高中数学必做黄金100题1 集合(解析版)

合集下载

利用导数证明不等式-高中数学(理)黄金100题---精校解析 Word版

利用导数证明不等式-高中数学(理)黄金100题---精校解析 Word版

第27题 利用导数证明不等式I .题源探究·黄金母题【例1】利用函数的单调性,证明下列不等式:(1)sin x x <,()0,x ∈π; (2)20x x ->,(0,1)x ∈; (3)1x e x >+,0x ≠;(4)ln xx x e <<,0x >.【解析】(1)证明:设()sin f x x x =-,()0,x ∈π.因为()cos 10f x x '=-<,()0,x ∈π,所以()sin f x x x =-在()0,π内单调递减,因此()sin (0)0f x x x f =-<=,()0,x ∈π,即sin x x <,()0,x ∈π.(2)证明:设2()f x x x =-,(0,1)x ∈.因为()12f x x '=-,(0,1)x ∈所以当1(0,)2x ∈时,()120f x x '=->,()f x 单调递增,2()(0)0f x x x f =->=;当1(,1)2x ∈时,()120f x x '=-<,()f x 单调递减,2()(1)0f x x x f =->=;又11()024f =>.因此,20x x ->,(0,1)x ∈.(3)证明:设()1x f x e x =--,0x ≠.因为()1x f x e '=-,0x ≠,所以,当0x >时,()10x f x e '=->,()f x 单调递增,()1(0)0x f x e x f =-->=; 当0x <时,()10x f x e '=-<,()f x 单调递减,精彩解读【试题来源】人教版A 版选修2-2P 31习题1.3B 组第1题 【母题评析】不等式证明是高中数中常见的一类典型问题,本题考查了如何通过构造函数结合函数的单调性去证明不等式.【思路方法】不等式证明常用的基本方法有:综合法、比较法(作差法、作商法)、分析法,本题之后又添一法——构造函数法,要注意所构造函数的定义域.()1(0)0x f x e x f =-->=;综上,1x e x ->,0x ≠.(4)证明:设()ln f x x x =-,0x >. 因为1()1f x x '=-,0x ≠,所以当01x <<时,1()10f x x'=->,()f x 单调递增,()ln (1)10f x x x f =-<=-<;当1x >时,1()10f x x'=-<,()f x 单调递减,()ln (1)10f x x x f =-<=-<;当1x =时,显然ln11<. 因此,ln x x <. 由(3)可知,1x e x x >+>,0x >. 综上,ln x x x e <<,0x >.II .考场精彩·真题回放【例1】【2017全国III 】已知函数()()2ln 21f x x ax a x =+++.(I )讨论()f x 的单调性; (II )当0a <时,证明3()24f x a≤--. 【答案】(I )当0≥a 时,)(x f 在),0(+∞单调递增;当0<a 时,则)(x f 在)21,0(a -单调递增,在),21(+∞-a 单调递减;(II )详见解析 【解析】试题分析:(I )先求函数导数(21)(1)'()(0)ax x f x x x++=>,再根据导函数符号变化情况讨论单调性:当0≥a 时,0)('≥x f ,则)(x f 在),0(+∞单调递增,当0<a 时,则)(x f 在)21,0(a -单调递增,在),21(+∞-a单调递减.(II )证明3()24f x a ≤--,即证max 3()24f x a ≤--,而)21()(max af x f -=,所以目标函数为121)21ln()243()21(++-=+---a a a a f ,即t t y -+=1ln【命题意图】本类题通常主要考查利用导数求单调性,利用导数证不等式.【考试方向】这类试题在考查题型上,主要是解答题,难度中等;若为压轴题,则难度大. 作为压轴题,基本上含有参数.含有参数的函数导数试题,主要有两个方面:一是根据给出的某些条件求出这些参数值,基本思想方法为方程的思想;二是在确定参数的范围(或取值)使得函数具有某些性质,基本解题思想是函数与方程的思想、分类讨论的思想.含有参数的函数导数试题是高考考查函数方程思想、分类讨论思想的主要题(021>-=at ),利用导数易得0)1(max ==y y ,即得证. 