx m +++-=.220310k m ∆>⇒-+>——①,根据韦达定理:122613km x x k +=-+,21223313m x x k-=+, 代入122x x =-,可得:22613km x k =+,222233213m x k--=+, ∴ ()222222363321313k m m kk --⨯=++,即()2229131m k m -⋅=-. Q 2910m -≠,219m ≠, ∴22213091m k m -=≥-——②, 代入①式得22211091m m m --+>-,即()22211091m m m -+->-, ∴()()2221910m m m --<,∴2119m <<满足②式, ∴113m <<或113m -<<-.【点睛】本题主要考查直线与圆锥曲线位置关系,所使用方法为韦达定理法:因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理解决. 21.已知函数()x f x e ax =-.(1)若函数()f x 在1(,2)2x ∈上有2个零点,求实数a 的取值范围.(注319e >) (2)设2()()g x f x ax =-,若函数()g x 恰有两个不同的极值点1x ,2x ,证明:12ln(2)2x x a +<. 【答案】(1)(,a e ∈(2)见证明【解析】(1)将a 分离,构造函数()x e h x x=,利用导数研究()h x 的图像,得到a 的范围.(2)由已知()g x ,求其导函数,由x 1,x 2是g (x )的两个不同极值点,可得a >0,结合g ′(x 1)=0,g ′(x 2)=0得到1120x e ax a --=,2220xe ax a --=进一步得到12122x x e e a x x -=-,把问题转化为证明1212212x x x x e e e x x +--<,将其变形后整体换元构造函数()t ϕ.再利用导数证明()t ϕ>0得答案.【详解】(1)1,22x ⎡⎤∈⎢⎥⎣⎦时,由()0f x =得xea x=,令()()()21x xe x e h x h x x x ='-=⇒ ∴112x ≤<时,()0h x '<, 12x <≤时,()0h x '>,∴()h x 在1,12⎡⎤⎢⎥⎣⎦上是减函数,在()1,2上是增函数.又122h e ⎛⎫= ⎪⎝⎭,()222e h =,()1h e =()344161640444e e e e e e ---==>, ∴()122h h ⎛⎫>⎪⎝⎭,∴h (x )的大致图像:利用()y h x =与y a =的图像知(,2a e e ∈.(2)由已知()2xg x e ax ax =--,∴()2xg x e ax a =--',因为1x ,2x 是函数()g x 的两个不同极值点(不妨设12x x <),易知0a >(若0a ≤,则函数()f x 没有或只有一个极值点,与已知矛盾),且()10g x '=,()20g x '=.所以1120x e ax a --=,2220xe ax a --=.两式相减得12122x x e e a x x -=-,于是要证明()12ln 22x x a +<,即证明1212212x xx x e e e x x +-<-,两边同除以2x e ,即证12122121x x x x e ex x ---<-,即证()12122121x x x x x x e e --->-,即证()121221210x x x x x x ee ----+>,令12x x t -=,0t <.即证不等式210tt te e -+>,当0t <时恒成立. 设()21tt t te e ϕ=-+,则()2212t t tt te t e e ϕ=+⋅⋅-'=22211]22t t t t t t e e e e ⎡⎫⎛⎫+-=--+⎪⎢ ⎪⎝⎭⎣⎭. 设()212t t h t e =--,则()221111222t t h t e e ⎛⎫=-=- ⎪⎝⎭', 当0t <时,()0h t '<,()h t 单调递减,所以()()00h t h >=,即2102t t e ⎛⎫-+> ⎪⎝⎭,所以()0t ϕ'<, 所以()t ϕ在0t <时是减函数.故()t ϕ在0t =处取得最小值()00ϕ=.所以()0t ϕ>得证.所以()12ln 22x x a +<. 【点睛】本题考查利用导数研究函数的零点问题,考查了导数在解决不等式证明问题中的应用,考查了数学转化思想方法和函数构造法,属于难题. 22.在直角坐标系xOy 中,曲线1C :22cos ,2sin ,x y θθ=+⎧⎨=⎩(θ为参数),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C :24sin 3ρρθ=-,曲线1C 与曲线2C 相交于M ,N两点.(1)求曲线2C 的直角坐标方程与直线MN 的一般方;(2)点3,04P ⎛⎫- ⎪⎝⎭,求PM PN +. 【答案】(1)2C :2243x y y +=-,直线MN :4430x y -+=(2【解析】(1)将曲线1C :22cos 2sin x y θθ=+⎧⎨=⎩化简为:2cos 2sin 2x y θθ-⎧=⎪⎪⎨⎪=⎪⎩,根据22sin cos 1θθ+=消参,即可得到2C 的直角坐标方程,将1C 和2C 直角坐标方程作差,即可求得直线MN 的一般方程.(2)将MN l :34y x =+方程,改写成直线参数方程: 3422x y ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),将其代入1C ,即可求得PM PN +.【详解】(1)1C :()2224x y -+=即2240x x y -+=. ——① 2C :2243x y y +=-——②将①-②得: MN l :4430x y -+-=,∴ 曲线2C 的直角坐标方程: 2243x y y +=-,直线MN 的一般方程为:4430x y -+=.(2)MN l :34y x =+, ∴ 3,04P ⎛⎫- ⎪⎝⎭在MN l 上, 直线MN 的参数方程为:34x y ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),代入1C :()2224x y -+=,整理得2570416t t -+=, 根据韦达定理: 124t t +=,125716t t =⋅, ∴10t >,20t >.故:124PM PN t t +=+=. 【点睛】本题考查了极坐标和直角坐标方程.解题关键是掌握直线的标准参数方程,结合韦达定理来求线段和,意在考查学生的转化能力和计算求解能力,属于基础题.23.已知函数()122f x x x a =-++.(1)若1a =,求不等式()4f x ≥的解集;(2)证明:对任意x ∈R ,()22f x a a ≥+-.【答案】(1)[)5,1,3x ⎛⎤∈-∞-+∞ ⎥⎝⎦U (2)证明见解析【解析】(1)当1a =时,()122f x x x =-++,分别讨论1x ≤-,11x -<<和1x ≥时求解()4f x ≥,即可求得答案;(2)因为()()221f x x x a x a =-++++,根据||||||||||a b a b a b -≤+≤+即可求得答案.【详解】(1)当1a =时,()122f x x x =-++①当1x ≤-时,()1224f x x x =---≥,得53x ≤-;②当11x -<<时,()12234f x x x x =-++=+≥,得1x ≥,∴x ∈∅③当1x ≥时,()122314f x x x x =-++=+≥,得1x ≥, ∴[)5,1,3x ⎛⎤∈-∞-+∞ ⎥⎝⎦U . (2)Q ()()()22121f x x x a x a x x a x a =-++++≥---++ ()2121222a x a a a a a =+++≥+=+≥+-.∴ 对任意x ∈R ,()22f x a a ≥+-.【点睛】本题主要考查了含绝对值不等式的求解,其中解答中合理分类讨论去掉绝对值,转化为等价不等式求解是解答的关键,着重考查了分类讨论思想,以及推理与运算能力,属于中档试题.。

