光环大数据可视化培训告诉你什么是数据可视化_光环大数据培训
大数据的可视化实训报告

一、实训背景随着信息技术的飞速发展,大数据已经成为现代社会的重要资源。
为了培养具备大数据处理、分析及可视化能力的人才,我们开展了大数据可视化实训。
本次实训旨在使学生了解大数据可视化的基本原理和方法,掌握数据可视化工具的使用,并能够将数据分析结果以可视化的形式展示出来。
二、实训目标1. 了解大数据可视化的基本概念和原理;2. 掌握常见的数据可视化工具,如ECharts、Tableau等;3. 学会使用Python、R等编程语言进行数据可视化;4. 能够根据实际需求,设计并实现数据可视化项目。
三、实训内容1. 数据可视化基本原理(1)数据可视化概述:数据可视化是将数据以图形、图像等形式呈现,使人们更容易理解数据内涵和规律的一种方法。
(2)数据可视化类型:包括散点图、柱状图、折线图、饼图、雷达图等。
(3)数据可视化原则:包括清晰性、简洁性、准确性、易读性等。
2. 常见数据可视化工具(1)ECharts:一款基于JavaScript的交互式图表库,支持多种图表类型,具有丰富的交互功能。
(2)Tableau:一款数据可视化工具,可以连接多种数据源,支持丰富的图表类型和交互功能。
(3)Python可视化库:包括Matplotlib、Seaborn、Pandas等,可以方便地绘制各种图表。
3. 数据可视化项目实践(1)项目背景:某公司销售部门需要了解不同地区、不同产品的销售情况,以便制定合理的销售策略。
(2)数据收集:收集公司近一年的销售数据,包括地区、产品、销售额、利润等。
(3)数据处理:使用Python进行数据清洗、整合和预处理。
(4)数据可视化:使用ECharts绘制销售地图、柱状图、折线图等,展示不同地区、不同产品的销售情况。
(5)结果分析:根据可视化结果,分析不同地区、不同产品的销售趋势,为公司制定销售策略提供参考。
四、实训总结1. 通过本次实训,我们掌握了大数据可视化的基本原理和方法,了解了常见的数据可视化工具。
光环大数据的人工智能培训 让你快速掌握高薪人工智能技术_光环大数据培训

光环大数据的人工智能培训让你快速掌握高薪人工智能技术_光环大数据培训光环大数据的人工智能培训——让你快速掌握高薪人工智能技术。
近年来,科技巨头围绕人工智能产业,开展了大量的收购;标的包括人工智能初创企业、大数据公司)和芯片研发公司,人工智能以更快的速度发展中。
人工智能培训人工智能(ArtificialIntelligence),英文缩写为AI。
它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
在未来,人工智能将成为一种更常见、更重要的陪伴者。
人工智能助理会知道你在工作且有10分钟的空余时间,然后帮你完成待办事项中优先级靠前的事项。
人工智能将会让我们的生活更富成效和更具创造性。
毫无疑问,我们是在创造一个新的物种,一个在智力上可能没有上限的物种。
一些未来主义者预测,所谓的奇点,即计算机智能超越人类智能的时刻,可能会在2100年之前到来,而另一些人声称这将仍然只是科幻作品中的畅想。
这种可能性听起来令人振奋,但也让人觉得有点可怕——也许两者都有一些。
人工智能的发展将来对人类有益还是有害呢?光环大数据的人工智能培训讲师坚信是有益的。
那么人工智能培训光环大数据好不好?我们先来看看人工智能培训课程的安排吧。
如果课程安排都不尽如人意,还能奢望学生学到多少实用的技术呢?课程一阶段PythonWeb学习内容:PythonWeb内容实战人工智能培训学习目标:掌握HTML与CSS基础与核心、JavaScript原生开发,jQuery框架、XML与AJAX技术完成项目:大型网站设计项目、京东电商网站项目、JS原生特效编写实战。
课程二阶段PythonLinux学习内容:PythonLinux实战开发学习目标:熟练Linux安装与管理、熟练使用Shell核心编程,掌握服务器配置与管理。
完成项目:ERP员工管理系统开发、图书管理系统开发、数据库系统调优。
课程三阶段文件与数据库学习内容:文件与数据库实战开发学习目标:熟练掌握Python各类操作,熟练掌握数据库语法与函数编程,及大数据库解决方案完成项目:权限系统数据库设计、日志系统数据库设计、综合系统数据库设计。
数据可视化培训资料

数据可视化培训资料在当今数字化的时代,数据已经成为了企业和组织决策的重要依据。