试题解析:(I ))0()1)(12(1)12(2)('2>++=+++=x xx ax x x a ax x f ,当0≥a 时,0)('≥x f ,则)(x f 在),0(+∞单调递增,当0<a 时,则)(x f 在)21,0(a -单调递增,在),21(+∞-a单调递减. (II )由(I )知,当0<a 时,)21()(max af x f -=, 121)21ln()243()21(++-=+---aa a a f ,令t t y -+=1ln (021>-=a t ),则011'=-=ty ,解得1=t ,∴y 在)1,0(单调递增,在),1(+∞单调递减,∴0)1(max ==y y ,∴0≤y ,即)243()(max +-≤a x f ,∴243)(--≤ax f .【例2】【2017全国II 理】已知函数()2ln f x ax ax x x =--,且()0f x ≥.(I )求a ;(II )证明:()f x 存在唯一的极大值点0x ,且()2202e f x --<<.【答案】(I )1a =;(II )证明略. 【解析】试题分析:(I )利用题意结合导函数与原函数的关系可求得1a =,注意验证结果的正确性;(II )结合(I )的结论构造函数()22ln h x x x =--,结合()h x 的单调性和()f x 的解析式即可证得题中的不等式()2202ef x --<<.试题解析:(I )()f x 的定义域为()0,+∞.设()ln g x ax a x =--,则()()f x xg x =,()0f x ≥等价于()0g x ≥.因为()()10,0g g x =≥,因()'10g =,而()()1','11g x a g a x =-=-,得1a =.若1a =,则()1'1g x x=-.当01x <<时,()'0g x <,()g x 单调递减;当1x >时,()'0g x >,()g x 单调递增.所以1x =是()g x 的极小值点,故()()10g x g ≥=.型之一.【难点中心】利用导数证明不等式常见类型及解题策略: (1)构造差函数()()()h x f x g x =-. 根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式;(2)根据条件,寻找目标函数.一般思路为利用条件将求和问题转化为对应项之间大小关系,或利用放缩、等量代换将多元函数转化为一元函数.综上,1a =.(II )由(I )知 ()2ln f x x x x x =--,()'22ln f x x x =--.设()22ln h x x x =--,则()1'2h x x=-.当10,2x ⎛⎫∈ ⎪⎝⎭ 时,()'0h x <;当1,2x ⎛⎫∈+∞⎪⎝⎭时,()'0h x >, 所以()h x 在10,2⎛⎫ ⎪⎝⎭ 单调递减,在1,2⎛⎫+∞⎪⎝⎭单调递增. 又()20h e ->,102h ⎛⎫< ⎪⎝⎭,()10h =,所以()h x 在10,2⎛⎫ ⎪⎝⎭有唯一零点0x ,在1,2⎡⎫+∞⎪⎢⎣⎭有唯一零点1,且当()00,x x ∈ 时,()0h x >;当()0,1x x ∈ 时,()0h x <,当()1,x ∈+∞ 时,()0h x >.因为()()'f x h x =,所以0x x =是()f x 的唯一极大值点. 由()0'0f x =得()00ln 21x x =-,故()()0001f x x x =-. 由()00,1x ∈ 得 ()014f x <. 因为0x x =是()f x 在(0,1)的最大值点,由()10,1e -∈,()1'0f e -≠ 得()()120f x f e e -->=,所以()2202e f x --<<.【例3】【2017天津理20】设a ∈Z ,已知定义在R 上的函数432()2336f x x x x x a =+--+在区间(1,2)内有一个零点0x ,()g x 为()f x 的导函数.(Ⅰ)求()g x 的单调区间; (Ⅱ)设00[1,)(,2]m x x ∈,函数0()()()()h x g x m x f m =--,求证:0()()0h m h x <;(Ⅲ)求证:存在大于0的常数A ,使得对于任意的正整数,p q ,且00[1,)(,2],p x x q ∈ 满足041||p x q Aq-≥. 【答案】(I )增区间是(,1)-∞-,1(,)4+∞,减区间是1(1,)4-;(II )(III )证明见解析.