曲线拟合,数学建模
曲线拟合在数学建模中的应用

曲线拟合在数学建模中的应用曲线拟合是数学建模中广泛应用的一种方法。
它是将一组数据点与一个函数进行比较,以确定两者之间的差异最小化的过程。
通过这种方法,可以得到一个公式来拟合数据,并预测未知数据点的值。
以下是曲线拟合在数学建模中的应用。
一、数据分析曲线拟合在数据分析中应用广泛。
当有大量数据要分析时,拟合数据可以使分析过程更简单和更准确。
例如,当研究人员想要分析消费模式时,他们可以使用曲线拟合来绘制数据点的图形,并查看其中的趋势。
通过拟合数据,他们可以预测未来趋势,做出合适的决策。
二、模式预测曲线拟合也可以应用于模式预测。
通过对历史数据进行曲线拟合,可以预测未来的走势。
例如,当股票市场行情不稳定时,投资者可以使用曲线拟合来预测市场的走势。
他们可以通过拟合过去几年的数据来预测未来的股票价格,并购买或出售相应的股票。
三、信号处理曲线拟合还可以应用于信号处理领域。
当需要处理包含各种噪声的信号时,进行曲线拟合可以消除噪声,提高信号的质量。
例如,在声波信号处理中,曲线拟合可以消除噪声,使得信号更加清晰、准确。
四、工程应用曲线拟合在工程应用中也有广泛的应用。
例如,在机械工程中,预测轴承寿命需要对轴承运行过程中的振动数据进行分析和处理。
这时可以使用曲线拟合,对振动信号进行处理,以预测轴承的寿命。
曲线拟合是数学建模中的重要工具。
它可以用于数据分析、模式预测、信号处理以及工程应用等多个领域,帮助人们处理和分析大量数据,以提高决策的准确性和效率。
不均匀分布数学建模拟合曲线

不均匀分布数学建模拟合曲线
不均匀分布数学建模是指利用数学模型来描述和分析不均匀分布数据的特征和规律。
一种常见的曲线模型用于拟合不均匀分布数据是非线性回归模型。
非线性回归模型可以通过最小二乘法来进行参数估计和模型拟合。
具体步骤如下:
1. 根据不均匀分布数据的特点选择合适的非线性函数模型,比如指数函数、对数函数、幂函数、多项式函数等。
2. 根据选择的非线性函数模型设定待估计的模型参数。
3. 根据最小二乘法原理,构建估计函数和目标函数。
4. 对目标函数进行最小化求解,得到模型参数的估计值。
5. 使用估计的模型参数对曲线进行拟合,得到拟合曲线。
6. 利用拟合曲线对不均匀分布数据进行预测和分析。
需要注意的是,选择合适的非线性模型需要根据具体问题进行判断和调整。
在模型拟合时,还要考虑模型的拟合效果和参数的稳定性,避免过拟合和欠拟合问题。
实际应用中,不均匀分布数据的数学建模还可以采用其他方法和技术,比如核密度估计、样条函数拟合、混合模型等。
根据
具体问题的特点选择合适的建模方法和技术,进行数学建模和模型拟合。
curvefitting拟合三元函数

curvefitting拟合三元函数拟合三元函数是指找到一个函数来拟合原始数据中的三元关系。
在数学中,我们通常称之为曲线拟合。
曲线拟合是一种数学建模的方法,可以通过拟合数据点来求解未知函数的参数,以尽可能准确地描述观察到的数据。
在进行三元函数的拟合之前,我们需要明确目标函数的形式。
三元函数是指依赖于三个自变量的函数,通常可以表示为f(x,y,z)。
这里假设目标函数是可微的,并且遵循其中一种特定的形式,比如多项式函数、指数函数、对数函数等。
在曲线拟合中,常用的方法包括最小二乘法和最大似然估计。
最小二乘法是一种常用的曲线拟合方法,它通过最小化观察数据与拟合函数的残差平方和来求解参数。
具体而言,我们可以将三元函数表示为一个参数向量的线性组合,即f(x,y,z)=α_1*φ_1(x,y,z)+α_2*φ_2(x,y,z)+...+α_n*φ_n(x,y,z),其中φ_i(x,y,z)是基函数,α_i是待求的参数。