然而,面对海量的数据,如何能够快速、准确地理解和分析它们,成为了一个关键的问题。
数据可视化作为一种有效的手段,可以将复杂的数据以直观、清晰的方式呈现出来,帮助人们更好地理解数据背后的信息和规律。
因此,掌握数据可视化的技能对于提升个人和团队的数据分析能力具有重要意义。
一、数据可视化的基本概念数据可视化是指将数据通过图形、图表、地图等视觉元素进行表达和呈现的过程。
其目的是将抽象的数据转化为易于理解和感知的形式,以便用户能够快速发现数据中的模式、趋势和关系。
数据可视化不仅仅是简单地绘制图形,更是一种通过设计和布局来传达数据内涵的艺术。
二、数据可视化的重要性1、增强数据理解通过将数据以可视化的形式呈现,可以让人们更容易理解数据的含义和结构。
相比于枯燥的数字表格,直观的图表能够更快速地传达数据的主要特征和趋势。
2、发现数据中的规律可视化能够帮助我们发现隐藏在数据中的规律和模式。
例如,通过折线图可以清晰地看到数据的变化趋势,通过柱状图可以比较不同类别之间的数据差异。
3、提高沟通效率在团队合作和决策过程中,数据可视化能够有效地促进成员之间的沟通和交流。
清晰的可视化图表可以避免因对数据理解不一致而产生的误解和争议。
4、支持决策制定决策者可以基于可视化的数据做出更明智、更准确的决策。
直观的展示能够让他们快速了解业务的现状和问题,从而制定出更有效的策略。
三、数据可视化的基本原则1、准确性可视化的结果必须准确地反映数据的真实情况,不能因为追求美观而扭曲数据。
2、简洁性避免过度复杂的设计和过多的元素,保持图表简洁明了,让用户能够快速获取关键信息。
3、一致性在同一套可视化作品中,使用一致的颜色、字体、图表类型等,以保持整体的风格统一。
4、突出重点通过适当的颜色、大小、形状等手段,突出数据中的重点和关键信息,引导用户的注意力。
四、常用的数据可视化工具1、 Excel作为最常见的办公软件之一,Excel 提供了丰富的图表功能,如柱状图、折线图、饼图等,适合处理简单的数据可视化任务。
大数据可视化

大数据可视化一、引言大数据可视化是指通过图表、图形、地图等可视化方式将大量的数据呈现出来,使得数据更加直观、易于理解和分析。
随着大数据时代的到来,大数据可视化成为了重要的工具和技术,匡助人们更好地利用和应用大数据。
本文将介绍大数据可视化的定义、优势、应用场景以及常用的工具和技术。
二、定义大数据可视化是一种将大数据呈现为可视化形式的技术和方法。
通过将大数据转化为图表、图形、地图等可视化元素,使得数据更加直观、易于理解和分析。
大数据可视化能够匡助人们发现数据中的模式、趋势和关联性,从而支持决策和判断。
三、优势1. 提供直观的数据呈现:大数据可视化通过图表、图形等形式将数据直观地展示出来,使得人们能够一目了然地看到数据的特征和规律。
2. 促进数据分析和决策:通过大数据可视化,人们可以更加深入地分析数据,发现隐藏在数据暗地里的模式和趋势,从而做出更加准确和明智的决策。
3. 提高信息传递效率:大数据可视化能够将复杂的数据变得简单易懂,使得信息传递更加高效和清晰,减少沟通和理解的障碍。
四、应用场景1. 商业智能分析:大数据可视化在商业智能分析中起到了重要的作用。
通过将销售数据、市场数据等可视化展示,匡助企业了解市场趋势、产品销售情况等,从而做出相应的调整和决策。
2. 金融风控:大数据可视化在金融风控中也有广泛的应用。
通过将大量的金融数据可视化展示,匡助金融机构发现潜在的风险和异常情况,及时采取相应的措施。
3. 医疗健康:大数据可视化在医疗健康领域也有着重要的应用。
通过将患者的病历数据、医疗数据等可视化展示,匡助医生更好地了解患者的病情和治疗效果,提供个性化的医疗服务。
五、常用工具和技术1. Tableau:Tableau是一种常用的大数据可视化工具,提供了丰富的图表和图形展示方式,支持多种数据源的连接和分析。
2. Power BI:Power BI是微软推出的一款大数据可视化工具,与其他微软产品无缝集成,提供了强大的数据分析和可视化功能。
Echarts个人轨迹可视化实现_光环大数据培训