衡水中学2020届高三第八次调研考试数学理数

衡水中学2020届高三第八次调研考试数学理数
5
高三数学(理)下八调试题第2页(共 6 页)
18.(12 分)
16
已知双曲线 C :
x2 a2
y2 b2
1(a
0, b
0) 的左、右焦点分别为 F1, F2, 直线 l 是双曲线 C 过第一、
第三象限的渐近线,记直线 l
的倾斜角为
,直线 l1
:
y
tan 2
x, F2M
l1,
垂足为
M,若
M

双曲线 C 上,则双曲线 C 的离心率为
.
高三数学(理)下八调试题第3页(共 6 页)
高三数学(理)下八调试题第4页(共 6 页)
高三数学(理)下八调试题第5页(共 6 页)
高三数学(理)下八调试题第6页(共 6 页)
A. (1, 2)
B. (1 , 3 2 ] 4
C.[3 2 , ) 4
D. (2, )
11. 已知数列an 满足: a1 2 , an1Sn Sn 12 0,n N * ,其中 Sn 为an 的前 n 项
和.若对任意的 n 均有 S1 1S2 1Sn 1 kn 恒成立,则 k 的最大整数值为( )
2019—2020 学年度高三年级理数下八调考试
5
命题人:陈丽敏 审核人:何慧
高三数学(理)下八调试题第1页(共 6 页)
7. 8. 9.
10.已知双曲线 E : x2 y2 1(a 0,b 0) 的右顶点为 A ,抛物线 C : y2 8ax 的焦点为 F .若在 E a2 b2
的渐近线上存在点 P ,使得 AP FP ,则 E 的离心率的取值范围是 ( )

2020河北衡水中学高三数学 数学押题卷8(附参考答案及详细解析)

2020河北衡水中学高三数学 数学押题卷8(附参考答案及详细解析)

