矩形波导的传播特性共22页文档
《矩形波导TE波》PPT课件

2021/8/17
17
二、TE10波的功率和容量
图 13-5 尖端效应影响耐功率
2021/8/17
18
三、TE10波内壁电流
在电磁理论中已经讲过波导管壁的传导电流分
布是由管内磁场的切向分J 量s 所n 决H 定r 。
(13-8)
Js
Ht
n
图 13-6 波导管内壁电流
2021/8/17
19
三、TE10波内壁电流
目前的雷达战中,对提高峰值功率容量极为重视。
因为在一定意义上,功率就是作用距离,所以增加传
输线功率容量相当重要。
气体击空的实质是场拉出游离电子在撞到气体分子
之前已具有足够的动能,再次打出电子,形成连锁反
应,以致击穿。如果在概念上,我们加大气体密度,
就不会出现很大动能的电子,所以加大气压和降低温
度是增加耐压功率的常用办法。
是一个问题的两个方面:增加功率是为了使通讯雷
达“看”远,减小衰减是为了保证功率不受损失,
一个“增产”,一个“节支”,相互依存,缺一不
可。
一般认为波导空间(Air Space)是无耗的,所谓
衰减是指电流的壁损耗。假定P0是理想导体波导的
传输功率,则
P P0 e 2 az
P z
2aP0 e 2az
2021/8/17
2
波型阻抗
1
2021/8/17
1
2a
2
5
一、TE10波的另一种表示
我们在上面给出的TE10波表达式,是以Hz为领矢
矢量的。然而,在实用上也常有用Ey作领矢矢量,即
设
Ey E0sinaxejz
(13-1)
利用Maxwell方程
2.2 矩形波导

H10(即TE10)波的截止波长最大,它最容易在波导中传播。
为了保证单一的H10波传输,波导尺寸必须满足:
(c ) H20 (c ) H10
a 2a
(c ) H01
2b
§2.2 矩形波导
2.2.4 矩形波导的主模—TE10
1.场表达式
Ez 0
电力线只分布在波导的横截面内
基模:TE10(a>b)
a
横截面图
y z
Hx 窄边纵切面 Ey
§2.2 矩形波导
x z
g
立体图见图2-5
基模:TE10(a>b) 宽边纵切面
§2.2 矩形波导
3.传输参量
波导波长
g
vp f
1 ( / c )2
相移常数
2 2 g
1 ( / c )2
§2.2 矩形波导
相速
vp
v
1 ( / c )2
群速 vg v 1 ( / c )2
(3) 场量沿z轴为行波,沿x轴和y轴为纯驻波
(4) 主模:最低次模
TE10模
一般来说,用a表示波导宽边,b表示窄边,a>b,K10=π/a是所 有波型中波数最小的,因此TE波型的最低次波型是TE10模。
§2.2 矩形波导
3.传输条件
波导中不同模式的截止波长是不同的,对于特定尺寸的波导,
只有满足 c 的模才能得到传输。
§2.2 矩形波导
TE10单模传输条件:
a 2a
2b
兼顾所能够承受一定的传输功率:图(2-8)
a 1.8a
(2-97)
兼顾最小功率损耗:
a=0.7λ
b=(0.4~0.5)a
§2.2 矩形波导
矩形波导 PPT

m 场量沿x轴[0,a]出现的半周期(半个纯驻波)的数目;
n 场量沿y轴[0,b]出现的半周期的数目。
④j 相位关系 Ey-Hx、Ex-Hy
z轴有功率传输
Ez-Hx、Ez-Hy
x、y轴无功率传输
所以行波状态下,沿波导纵向(z轴)传输有功功率、横向(x、
y轴)无功功率。
2) 场结构
为了能形象和直观的了解场的分布(场结构),可以 利用电力线和磁力线来描绘它。电力线和磁力线遵循 的规律:
力线上某点的切线方向
该点处场的方向
力线的疏密程度
场的强弱
电力线 发自正电荷、止于负电荷,也可以环绕着交变磁场构 成闭合曲线,电力线之间不能相交。在波导壁的内表面(假设为 理想导体)电场的切向分量为零,只有法向分量(垂直分量), 即在波导内壁处电力线垂直边壁。
磁力线 总是闭合曲线,或者围绕载流导体,或者围绕交变电 场而闭合,磁力线之间不能相交,在波导壁的内表面上只能存在 磁场的切向分量,法向分量为零。
3)相速和群速
TMmn和TEmn波型的相速和群速表示式相同:
vp
v
1(/c)2
vg v 1-c2
4)波型阻抗
TMmn和TEmn波型阻抗为:
ZTE
1
1c2
g
ZTM
1c2
g
5)尺寸选择——矩形波导的工作波型图
基于前面的定义,根据波导横截面尺寸、工作波长、 截止波长之间关系,构成矩形波导工作波型图。根据不 同要求,可利用波型图对波导的横截面尺寸和波导波长 作出选择。
TE0n和TEm0是非简并模;其余的TEmn和TMmn都存在简并模: 若a=b, 则TEmn 、TEnm、TMmn和TMnm是简并模;若a=2b,则TE01与TE20,TE02和 TE40,TE50、TE32和TM32是简并模。
矩形波导的传输特性