【解析】试题分析:由于()g x 为()f x ',所以判断()g x 的单调性,需要对()f x 二次求导,根据()g x '的导数的符号判断函数的单调性,给出单调区间;由0()()()()h x g x m x f m =--,得()()()00()h m g x m x f m =--,令函数10()()()()H x g x x x f x =--,200()()()()H x g x x x f x =--分别求导证明.有关零点问题,利用函数的单调性了解函数的图像情况,对极值作出相应的要求可控制零点的个数.试题解析:(Ⅰ)由432()2336f x x x x x a =+--+,可得32()()8966g x f x x x x '==+--,进而可得2()24186g x x x '=+-.令()0g x '=,解得1x =-,或14x =. 当x 变化时,(),()g x g x '的变化情况如下表:所以()g x 的单调递增区间是(,1)-∞-和(,)4+∞,单调递减区间是1(1,)4-.(Ⅱ)证明:由0()()()()h x g x m x f m =--,得0()()()()h m g m m x f m =--,000()()()()h x g x m x f m =--.令函数10()()()()H x g x x x f x =--,则10()()()H x g x x x ''=-.由(Ⅰ)知,当[1,2]x ∈时,()0g x '>,故当0[1,)x x ∈时,1()0H x '<,1()H x 单调递减;当0(,2]x x ∈时,1()0H x '>,1()H x 单调递增.因此,当00[1,)(,2]x x x ∈时,1100()()()0H x H x f x >=-=,可得1()0,()0H m h m >>即.令函数200()()()()H x g x x x f x =--,则20()()()H x g x g x '=-.由(Ⅰ)知,()g x 在[1,2]上单调递增,故当0[1,)x x ∈时,2()0H x '>,2()H x 单调递增;当0(,2]x x ∈时,2()0H x '<,2()H x 单调递减.因此,当00[1,)(,2]x x x ∈时,220()()0H x H x <=,可得20()0,()0H m h x <<即.所以,0()()0h m h x <.(III )证明:对于任意的正整数p ,q ,且00[1)(,],2px x q∈, 令pm q=,函数0()()()()h g m x x x m f =--. 由(II )知,当0[1),m x ∈时,()h x 在区间0(,)m x 内有零点; 当0(,2]m x ∈时,()h x 在区间0(),x m 内有零点.所以()h x 在(1,2)内至少有一个零点,不妨设为1x ,则110()()()()0p ph g x f q x qx =--=.由(I )知()g x 在[1,2]上单调递增,故10()()12()g x g g <<<,于是432234041()|()||2336|||||()()(2)2p p f f p p p q p q pq aq q q x q g x g g q+--+-=≥=. 因为当[12],x ∈时,()0g x >,故()f x 在[1,2]上单调递增,所以()f x 在区间[1,2]上除0x 外没有其他的零点,而0p x q≠,故()0pf q ≠.又因为p ,q ,a 均为整数,所以432234|2336|p p q p q pq aq +--+是正整数,从而432234|2336|1p p q p q pq aq +--+≥.所以041|2|()p x q g q -≥.所以,只要取()2A g =,就有041||p x q Aq -≥. III .理论基础·解题原理考点 利用导数解决不等式恒成立问题、证明不等式导数研究不等式,涉及不等式的证明、不等式的恒成立等问题,主要考查通过转化使用导数研究函数性质并把函数性质用来分析不等式和方程等问题的能力,该点和第二个点一般是解答题中的两个设问,考查的核心是导数研究函数性质的方法和函数性质的应用IV .题型攻略·深度挖掘【考试方向】含有参数的函数导数试题,主要有两个方面:一是根据给出的某些条件求出这些参数值,基本思想方法为方程的思想;二是在确定参数的范围(或取值)使得函数具有某些性质,基本解题思想是函数与方程的思想、分类讨论的思想.含有参数的函数导数试题是高考考查函数方程思想、分类讨论思想的主要题型之一.这类试题在考查题型上,通常以解答题的形式出现,难度中等. 【技能方法】利用导数证明不等式常见类型及解题策略: (1)构造差函数()()()h x f x g x =-.根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式;(2)根据条件,寻找目标函数.