绝密★启用前2020年普通高等学校招生全国统一考试理科数学注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题60分)一.选择题:本题共12小题,每小题5分,共60分。

在每小题给出的4个选项中,只有一项是符合题目要求的。

1.复数在复平面内对应的点位于A. 第一象限B. 第二象限C. 第三象限D. 第四象限2.已知全集U=R ,则A. B.C. D.3.某地某所高中2018年的高考考生人数是2015年高考考生人数的1.5倍,为了更好地对比该校考生的升学情况,统计了该校2015年和2018年的高考情况,得到如下柱状图:2015年高考数据统计 2018年高考数据统计则下列结论正确的是A. 与2015年相比,2018年一本达线人数减少B. 与2015年相比,2018年二本达线人数增加了0.5倍C. 与2015年相比,2018年艺体达线人数相同D. 与2015年相比,2018年不上线的人数有所增加4.已知等差数列的公差为2,前项和为,且,则的值为A. 11B. 12C. 13D. 145.已知是定义在上的奇函数,若时,,则时,A. B. C. D.6.已知椭圆和直线,若过的左焦点和下顶点的直线与平行,则椭圆的离心率为A. B. C. D.7.如图,在平行四边形中,对角线与交于点,且,则A. B.C. D.8.某几何体的三视图如图所示,则此几何体( )A. 有四个两两全等的面B. 有两对相互全等的面C. 只有一对相互全等的面D. 所有面均不全等9.赵爽是我国古代数学家、天文学家,大约在公元年,赵爽为《周碑算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的).类比“赵爽弦图”,可类似地构造如图所示的图形,它是由个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设,若在大等边三角形内部(含边界)随机取一点,则此点取自小等边三角形(阴影部分)的概率是()A. B. C. D.10.已知函数(为自然对数的底数),若关于的方程有两个不相等的实根,则的取值范围是A. B. C. D.11.已知双曲线的左、右焦点分别为,,过作圆的切线,交双曲线右支于点,若,则双曲线的渐近线方程为A. B. C. D.12.如图,在正方体中,点,分别为棱,的中点,点为上底面的中心,过,,三点的平面把正方体分为两部分,其中含的部分为,不含的部分为,连结和的任一点,设与平面所成角为,则的最大值为A. B.C. D.第Ⅱ卷(非选择题90分)二.填空题:本大题共4小题,每小题5分,共20分13.已知实数,满足约束条件,则的最小值为________.14.已知数列,若数列的前项和,则的值为________.15.由数字0,1组成的一串数字代码,其中恰好有7个1,3个0,则这样的不同数字代码共有____________个.16.已知函数的图像关于直线对称,当时,的最大值为____________.三.解答题:共70分。

河北省衡水中学2019-2020学年高三下学期第八次调研数学(文)试题(带答案解析)

河北省衡水中学2019-2020学年高三下学期第八次调研数学(文)试题(带答案解析)
【点睛】
本题考查正方体的内切球和外接球的表面积,属于基础题.
6.B
【解析】
【分析】
首先利用诱导公式化简函数解析式,之后利用正余弦平方和等于1,得到关于弦的分式型二次齐次式,之后化成切的式子,代入求解得结果.
由 ,有 ,则 ,
有 .
故选:B
【点睛】
本题考查向量的数量积运算,考查向量的夹角,属于基础题.
5.C
【解析】
【分析】
根据正方体的内切球的直径为正方体的棱,求出其半径,外接球的直径为正方体的对角线,求出半径,由球的表面积公式,即可求解.
【详解】
内切球的半径 ,外接球的半径 ,
所以表面积之比为 .
故选:C.
11.已知抛物线 的焦点为 ,过直线 上任一点引抛物线的两条切线,切点为 , ,则点 到直线 的距离( )
A.无最小值B.无最大值
C.有最小值,最小值为1D.有最大值,最大值为
12.已知函数 有4个不同的零点,则实数 的取值范围为( )
A. B. C. D.
13.设 , 满足约束条件 ,则 的最小值是______.
【分ቤተ መጻሕፍቲ ባይዱ】
化简集合 ,根据交集的定义,即可求解.
【详解】
, ,所以 ,
故选:C.
【点睛】
本题考查集合的运算,属于基础题.
2.B
【解析】
【分析】
由 ,根据模长公式,即可求解.
【详解】
已知 ,所以 ,
故选:B
【点睛】
本题考查虚数的定义,以及复数的模长,属于基础题.
3.C
【解析】
【分析】
“洪崖洞”,“解放碑”,“朝天门”分别记为 ,列出游览三个景点的所有安排顺序,确定最后游览“朝天门”安排个数,根据古典概型的概率即可求解.