Ex
kc2
m
a
E0
cos(
m
a
x)sin( n
b
y)e z
Ey
kc2
n
b
E0
sin(
m
a
x) cos( n
b
y)e z
Hx
j
kc2
n
b
E0
sin(
m
a
x) cos( n
b
y)e z
Hy
j
kc2
m
a
E0
cos(
m
a
x)sin( n
b
y)e z
其中:m,n取不同的值就对应着不同的模式。
3、矩形波导的传输特性
Et
1 kc2
(
jaˆz
t Hz )
j
kc2
(
H z y
aˆx
H z x
aˆy )
可得:
Ex
j
kc2
(
H z y
)
Ey
j
kc2
( Hz x
)
在 x=0 和 x=a 两个窄边上: Ey 0
Ey
j
kc2
( Hz x
)
Hz 0 x
Hz x
kx (Acos kx x
Bsin kx x)(C sin ky y
1 X
d2X dx2
1 Y
d2Y dy2
kc2
上式在0x a, 0y b 范围内任意位置都成立,只有等式左边两项均为常
数,即可得下列常微分方程:
1 X
d2X dx 2
kx2
1 Y
d2Y dy2
k
22 矩形波导

vp vg v2
§2.2 矩形波导
4. 壁电流分布
电磁波在波导中传播,将在波导壁上产生高频感应电流。
根据边界条件,面电流密度: 内壁的法向单位矢量
Js nˆ H
内表面上的切向磁场强度
横向磁场决定纵向电流; 纵向磁场决定横向电流
§2.2 矩形波导
H10波各波导壁上的面电流密度为:
在x=0窄壁上
Kc2
K
2 x
K
2 y
m
a
2
n
b
2
Ey
j
Kc2
H0
m
a
sin m
a
xcos n
b
y e j z
Kc
m
2
n
2
a b
§2.2 矩形波导
通解也可以写成下面的形式
X Acos(Kxx x ) (2-70) Y B cos(K y y y ) (2-71)
A、φx、 B、 φy 、Kx、Ky为待定常数 (6个) 当考虑纵向行波传输规律时,电场强度可写成
§2.2 矩形波导
2.2.3 矩形波导中的波型
1.波型 截止波数的表达式为 分析:
Kc
K
2 x
K
2 y
m
2
n
2
a b
(1)m、n为自然数,分别表示常量沿x轴和y轴出现的半周期 数,也是半驻波数;
(2)不同的m、n对应一种波型TMmn,但不存在TMm0、TM0n、 TM00 (3三)种场波量型沿,z轴最为低行次波波,型沿为xT轴M和11y; 轴为纯驻波;
a b
截止波长:
c
2
Kc
2
m a
微波专业技术在矩形波导中传输特性实验讲稿汇总

微波技术实验微波技术是从20世纪初开始发展起来的一门新兴科学技术,1940年前处于实验室研究阶段,1940~1945年处于实际应用阶段,1945年以后形成了一系列以微波为基础的新兴科学,如微波波谱学,射电天文学,射电气象学等;1965年以后,向固体化、小形化方向发展,并逐步得到了实际应用。
特别在天体物理、射电天文、宇宙通讯等领域,具有别的方法和技术无法取代的特殊功能。
[实验目的]1、学习用物理学的理论探究微波的特点及微波发射和传输的原理,2、掌握观测速调管的工作特性,描绘工作特性曲线(振荡膜)和频率特性曲线;3、观测波导管的工作状态,用直接法,等指示度法,功率衰减法测量大、中、小驻波比,测量波导波长g ,测频率f ,并计算光速C 和群速u ,相速g V ;4、观测体效应管的振荡特性,I -V 曲线、P -V 曲线、f -V 曲线。
[实验原理]一、微波基本知识1、微波及其特点微波是波长很短(频率很高)的电磁波。
一般把波长1m ~0.1mm ,频率在300MHz ~3000GHz 范围内的电磁波称为微波。
根据波长的差异还可以将微波分为分米波、厘米波、毫米波、亚毫米波。
不同范围的电磁波既有其相同的特性,又有各自不同的特点,本实验所产生的微波频率在8600MHz ~9600MHz 范围内。
微波具有以下特性:1)似光性。
由于微波波长短,其数量级可达到毫米(10-3m ),与光波的数量级(10-6m )可相比拟,因此微波具有光的传播特性,在一般物体面前呈直线传播状态。
利用这个特点可制成方向性极强的天线、雷达等。
2)频率高,振荡周期短。
微波的振荡周期10-9~10-13s ,已经和电子管中电子的飞越时间(10-9s )可相比拟。
作为一种高频率的电磁辐射,由于趋肤效应,辐射耗损相当严重。
因此,一般的电子管、集中参数元件,一般的电流传输线已不能在微波器件中使用,而必须用分布参数元件,如波导管、谐振腔、测量线等来代替,其测量的量是驻波比、特性阻抗、频率等。
第3章矩形波导