Echarts个人轨迹可视化实现_光环大数据培训1. 个人轨迹的可视化是echart通过调用百度地图API后实现,关于Echarts如何调用百度地图API,请参考上一篇文章《Echarts引入百度地图》2. 下图展示的个人轨迹均为虚拟数据3. 本文只做单用户轨迹展示说明,并未深入探讨批量用户轨迹的可视化及优化4.使用工具为:Echarts1.Echart版本说明及模块化文件引入目前百度搜索能看到的有echart2和echart3,由于echart3已不提供百度地图实例化的样本(若强行用echart3,需自行写好相关js脚本),所以下文是基于echart2,下载地址为:/build/echarts-2.2.7.zip模块化文件的引入主要有main.js,map.js,还有echart.jsrequire.config({ paths: { echarts:"echarts", }, }); require([ "echarts", "echarts/chart/main", "echarts/chart/map", ],其中:main.js文件对应在下载的echart2压缩包目录echarts-2.2.7/extension/BMap/src下,该文件是杨骥(echart团队)写的百度地图在echart上的扩展文件map.js文件对应目录为:build/dist/chart,再声明一次,引入百度地图时,dist目录需全部复制到开发文件相应目录下echarts.js同样存在于dist文件此处详细参见《Echarts引入百度地图》一文。
2.个人轨迹展示的思考及实现2.1 对于个人轨迹的可视化,最初的设想是:在用echart写时发现timeline属性始终对应不到options列表,无法渲染options下用户的轨迹参数列表,再后来与R REmap包作者交谈中进一步确认,echart中timeline目前还无办法在百度地图上渲染,这里应该知会一下echart团队的,下面就不对timeline使用做过多说明了。
光环大数据培训用三个案例透析大数据思维的核心

光环大数据培训用三个案例透析大数据思维的核心光环大数据培训机构了解到,逻辑推理能力是人类特有的本领,给出原因,我们能够通过逻辑推理得到结果。
在过去,我们一直非常强调因果关系,一方面是因为我们常常是先有原因,再有结果,另一方面是因为如果我们找不出原因,常常会觉得结果不是非常可信。
而大数据时代,大数据思维要求我们从探求因果联系到探索强相关关系。
以下三个案例分别来自药品研发、司法判决与广告投放,从三个不同的角度了解大数据思维的核心。
大数据与药品研发:寻找特效药的方法比如在过去,现代医学里新药的研制,就是典型的利用因果关系解决问题的例子。
青霉素的发明过程就非常具有代表性。
首先,在19世纪中期,奥匈帝国的塞麦尔维斯(Ignaz Philipp Semmelweis,1818—1865)a、法国的巴斯德等人发现微生物细菌会导致很多疾病,因此人们很容易想到杀死细菌就能治好疾病,这就是因果关系。
不过,后来弗莱明等人发现,把消毒剂涂抹在伤员伤口上并不管用,因此就要寻找能够从人体内杀菌的物质。
最终在1928年弗莱明发现了青霉素,但是他不知道青霉素杀菌的原理。
而牛津大学的科学家钱恩和亚伯拉罕搞清楚了青霉素中的一种物质—青霉烷—能够破坏细菌的细胞壁,才算搞清楚青霉素有效性的原因,到这时青霉素治疗疾病的因果关系才算完全找到,这时已经是1943年,离赛麦尔维斯发现细菌致病已经过去近一个世纪。
两年之后,女科学家多萝西·霍奇金(Dorothy Hodgkin)搞清楚了青霉烷的分子结构,并因此获得了诺贝尔奖,这样到了1957年终于可以人工合成青霉素。
当然,搞清楚青霉烷的分子结构,有利于人类通过改进它来发明新的抗生素,亚伯拉罕就因此而发明了头孢类抗生素。
在整个青霉素和其他抗生素的发明过程中,人类就是不断地分析原因,然后寻找答案(结果)。
当然,通过这种因果关系找到的答案非常让人信服。
其他新药的研制过程和青霉素很类似,科学家们通常需要分析疾病产生的原因,寻找能够消除这些原因的物质,然后合成新药。
数据治理(Data Governance) _光环大数据培训

数据治理(Data Governance) _光环大数据培训什么是数据治理数据治理是指从使用零散数据变为使用统一主数据、从具有很少或没有组织和流程治理到企业范围内的综合数据治理、从尝试处理主数据混乱状况到主数据井井有条的一个过程。
数据治理的全过程数据治理其实是一种体系,是一个关注于信息系统执行层面的体系,这一体系的目的是整合IT与业务部门的知识和意见,通过一个类似于监督委员会或项目小组的虚拟组织对企业的信息化建设进行全方位的监管,这一组织的基础是企业高层的授权和业务部门与IT部门的建设性合作。