我们的目标是找到最优的参数向量,使得拟合函数尽可能地与观察数据吻合。
最小二乘法可以通过各种数值优化算法来求解这个问题,比如梯度下降算法、牛顿法等。
最大似然估计是另一种常用的曲线拟合方法,它假设观察数据是从一些概率分布中独立地抽取而得到的,并且通过最大化观察数据出现的概率来求解参数。
具体而言,我们可以将三元函数表示为一个概率分布的参数化形式,即f(x,y,z;θ),其中θ是待求的参数。
我们的目标是找到最优的参数,使得观察数据出现的概率最大化。
最大似然估计可以通过数值优化算法来求解,比如梯度上升算法、牛顿法等。
在实际应用中,我们可以根据问题的特点选择合适的拟合方法和目标函数形式。
对于简单的三元函数拟合,通常可以使用多项式函数来表示目标函数,然后通过最小二乘法来求解参数。
对于复杂的三元函数拟合,可能需要使用更复杂的函数形式和更高级的拟合方法来得到更准确的拟合结果。
总结起来,曲线拟合是一种数学建模的方法,可以通过拟合数据点来求解未知函数的参数,以尽可能准确地描述观察到的数据。
曲线方程的数学建模

曲线方程的数学建模
曲线方程的数学建模是通过数学语言和符号,将实际问题中的曲线关系用数学公式来描述和表示。
具体步骤如下:
1. 确定变量和参数:首先确定需要考虑的变量和参数,将其用符号表示出来,比如x、y是常用的表示自变量和因变量的符号。
2. 确定曲线类型:根据实际问题的要求和特点,确定曲线的类型,比如直线、抛物线、指数函数等。
3. 建立方程模型:根据所选择的曲线类型,选择合适的方程形式,通过对变量和参数的定义,建立数学方程模型来描述曲线。
可以使用常见的数学函数,如线性函数、二次函数、指数函数、对数函数等来表示曲线。
4. 确定参数值:根据具体问题的条件和数据,确定参数的具体值。
这可以通过实验数据的拟合、变量的测量或者特定条件的设定来实现。
5. 解方程求解:根据所建立的方程模型,通过数学方法解方程,求解出曲线上的点的具体坐标。
6. 模型验证:通过与实际数据对比,验证所建立的数学模型的准确性和有效性。
总之,曲线方程的数学建模可以把实际问题转化为数学问题,
并通过建立方程模型来揭示其中的关系和规律,从而为问题的定量分析和解决提供数学工具和方法。
数学建模方法大汇总

数学建模方法大汇总数学建模是数学与实际问题相结合,通过建立数学模型来解决实际问题的一种方法。
在数学建模中,常用的方法有很多种,下面将对常见的数学建模方法进行大汇总。
1.描述性统计法:通过总结、归纳和分析数据来描述现象和问题,常用的统计学方法有平均值、标准差、频率分布等。
2.数据拟合法:通过寻找最佳拟合曲线或函数来描述和预测数据的规律,常用的方法有最小二乘法、非线性优化等。
3.数理统计法:通过样本数据对总体参数进行估计和推断,常用的方法有参数估计、假设检验、方差分析等。
4.线性规划法:建立线性模型,通过线性规划方法求解最优解,常用的方法有单纯形法、对偶理论等。
5.整数规划法:在线性规划的基础上考虑决策变量为整数或约束条件为整数的情况,常用的方法有分支定界法、割平面法等。
6.动态规划法:通过递推关系和最优子结构性质建立动态规划模型,通过计算子问题的最优解来求解原问题的最优解,常用的方法有最短路径算法、最优二叉查找树等。
7.图论方法:通过图的模型来描述和求解问题,常用的方法有最小生成树、最短路径、网络流等。
8.模糊数学法:通过模糊集合和隶属函数来描述问题,常用的方法有模糊综合评价、模糊决策等。
9.随机过程法:通过概率论和随机过程来描述和求解问题,常用的方法有马尔可夫过程、排队论等。
10.模拟仿真法:通过构建系统的数学模型,并使用计算机进行模拟和仿真来分析问题,常用的方法有蒙特卡洛方法、事件驱动仿真等。