2020届河北衡水中学高三理科数学试卷及答案

2020届河北衡水中学高三理科数学试卷及答案

2020届河北衡水中学高三年级期中考试理科数学试卷本试卷分为第I卷(选择题)和第II卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合S={1,2},T={x|x2<4x﹣3},则S∩T=()A.{1} B.{2} C.1 D.22.已知复数z1,z2满足|z1|=|z2|=1,|z1﹣z2|=,则|z1+z2|等于()A.2 B. C.1 D.33.设正数x,y满足x+y=1,若不等式对任意的x,y成立,则正实数a的取值范围是()A.a≥4 B.a>1 C.a≥1 D.a>44.如图,在正方体ABCD﹣A1B1C1D1中,O是底面ABCD的中心,E为CC1的中点,那么异面直线OE与AD1所成角的余弦值等于()A. B.C.D.5.给出计算的值的一个程序框图如图,其中判断框内应填入的条件是()A.i>10 B.i<10 C.i>20 D.i<206.如图,在Rt△ABC中,AC=1,BC=x,D是斜边AB的中点,将△BCD沿直线CD翻折,若在翻折过程中存在某个位置,使得CB⊥AD,则x的取值范围是()A.(0,] B.(,2]C.(,2] D.(2,4]7.数列{a n}中,对任意n∈N*,a1+a2+…+a n=2n﹣1,则a12+a22+…+a n2等于()A.(2n﹣1)2 B. C.4n﹣1 D.8.已知一个几何体的三视图及有关数据如图所示,则该几何体的体积为()A.2 B. C. D.9.设函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0),且函数f(x)的部分图象如图所示,则有()A.f(﹣)<f()<f()B.f(﹣)<f()<f()C.f()<f()<f(﹣)D.f()<f(﹣)<f()10.若圆C:x2+y2+2x﹣4y+3=0关于直线2ax+by+6=0对称,则由点(a,b)向圆C所作切线长的最小值是()A.2 B.3 C.4 D.611.若函数f(x)=x3﹣3x在(a,6﹣a2)上有最大值,则实数a的取值范围是()A.(﹣,﹣1)B.(﹣,﹣1] C.(﹣,﹣2)D.(﹣,﹣2]12.已知f′(x)为函数f(x)的导函数,且f(x)=x2﹣f(0)x+f′(1)e x﹣1,若g(x)=f(x)﹣x2+x,则方程g(﹣x)﹣x=0有且仅有一个根时,a的取值范围是()A.(﹣∞,0)∪{1} B.(﹣∞,1] C.(0,1] D.[1,+∞)第Ⅱ卷非选择题(共90分)二、填空题(本大题共4小题,每小题5分,共20分.)13.设变量x,y满足约束条件,则z=x﹣3y的最小值.14.设数列{a n}的n项和为S n,且a1=a2=1,{nS n+(n+2)a n}为等差数列,则{a n}的通项公式a n= .15.已知函数f(x)的定义域为[﹣2,+∞),部分对应值如下表.f′(x)为f(x)的导函数,函数y=f′(x)的图象如下图所示.若两正数a,b满足f(2a+b)<1,则的取值范围是.X ﹣2 0 4f(x) 1 ﹣1 116. 已知正三棱锥S﹣ABC内接于半径为6的球,过侧棱SA及球心O的平面截三棱锥及球面所得截面如右图,则此三棱锥的侧面积为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)△ABC中,已知,记角A,B,C 的对边依次为a,b,c.(1)求∠C的大小;(2)若c=2,且△ABC是锐角三角形,求a2+b2的取值范围.18. (本小题满分12分)已知数列{a n}的前n项和为S n,且S n=n(n+1)(n∈N*).(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{b n}满足:,求数列{b n}的通项公式;(Ⅲ)令(n∈N*),求数列{c n}的前n项和T n.19. (本小题满分12分)已知圆C:x2+y2+2x﹣4y+3=0.