从范围来讲,数据治理涵盖了从前端事务处理系统、后端业务数据库到终端的数据分析,从源头到终端再回到源头形成一个闭环负反馈系统(控制理论中趋稳的系统)。
从目的来讲,数据治理就是要对数据的获取、处理、使用进行监管(监管就是我们在执行层面对信息系统的负反馈),而监管的职能主要通过以下五个方面的执行力来保证——发现、监督、控制、沟通、整合如果您将要添加一个多领域MDM(主数据是指在整个企业范围内各个系统(操作/事务型应用系统以及分析型系统)间要共享的数据)系统并承认CRM和ERP系统并不是设计用于管理主数据,为何不进行下一步骤并取消它们的创建、更新或删除主数据的功能,而是允许这些系统只能读取和处理主数据呢?{规定某一系统进行数据的录入,其他系统只用该系统的数据。
或者另外搞一套系统,专门用来维护公共数据}何时开始主动数据治理?一些情况要求立即开始主动数据治理,例如当您获得多个CRM系统和ERP系统,它们要求与多领域MDM系统集成,以便让它们继续充当录入系统,或当您的当前源系统非常脆弱或很难维护或修改。
在这些情况下,要忍受困难并从一开始便为主动数据治理作出计划。
一些组织拥有成千上万个直接在MDM系统中授权主数据的最终用户,并且有一个数据管理员团队支持他们、发现异常、解决低质量匹配、在需要时手动合并重复记录等等。
另一种应用情况是当您发现自己最终会选择主动数据治理方法—何必再为建立源系统到多领域MDM系统的双向集成而争论?您或许不妨直接授权最终用户来编写主数据。
云计算与粒计算_光环大数据培训

云计算与粒计算_光环大数据培训云计算,不必细说谁都知道是什么,人们多多少少都有所耳闻。
云计算是继20世纪80年代大型计算机到C/S转变之后,IT界的又一次巨变,它通过互联网将某计算任务分布到大量的计算机上,并可配置共享计算的资源池,且共享 ...云计算云计算,不必细说谁都知道是什么,人们多多少少都有所耳闻。
云计算是继20世纪80年代大型计算机到C/S转变之后,IT界的又一次巨变,它通过互联网将某计算任务分布到大量的计算机上,并可配置共享计算的资源池,且共享软件资源和信息可以按需提供给用户的一种技术。
云计算真正作为一个新兴技术得到IT界认可是在2007年左右,经过这十年的普及和发展,云计算早已走进千万个数据中心,成为IT世界里炙手可热的技术门类,并可以在未来的一段时间内继续获得长足发展。
云计算固然好,但也有不少的缺陷和使用限制,这样才出现了雾计算、霾计算等技术,这些技术都是针对云计算做的很好的补充,满足多样化的市场应用需求。
本文也介绍一个新技术,就是粒计算,粒计算同样是和云计算有着千丝万缕的联系。
其实,粒计算比云计算的概念出现得还早。
在1997年时,美国一大学教授首次在论文中提出了粒计算,这标志着涉及多学科的一个应用研究领域产生。
此后,国外诸多学者对它进行了研究,提出了许多有关粒计算的理论、方法和模型,现已成为研究模糊的、不较精确的、不完整的及海量信息处理的重要工具。
粒计算是一个含义广泛的术语,覆盖了所有有关粒的理论、方法学、技术和工具的研究,并认为粒计算是模糊信息粒化、Rough集理论和区间计算的超集,是粒数学的子集。
粒计算是在问题求解中使用粒子,构建信息粒化,将一类对象基于不可分辨关系、相似性等特征划分为一系列粒。
粒计算模型分为两大类:一类以处理不确定性为主要目标,如以模糊处理为基础的计算模型,以粗糙集为基础的模型,侧重于计算对象的不确定性处理。
模糊概念是粒计算的主要组成部分;另一类则以多粒度计算为目标,如商空间理论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光环大数据可视化培训告诉你什么是数据可视化_光环大数据培训光环大数据大数据培训机构,5个典型实例告诉你:什么是数据可视化
大数据时代,数据是非常重要的,怎样把它的重要之处就展示出来是我们需要掌握的,这就是光环大数据小编本文要讲的重点:数据可视化。
通过观察数字和统计数据的转换以获得清晰的结论并不是一件容易的事。
必须用一个合乎逻辑的、易于理解的方式来呈现数据。
(一)谈谈数据可视化
人类的大脑对视觉信息的处理优于对文本的处理——因此使用图表、图形和设计元素,数据可视化可以帮你更容易的解释趋势和统计数据。
但是,并非所有的数据可视化是平等的。
那么,如何将数据组织起来,使其既有吸引力又易于理解?通过下面的16个有趣的例子获得启发,它们是既注重风格和也注重内容的数据可视化案例。
(二)什么是数据可视化?