11.统计回归分析法:通过建立自变量与因变量之间的关系来分析问题,常用的方法有线性回归、非线性回归等。
12.优化方法:通过求解函数的最大值或最小值来求解问题,常用的方法有迭代法、梯度下降法、遗传算法等。
13.系统动力学方法:通过建立动力学模型来分析系统的演化过程,常用的方法有积分方程、差分方程等。
14.图像处理方法:通过数学模型和算法来处理和分析图像,常用的方法有小波变换、边缘检测等。
15.知识图谱方法:通过构建知识图谱来描述和分析知识之间的关系,常用的方法有图论、语义分析等。
数学建模Matlab数据拟合详解

第十八页,共43页。
插值问题
已知 n+1个节点 (xj,yj)(j0,1, n,其中 x j
数学建模十大经典算法( 数学建模必备资料)

建模十大经典算法1、蒙特卡罗算法。
该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时通过模拟可以来检验自己模型的正确性。
2、数据拟合、参数估计、插值等数据处理算法。
比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具。
3、线性规划、整数规划、多元规划、二次规划等规划类问题。
建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo、MATLAB软件实现。
4、图论算法。
这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。
5、动态规划、回溯搜索、分治算法、分支定界等计算机算法。
这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中。
6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法。
这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。
7、网格算法和穷举法。
网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。
8、一些连续离散化方法。
很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。
9、数值分析算法。
如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。
10、图象处理算法。
赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理。
历年全国数学建模试题及解法赛题解法93A非线性交调的频率设计拟合、规划93B足球队排名图论、层次分析、整数规划94A逢山开路图论、插值、动态规划94B锁具装箱问题图论、组合数学95A飞行管理问题非线性规划、线性规划95B天车与冶炼炉的作业调度动态规划、排队论、图论96A最优捕鱼策略微分方程、优化96B节水洗衣机非线性规划97A零件的参数设计非线性规划97B截断切割的最优排列随机模拟、图论98A一类投资组合问题多目标优化、非线性规划98B灾情巡视的最佳路线图论、组合优化99A自动化车床管理随机优化、计算机模拟99B钻井布局0-1规划、图论00A DNA序列分类模式识别、Fisher判别、人工神经网络00B钢管订购和运输组合优化、运输问题01A血管三维重建曲线拟合、曲面重建01B 公交车调度问题多目标规划02A车灯线光源的优化非线性规划02B彩票问题单目标决策03A SARS的传播微分方程、差分方程03B 露天矿生产的车辆安排整数规划、运输问题04A奥运会临时超市网点设计统计分析、数据处理、优化04B电力市场的输电阻塞管理数据拟合、优化05A长江水质的评价和预测预测评价、数据处理05B DVD在线租赁随机规划、整数规划06A 出版资源配置06B 艾滋病疗法的评价及疗效的预测 07A 中国人口增长预测 07B 乘公交,看奥运 多目标规划 数据处理 图论 08A 数码相机定位 08B 高等教育学费标准探讨09A 制动器试验台的控制方法分析 09B 眼科病床的合理安排 动态规划 10A 10B赛题发展的特点:1.