(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程;(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使得|PM|取得最小值的点P的坐标.20. (本小题满分12分)如图,ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成角为60°.(Ⅰ)求证:AC⊥平面BDE;(Ⅱ)求二面角F﹣BE﹣D的余弦值;(Ⅲ)设点M是线段BD上一个动点,试确定点M的位置,使得AM∥平面BEF,并证明你的结论.21. (本小题满分12分)已知函数f(x)=alnx+x2(a为实常数).(1)若a=﹣2,求证:函数f(x)在(1,+∞)上是增函数;(2)求函数f(x)在[1,e]上的最小值及相应的x值;(3)若存在x∈[1,e],使得f(x)≤(a+2)x成立,求实数a的取值范围.请考生在第22、23两题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号.22. (本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系中,圆C的方程是x2+y2﹣4x=0,圆心为C,在以坐标原点为极点,以x轴的非负半轴为极轴建立的极坐标系中,曲线C1:ρ=﹣4sinθ与圆C相交于A,B两点.(1)求直线AB的极坐标方程;(2)若过点C(2,0)的直线C2:(t是参数)交直线AB于点D,交y轴于点E,求|CD|:|CE|的值.23. (本小题满分10分)选修4-5:不等式选讲已知函数f(x)=m﹣|x﹣3|,不等式f(x)>2的解集为(2,4).(1)求实数m的值;(2)若关于x的不等式|x﹣a|≥f(x)恒成立,求实数a的取值范围.理科数学参考答案一.选择题1-5 B C C DA 6-10 A D B D C 11-12 D A.二.填空题13.﹣8 14..16..三.解答题17.解:(1)依题意:,即,又0<A+B<π,∴,∴,................4分(2)由三角形是锐角三角形可得,即由正弦定理得∴,,,======,∵,∴,∴,即...............12分18. .解:(Ⅰ)当n=1时,a1=S1=2,当n≥2时,a n=S n﹣S n﹣1=n(n+1)﹣(n﹣1)n=2n,知a1=2满足该式,∴数列{a n}的通项公式为a n=2n.(2分)(Ⅱ)∵(n≥1)①∴②(4分)②﹣①得:,b n+1=2(3n+1+1),故b n=2(3n+1)(n∈N*).(6分)(Ⅲ)=n(3n+1)=n•3n+n,∴T n=c1+c2+c3+…+c n=(1×3+2×32+3×33+…+n×3n)+(1+2+…+n)(8分)令H n=1×3+2×32+3×33+…+n×3n,①则3H n=1×32+2×33+3×34+…+n×3n+1②①﹣②得:﹣2H n=3+32+33+…+3n﹣n×3n+1=∴,…(10分)∴数列{c n}的前n项和…(12分)19.解:(1)∵切线在两坐标轴上的截距相等,∴当截距不为零时,设切线方程为x+y=a,又∵圆C:(x+1)2+(y﹣2)2=2,∴圆心C(﹣1,2)到切线的距离等于圆的半径,即,解得:a=﹣1或a=3,当截距为零时,设y=kx,同理可得或,则所求切线的方程为x+y+1=0或x+y﹣3=0或或.-- -------6分(2)∵切线PM与半径CM垂直,∴|PM|2=|PC|2﹣|CM|2.∴(x1+1)2+(y1﹣2)2﹣2=x12+y12.∴2x1﹣4y1+3=0.∴动点P的轨迹是直线2x﹣4y+3=0.∴|PM|的最小值就是|PO|的最小值.而|PO|的最小值为原点O到直线2x﹣4y+3=0的距离,∴由,可得故所求点P的坐标为.--12分20.证明:(Ⅰ)因为DE⊥平面ABCD,所以DE⊥AC.因为ABCD是正方形,所以AC⊥BD,从而AC⊥平面BDE.…........................................