数据可视化是指将数据以视觉形式来呈现,如图表或地图,以帮助人们了解这些数据的意义。
文本形式的数据很混乱(更别提有多空洞了),而可视化的数据可以帮助人们快速、轻松地提取数据中的含义。
用可视化方式,您可以充分展示数据的模
式,趋势和相关性,而这些可能会在其他呈现方式难以被发现。
数据可视化可以是静态的或交互的。
几个世纪以来,人们一直在使用静态数据可视化,如图表和地图。
交互式的数据可视化则相对更为先进:人们能够使用电脑和移动设备深入到这些图表和图形的具体细节,然后用交互的方式改变他们看到的数据及数据的处理方式。
感到兴奋了吗?让我们来看一些不错的交互和静态数据可视化的例子。
(三)5个交互数据可视化的实例
(1)世界上的语言
这个由DensityDesign设计的互动是个令人印象深刻的成果,它将世界上众多(或者说,我们大多数人)的语言用非语言的方法表现出来。
一共有2678种。
这件作品可以让你浏览使用共同语言的家庭,看看哪些语言是最常用的,并查看语言在世界各地的使用范围。
这是一种了不起的视觉叙事方法:将一个有深度的主题用一种易于理解的方式解读。
大数据
(2)按年龄段分布的美国人口百分比
这是如何以令人信服的方式呈现一种单一的数据的好榜样。
PewResearch创造了这个GIF动画,显示随着时间推移的人口统计数量的变化。
这是一个好方法,它将一个内容较多的故事压缩成了一个小的package。
大数据
此外,这种类型的微内容很容易在社交网络上分享或在博客中嵌入,扩大了内容的传播范围。
如果你想自己用Photoshop做GIF,这里有一个详细的教程。
(3)NFL(国家橄榄球联盟)的完整历史
体育世界有着丰富的数据,但这些数据并不总是能有效地呈现(或者准确的说,对于这个问题)。
然而,FiveThirtyEight网站做的特别好。
在下面这个交互式可视化评级中,他们计算所谓“等级分”–根据比赛结果对球队实力进行简单的衡量–在国家橄榄球联盟史上的每一场比赛。
总共有超过30,000个评级。
观众可以通过比较各个队伍的等级来了解每个队伍在数十年间的比赛表现。
大数据
(4)政治新闻受众渠道分布图
据Pew研究中心称,通常,当设计师在信息内容很多又不能删节的时候,他们通常会把信息放到数据表中,以使其更紧凑。
但是,他们使用分布图来代替。
为什么呢?因为分布图可以让观众在频谱上看到每个媒体的渠道。
在分布图上,每个媒体的渠道之间的距离尤为显著。
如果这些点仅仅是在表中列出,观众无法看到每个渠道之间的比较。
大数据
(5)Kontakladen慈善年度报告
不是所有的数据可视化都需要用动画的形式来表达。
当现实世界的数据通过现实生活中的例子进行可视化,结果会令人惊叹。
设计师MarionLuttenberger把包含在Kontakladen慈善年报中的数据以一种独特的方法表现出来。
该组织为奥地利的吸毒者提供支持,所以Luttenberger的使命就是通过真实的视觉来宣传。
例如,这辆购物车形象的表现了受助者每一天可以负担得起多少生活必需品。
为什么大家选择光环大数据!
大数据培训、人工智能培训、Python培训、大数据培训机构、大数据培训班、数据分析培训、大数据可视化培训,就选光环大数据!光环大数据,聘请专业的大数据领域知名讲师,确保教学的整体质量与教学水准。
讲师团及时掌握时代潮流技术,将前沿技能融入教学中,确保学生所学知识顺应时代所需。
通过深入浅出、通俗易懂的教学方式,指导学生更快的掌握技能知识,成就上万个高薪就业学子。
【报名方式、详情咨询】
光环大数据官方网站报名:/
手机报名链接:http:// /mobile/。