对选手的计算机能力提出了更高的要求:赛题的解决依赖计算机,题目的数据较多,手工计算不能完成,如03B ,某些问题需要使用计算机软件,01A 。
数学建模曲线拟合

曲线拟合摘要根究已有数据研究y关于x的关系,对于不同的要求得到不同的结果。
问题一中目标为使的各个观察值同按直线关系所预期的值的偏差平方和为最小,利用MATLAB中tlsqcurvefi函数在最小二乘法原理下拟合出所求直线。
问题二目标为使绝对偏差总和为最小,使用MATLAB中的fminsearch函数,在题目约束条件内求的最优答案,以此方法同样求得问题三中最大偏差为最小时的直线。
问题四拟合的曲线为二阶多项式,方法同前三问类似。
问题五为求得最佳的曲线,将之前的一次曲线换成多次曲线进行拟合得到新的结果。
经试验发现高阶多项式的阶数越高拟和效果最好。
)关键词:函数拟合最小二乘法线性规划|<¥一、问题的重述已知一个量y 依赖于另一个量x ,现收集有数据如下:(1)求拟合以上数据的直线a bx y +=。
目标为使y 的各个观察值同按直线关系所预期的值的偏差平方和为最小。
(2)求拟合以上数据的直线a bx y +=,目标为使y 的各个观察值同按直线关系所预期的值的绝对偏差总和为最小。
(3)求拟合以上数据的直线,目标为使y 的各个观察值同按直线关系所预期的值的最大偏差为最小。
(4)求拟合以上数据的曲线a bx cx y ++=2,实现(1)(2)(3)三种目标。
}(5)试一试其它的曲线,可否找出最好的?二、问题的分析对于问题一,利用MATLAB 中的最小二乘法对数据进行拟合得到直线,目标为使各个观察值同按直线关系所预期的值的偏差平方和为最小。
对于问题二、三、四均利用MATLAB 中的fminsearch 函数,在题目要求的约束条件下找到最佳答案。
对于问题五,改变多项式最高次次数,拟合后计算残差,和二次多项式比较,再增加次数后拟合,和原多项式比较残差,进而找到最好的曲线。
~三、基本假设1.表中数据真实可信,每个点都具有意义。
四、模型的建立与求解1.问题一 :对给定数据点(){}),,1,0(,m i Y X i i =,在取定的函数类Φ 中,求()Φ∈x p ,使误差的平方和2E 最小,()[]22∑-=i i Y X p E 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
e
1
或∞-范数
或
(x ) f (x ) e max i max ( xi ) f ( x i )
e
1
i 0
n
i
n
i 0
i
i
i
i
最小。为了便于计算、分析与应用,通常要求 的2-范数
e
2
e
n 2 i i 0
2 2
1 2
2 n ( xi ) f ( x i ) i 0
x y
i 1 i
4
i
132.12985
将以上数据代入上式正规方程组,得
4a0 7.32a1 70.376 7.32a0 13.8434a1 132.12985
(2)多项式拟合
有时所给数据点的分布并不一定近似地呈一条
直线,这时仍用直线拟合显然是不合适的,可用多项
式拟合。对于给定的一组数据 xi , yi , i 1,2,, N 寻求次数不超过m (m<<N ) 的多项式
插值:
拟合:
在节点处函数值相同.