(4分)解:(Ⅱ)因为DA,DC,DE两两垂直,所以建立空间直角坐标系D﹣xyz如图所示.因为BE与平面ABCD所成角为600,即∠DBE=60°,所以.由AD=3,可知,.则A(3,0,0),,,B(3,3,0),C(0,3,0),所以,.设平面BEF的法向量为=(x,y,z),则,即.令,则=.因为AC⊥平面BDE,所以为平面BDE的法向量,.所以cos.因为二面角为锐角,所以二面角F﹣BE﹣D的余弦值为.…(8分)(Ⅲ)点M是线段BD上一个动点,设M(t,t,0).则.因为AM∥平面BEF,所以=0,即4(t﹣3)+2t=0,解得t=2.此时,点M坐标为(2,2,0),即当时,AM∥平面BEF.…(12分)21.解:(1)当a=﹣2时,f(x)=x2﹣2lnx,当x∈(1,+∞),,所以函数f(x)在(1,+∞)上是增函数;.........2分(2),当x∈[1,e],2x2+a∈[a+2,a+2e2].若a≥﹣2,f'(x)在[1,e]上非负(仅当a=﹣2,x=1时,f'(x)=0),故函数f(x)在[1,e]上是增函数,此时[f(x)]min=f(1)=1.若﹣2e2<a<﹣2,当时,f'(x)=0;当时,f'(x)<0,此时f(x)是减函数;当时,f'(x)>0,此时f(x)是增函数.故[f(x)]min==.若a≤﹣2e2,f'(x)在[1,e]上非正(仅当a=﹣2e2,x=e时,f'(x)=0),故函数f(x)在[1,e]上是减函数,此时[f(x)]min=f(e)=a+e2.综上可知,当a≥﹣2时,f(x)的最小值为1,相应的x值为1;当﹣2e2<a<﹣2时,f(x)的最小值为,相应的x值为;当a≤﹣2e2时,f(x)的最小值为a+e2,相应的x值为e.......................7分(3)不等式f(x)≤(a+2)x,可化为a(x﹣lnx)≥x2﹣2x.∵x∈[1,e],∴lnx≤1≤x且等号不能同时取,所以lnx<x,即x﹣lnx>0,因而(x∈[1,e])令(x ∈[1,e]),又,当x ∈[1,e]时,x ﹣1≥0,lnx ≤1,x+2﹣2lnx >0,从而g'(x )≥0(仅当x=1时取等号),所以g (x )在[1,e]上为增函数,故g (x )的最小值为g (1)=﹣1,所以a 的取值范围是[﹣1,+∞)........12分22.解:(1)在以坐标原点为极点,x 轴的非负半轴为极轴,建立极坐标系,极坐标与直角坐标有如下关系 x=ρcosθ,y=ρsinθ,曲线C 1:ρ=﹣sinθ,∴ρ2=﹣4ρsinθ,∴x 2+y 2=﹣4y , ∴曲线C 1:x 2+y 2+y=0,∴直线AB 的普通方程为:(x 2+y 2﹣4x )﹣(x 2+y 2+4y )=0, ∴y=﹣x ,∴ρsinθ=﹣ρcosθ,∴tanθ=﹣, ∴直线AB 极坐标方程为:)(61R ∈-=ρθ..............5分 (2)根据(1)知,直线AB 的直角坐标方程为y=﹣x , 根据题意可以令D (x 1,y 1),则,又点D 在直线AB 上,所以t 1=﹣(2+t 1),解得 t 1=﹣,根据参数方程的定义,得|CD|=|t 1|=,同理,令交点E (x 2,y 2),则有,又点E 在直线x=0上,令2+t 2=0,∴t 2=﹣,∴|CE|=|t 2|=,∴|CD|:|CE|=1:2.............................10分23.解:(1)∵f (x )=m ﹣|x ﹣3|,∴不等式f (x )>2,即m ﹣|x ﹣3|>2,∴5﹣m <x <m+1,而不等式f (x )>2的解集为(2,4),∴5﹣m=2且m+1=4,解得:m=3;........5分(2)关于x 的不等式|x ﹣a|≥f (x )恒成立⇔关于x 的不等式|x ﹣a|≥3﹣|x ﹣3|恒成立 ⇔|x ﹣a|+|x ﹣3|≥3恒成立⇔|a ﹣3|≥3恒成立,由a ﹣3≥3或a ﹣3≤﹣3,解得:a ≥6或a ≤0...............10分。