《微波技术》
Harbin Harbin Engineering Engineering University University
3-5 矩形波导
一、矩形波导中传输波型及其场分量 (一)TM波
d2 X ( x ) 2 + k X ( x) = 0 x 2 dx d 2Y ( y ) 2 k + yY ( y ) = 0 2 dy ⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭
Note:
k +k =k
2 x 2 y
2 c
通解为
X ( x ) = C1 cos k x x + C2 sin k x x Y ( y ) = C3 cos k y y + C4 sin k y y
Ez = − j Hz = 0 U sin x ⎟ sin ⎜ y ⎟ e β 0 ⎜ a ⎝ ⎠ ⎝b ⎠ ⎪ ⎪ ⎪ ⎪ ⎭
⎛ mπ ⎞ ⎛ mπ ⎞ ⎛ nπ ⎞ j(ω t − β z ) Ex = −U 0 ⎜ x ⎟ sin ⎜ y⎟e ⎟ cos ⎜ ⎝ a ⎠ ⎝ a ⎠ ⎝ b ⎠ ⎛ nπ ⎞ ⎛ mπ ⎞ ⎛ nπ ⎞ j(ω t − β z ) E y = −U 0 ⎜ ⎟ sin ⎜ x ⎟ cos ⎜ y⎟e ⎝ b ⎠ ⎝ a ⎠ ⎝ b ⎠
截止波数为
⎛ mπ ⎞ ⎛ nπ ⎞ kc = ⎜ ⎟ +⎜ ⎟ ⎝ a ⎠ ⎝ b ⎠
《微波技术》
2 2
Harbin Harbin Engineering Engineering University University
三、矩形波导管中电磁波的传输特性 微波技术基础 课件 PPT

2
1
m
2
n
2
a b
§2-3 矩形波导管中电磁波的传输特性——三、矩形波导管中电磁波的传输特性
❖ 简并现象:不同波型具有相同截止波长(或截止频率)的现象
简并波型的kc、fc、vg、vp以及g都是相同的 kc
o 一般情况下: ▪ TE0n和TEm0是非简并模(TM最低次模为TM11)
2 m 2 n 2 a b
矩形波导管管壁电流立体分布图
❖ 左右两侧壁的电流 ❖ 只有Jy分量 ❖ 大小相等,方向相同。
❖ 上下宽壁内的电流 ❖由Jz和Jx合成, ❖ 同一位置上下宽壁内的管壁电流大小 相等,方向相反。
§2-3 矩形波导管中电磁波的传输特性——四、矩形波导管的管壁电流
了解管壁电流的分布情况,对解决某些实际问题有帮助
ax
s
in
2
a
x dxdy
Em2 axb
2ZTE10
a sin 2
0
a
x dx ab
2ZTE10
Em2 ax
§2-3 矩形波导管中电磁波的传输特性——三、矩形波导管中电磁波的传输特性
▪ 功率容量Pbr:波导能够传输(承受)的最大允许功率(极限功率)
Emax Ey xa / 2 Ebr
a 0.7
b 0.4 ~ 0.5a
▪ 使用的波导已标准化:可根据需要选用
§2-3 矩形波导管中电磁波的传输特性——
四、矩形波导管的管壁电流
▪ 导行波在金属波导内壁表面上将感应出高频电流,称为管壁电流。
▪ 管壁电流如何分布?
假定内表面是理想导体, ▪ Js表示内表面上的表面电流密度矢量 ▪ H表示内表面处切线方向的磁场强度 ▪ an表示内表面法线方向的单位矢量