在数据点处误差平方和最小
函数插值是插值函数P(x)与被插函数f(x)在节点 处函数值相同,即
P( xi ) f ( xi )
(i 0,1,, n) 而曲
线拟合函数 (x) 不要求严格地通过所有 ( xi , y i ) 就是说拟合函数 (x) 在xi处的偏差(亦称残差)
第5章 数值分析法建模
5.1 曲线拟合的最小二乘法
如果已知函数f(x)在若干点xi(i=1,2,…,n)处
的值yi,便可根据插值原理来建立插值多项式作为f(x)
的近似。但往往会遇到这样一种情况,即节点上的函
数值并不是很精确的,这些函数值是由实验或观测得 到的数据,不可避免地带有测量误差,如果要求所得 的近似函数曲线精确无误地通过所有的点(xi,yi),就 会使曲线保留着一切测试误差。当个别数据的误差较
(5.45)
例பைடு நூலகம்.21
i
xi
设有某实验数据如下: 1 2 1.36 1.37 18.475
3
1.95
4
2.28
yi14.094 16.844
20.963
用最小二乘法求以上数据的拟合函数 解:把表中所给数据画在坐标纸上,将会看到数据点
的分布可以用一条直线来近似地描述,设所求的
拟合直线为 y( x) a0 a1 x 记x1=1.36, x2=1.37, x3 =1.95 x4 =2.28, y1 =14.094, y2= 16.844, y3=18.475, y4=20.963
1 2
即
e
i2 ( xi ) f ( x i )
i 0 i 0
n
n
2
为最小。这种要求误差(偏差)平方和最小的
拟合称为曲线拟合的最小二乘法。
(1)直线拟合 设已知数据点 xi , yi , i 1,2,, m ,分布大致为一
条直线。作拟合直线 y( x) a0 a1 x ,该直线不是通 过所有的数据点 xi , yi ,而是使偏差平方和
m F ( a 0 , a1 ) 2 ( a 0 a1 xi y i ) 0 a 0 i 1 m F ( a 0 , a1 ) 2 (a0 a1 xi y i )xi 0 a1 i 1
即得如下正规方程组
m m a 0 m a1 xi y i i 1 i 1 m m m a xi2 a 0 xi xi y i 1 i 1 i 1 i 1
F (a0 , a1 ) (a0 a1 xi yi ) 2
m
为最小,其中每组数据与拟合曲线的偏差为
i 1
y( xi ) yi a0 a1 xi yi i 1,2,, m 根据最小二乘原理,应取 a0 和 a1 使 F (a0 , a1 ) 有极小 值,故 a0 和a1 应满足下列条件:
大时,插值效果显然是不理想的。此外,由实验或观测
提供的数据个数往往很多,如果用插值法,势必得到次 数较高的插值多项式,这样计算起来很烦琐。
换句话说:求一条曲线,使数据点均在离此曲线的 为此,我们希望从给定的数据(xi,yi)出发,构造 上方或下方不远处,所求的曲线称为拟合曲线,它 一个近似函数 ,不要求函数 完全通过所 (x) (x) 既能反映数据的总体分布,又不至于出现局部较大 有的数据点,只要求所得的近似曲线能反映数 的波动,更能反映被逼近函数的特性,使求得的逼 据的基本趋势,如图5-7所示。 近函数与已知函数从总体上来说其偏差按某种方
i ( xi ) f ( xi )
(i 0,1,, n)
不都严格地等于零。但是,为了使近似曲线能尽量反
映所给数据点的变化趋势,要求 按某种度量标准 i 最小。若记向量e 0 , 1 ,, n T ,即要求向量 e 的某种范数 e 最小,如 即
e
e 的1-范数
则正规方程组为
4 4 4a0 a1 xi yi i 1 i 1 4 4 4 a xi a1 xi2 xi yi 0 i 1 i 1 i 1
其中
x
i 1
4
i
7.32
x
i 1
4
2 i
13.8434
y
i 1
4
i
70.376
法度量达到最小,这就是最小二乘法。
y
图5-1
曲线拟合示意图
o
x
与函数插值问题不同,曲线拟合不要求曲线通过 所有已知点,而是要求得到的近似函数能反映数据的 基本关系。在某种意义上,曲线拟合更有实用价值。 在对给出的实验(或观测)数据 ( xi , y i )(i 0,1,, n) 作曲线拟合时,怎样才算拟合得最好呢?一般希望各 实验(或观测)数据与拟合曲线的偏差的平方和最小, 这就是最小二乘原理。 两种逼近概念:
y a0 a1 x a2 x an x
2
m
来拟合所给定的数据,与线性拟合类似,使偏差的 平方和 N m Q ( y i a j xi j ) 2