河北衡水2020届高三调研考试理数试题

河北衡水2020届高三调研考试理数试题

3 3河北衡水2020届高三调研考试理数试题一、选择题(每小题5分,共60分。

下列每小题所给选项只有一项符合题意,请将正确答案的 序号填涂在答题卡上)1.已知集合 A ={x ∈R|x +1>0},B ={x ∈Z|x ≤1},则 A ∩B =A .{x |0≤x ≤1}B .{x |﹣1<x ≤1}C .{0,1}D .{1}6.已知某算法的程序框图如图所示,则该算法的功能是A .求首项为 1,公比为 2 的等比数列的前 2017 项的和B .求首项为 1,公比为 2 的等比数列的前 2018 项的和C .求首项为 1,公比为 4 的等比数列的前 1009 项的和D .求首项为 1,公比为 4 的等比数列的前 1010 项的和2.复数 1+ i 1+ 2i 2 A . 110C . 3 10的共轭复数的虚部为B . - 1 10 D . - 310 7.如图 1,已知正方体 ABCD-A 1B 1C 1D 1 的棱长为 2,M ,N ,Q 分别 是线段 AD 1,B 1C ,C 1D 1 上的动点,当三棱锥 Q-BMN 的正视图如图 2 所示时,三棱锥俯视图的面积为3.有一散点图如图所示,在 5 个(x ,y )数据中 去掉 D (3,10)后,下列说法正确的是 A .残差平方和变小 B .相关系数 r 变小 C .相关指数 R 2变小D .解释变量 x 与预报变量 y 的相关性变弱35A .2B .1C .D .2 2⎛ π ⎫ ⎛ π ⎫x 2 y 28.如图直角坐标系中,角α 0 < α < 2 ⎪ 、角 β - 2 < β < 0⎪4. 已知双曲线 C : - = 1 12 4,O 为坐标原点,F 为 C 的右焦点,过F 的直线与 C 的两条 ⎝ ⎭ ⎝ ⎭5渐近线的交点分别为 P ,Q ,若△POQ 为直角三角形,则|PQ |= A .2B .4C .6D .8的终边分别交单位圆于 A 、B 两点,若 B 点的纵坐标为 - ,13α ⎛ α α ⎫ 15.一个袋中放有大小、形状均相同的小球,其中红球 1 个、黑球 2 个,现随机等可能取出小 且满足 S= ,则 sin cos -sin ⎪ + 的值 球.当有放回依次取出两个小球时,记取出的红球数为 ξ1;当无放回依次取出两个小球时, ∆AOB 45 122 ⎝ 2 2 ⎭ 2 12 5 记取出的红球数为 ξ2,则( )A .E ξ1<E ξ2,D ξ1<D ξ2B .E ξ1=E ξ2,D ξ1>D ξ2C .E ξ1=E ξ2,D ξ1<D ξ2D .E ξ1>E ξ2,D ξ1>D ξ2A . - 13B .C . -D .13 13 13⎛ 2 3x ( 9. 已知函数 f (x ) = sin ωx - cos ωx (ω > 0) ,若集合{x ∈(0 , π ) | f (x ) = -1} 含有 4 个元素, 二、填空题(共 4 题,每题 5 分)n则实数 ω 的取值范围是 ⎛ 13. 已知二项式 2x - 1 ⎫ ⎪ 的展开式中第2 项与第3 项的二项式系数之比是 2︰5,则 x 3 的系 A . [ 3 , 5)2 2B . ( 3 , 5]2 2C . [7 , 25)2 6D . (7 , 25]2 6⎝⎭ 数为10.已知抛物线 y 2 = 4x 上有三点 A ,B ,C ,AB ,BC ,CA 的斜率分别为 3,6,-2 ,则 的重心坐标为 ∆ABC 14. 数学老师给出一个定义在 R 上的函数 f (x ),甲、乙、丙、丁四位同学各说出了这个函数 的一条性质:14( ,1) 9B . 14 ,0)9C . (14 , 0)27D . (14 ,1)27甲:在(﹣∞,0]上函数单调递减;乙:在[0,+∞)上函数单调递增; 丙:函数 f (x )的图象关于直线 x =1 对称;丁:f (0)不是函数的最小值. 11.在棱长为 2 的正方体 ABCD - A 1B 1C 1D 1 中,点 M 是对角线 AC 1 上的点(点 M 与 A、C 1 不重合),则下列结论正确的个数为( )老师说:你们四个同学中恰好有三个人说的正确,那么,你认为说法错误的同学是15. 已知△ABC 的一内角 A = π3, AB = 10, AC = 6 ,O 为△ABC 所在平面上一点,满足|OA |=|OB |=|OC |,设 AO = m AB + n AC ,则 m +3n 的值为16.已知 ∆ABC 的内角 A 、B 、C 的对边分别为 a 、b 、c ,若 A = 2B ,则 c +2b 的取值ba①存在点 M ,使得平面 A 1DM ⊥ 平面 BC 1D ; ②存在点 M ,使得DM // 平面 B 1CD 1 ; 范围为 .三、解答题:(本大题共 5 小题,共 70 分,解答应写出文字说明,证明过程或演算步骤。

衡水中学2020届高三第八次调研考试数学理数+参考答案

衡水中学2020届高三第八次调研考试数学理数+参考答案


9.
高三数学(理)下八调答案第1页(共 8 页)
高三数学(理)下八调答案第2页(共 8 页)
依题只须
k

( ( S1
+ 1) ( S2
+ 1)L( Sn
n
+1)
)min
,令
f
(n)
=
( S1
+ 1) ( S2
+ 1)L ( Sn
n
+1)
,则Biblioteka f(n +1) f (n)
=
n ( Sn+1 +1)
n +1
=
n (2n + 3) (n +1)2
> 1 ,所以
f
( )n 为单调递增数列,

f (n)nin
=
f
(1) =
S1 + 1
1
=
3
,∴
kmax
=3,
故选:B.
高三数学(理)下八调答案第3页(共 8 页)
高三数学(理)下八调答案第4页(共 8 页)
高三数学(理)下八调答案第5页(共 8 页)
高三数学(理)下八调答案第6页(共 8 页)
高三数学(理)下八调答案第7页(共 8 页)
高三数学(理)下八调答案第8页(共 8 页)
k
A2
B3
C4
D5
2( 6 )
18 12
x2 y2
16
C : a2 b2 1(a 0,b 0)
F1, F2, l
l
C
C
l1 : y
tan 2
x, F2M
l1,
.

衡水中学调研考试高中数学(理)试卷含答案

衡水中学调研考试高中数学(理)试卷含答案

衡水中学调研考试高中数学(理)试卷含答案衡水中学调研考试数学试卷(理科)本试卷分第Ⅰ卷(选择题)和第二卷(非选择题)两部分,共150分,考试时间120分钟第Ⅰ卷(选择题共60分)一、选择题(每小题5分,共60分,下列每小题所给选项只有一项符合题意,请将正确答案的序号填在答题卡上)1. 等差数列{}n a 的前n 项和为n S ,且3S =6,1a =4,则公差d 等于()A .1 B.532 D.3 2. 设有直线m 、n 和平面α、β,则下列说法中正确的是()A.若//,,m n m n αβ??,则//αβB.若,,m m n n αβ⊥⊥?,则//αβC.若//,,m n m n αβ?⊥,则αβ⊥D.若//,,m n m n αβ⊥⊥,则αβ⊥ 3. 用一个平面截正方体一角,所得截面一定是()A.锐角三角形B.钝角三角形C.直角三角形D.都有可能 4.如图,Rt O A B '''?是一平面图形的直观图,斜边2O B ''=,则这个平面图形的面积是()A .22B .1C .2D .22 5. 数列1, 12, 124, , 1242n+++++++L L L ,的前n 项和为 ( ) A .n n --+221 B.12--n n C.322--+n n D. 222--+n n 6. 若{}n a 是等差数列,满足121010a a a +++=L ,则有()A .11010a a +>B .21000a a +< C.3990a a +=D .5151a =7.一个六棱柱的底面是正六边形,其侧棱垂直底面。

已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,那么这个球的表面积为()【含答案】A .43 B .4 C .23D .138. ABCD 是正方形,P 是平面ABCD 外一点,PD ⊥AD,PD=AD=2,二面角P —AD —C 为600,则P 到AB 的距离是A.22B.3C.2D.79. 如图为一个几何体的三视图,侧视图与正视图均为矩形,俯视图为正三角形,尺寸如图所示,则该几何体的体积为()A.3B.43C.33D.6310. 如图,在正方体1111ABCD A B C D —中,E 、F 、G 、H 分别为中点,则异面直线EF 与GH 所成的角等于() A .045 B .060 C .090 D .0120 11. 已知54x <,则函数14245y x x =+--() A .有最小值为5 B .有最大值为-2 C .有最小值为1 D .有最大值为1 12. 对于四面体ABCD ,给出下列四个命题:①若AB=AC ,BD=CD ,则BC ⊥AD ;②若AB=CD ,AC=BD ,则BC ⊥AD ;③若AB ⊥AC ,BD ⊥CD ,则BC ⊥AD ;④若AB ⊥CD ,AC ⊥BD ,则BC ⊥AD ;其中正确的命题的序号是( )A. ①②B. ②③C. ②④D. ①④第Ⅱ卷(非选择题共90分)二、填空题(每题5分,共20分,把答案填在答题纸的横线上)13. 已知{}n a 是等差数列,246816,a a a a +++=求9S =_______.14.已知边长为a 的等边三角形内任意一点到三边距离之和为定值,这个定值为3a ,推广到空间,棱长为a 的正四面体内任意一点到各个面的距离之和也为定值,则这个定值为: 15. 如图1,一个正四棱柱形的密闭容器底部镶嵌了同底的正四棱锥形实心装饰块,容器内盛有a 升水时,水面恰好经过正四棱锥的顶点P 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档