一般思路为利用条件将求和问题转化为对应项之间大小关系,或利用放缩、等量代换将多元函数转化为一元函数. 【易错指导】等于含参数的问题,最后结果区间端点到底取不取(即能否取等号),是个难点,易出错.注意要验证参数取等号时,函数是否满足题设条件,若满足把取等号的情况加上,否则不加.V .举一反三·触类旁通考向1 利用函数的单调性证明不等式【例1】【2016高考新课标Ⅲ】设函数()ln 1f x x x =-+. (I )讨论()f x 的单调性; (II )证明当(1,)x ∈+∞时,11ln x x x-<<; (III )设1c >,证明当(0,1)x ∈时,1(1)xc x c +->.(Ⅲ)由题设1c >,设()1(1)x g x c x c =+--,则'()1ln x g x c c c =--.令'()0g x =,解得01lnln ln c c x c-=. 当0x x <时,'()0g x >,()g x 单调递增;当0x x >时,'()0g x <,()g x 单调递减. 由(Ⅱ)知,11ln c c c-<<,故001x <<.又(0)(1)0g g ==,故当01x <<时,()0g x >, 所以当(0,1)x ∈时,1(1)x c x c +->.考点:1、利用导数研究函数的单调性;2、不等式的证明与解法.【思路点拨】求解导数中的不等式证明问题可考虑:(1)首先通过利用研究函数的单调性,再利用单调性进行证明;(2)根据不等式结构构造新函数,通过求导研究新函数的单调性或最值来证明【例2】【2018河南豫北豫南名校高三上学期精英联考】已知函数()ln f x x ax b =-+(a ,b R ∈)有两个不同的零点1x ,2x . (I )求()f x 的最值; (II )证明:1221x x a<. 【答案】(I )见解析;(II )见解析【解析】试题分析:(I )求出导函数,由函数()f x 有两个不同的零点,则()f x 在()0,+∞内必不单调,得0a >,进而得到函数的单调性,即可求出函数的最值.(II )由题意转化为证明()212211221221ln 2x x x x x x x x x x -<=-+,不妨设12x x <,令()120,1xt x =∈,只需证明21ln 2t t t <-+,设()12ln h t t t t=-+,根据函数的单调性,即可作出证明.试题解析:(I )()1'f x a x=-,()f x 有两个不同的零点,∴()f x 在()0,+∞内必不单调,故0a >,此时()'0f x >,解得1x a <,∴()f x 在10,a ⎛⎫ ⎪⎝⎭上单增,1,a ⎛⎫+∞ ⎪⎝⎭上单减, ∴()max 1ln 1f x f a b a ⎛⎫==--+⎪⎝⎭,无最小值. (II )由题知11220,{ 0,lnx ax b lnx ax b -+=-+=两式相减得()1122ln 0xa x x x --=,即1212lnx x a x x =-, 故要证1221x x a <,即证()21212212ln x x x x x x -<,即证()212211221221ln 2x x x x x x x x x x -<=-+,不妨设12x x <,令()120,1x t x =∈,则只需证21ln 2t t t <-+,设()21l n 2g t t t t =--+,则()212l n 11'2ln 1t t t g t t t t t-+=-+=,设()12ln h t t t t =-+,则()()221'0t h t t -=-<,∴()h t 在()0,1上单减,∴()()10h t h >=,∴()g t 在()0,1上单增,∴()()10g t g <=,即21ln 2t t t<-+在()0,1t ∈时恒成立,原不等式得证.点睛:本题主要考查导数在函数中的应用,不等式的证明,考查了转化与化归思想、逻辑推理能力与计算能力.导数是研究函数的单调性、极值(最值)最有效的工具,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题;(4)考查数形结合思想的应用. 【跟踪练习】1.【2018北京朝阳区高三一模】已知函数()()ln 1x f x ax a R x-=-∈. (Ⅰ)若0a =,求曲线()y f x =在点()()1,1f 处的切线方程; (Ⅱ)若1a <-,求函数()f x 的单调区间; (Ⅲ)若12a <<,求证:()1f x <-.【答案】(Ⅰ)230x y --=;(Ⅱ) ()0,+∞;(Ⅲ)证明见解析.求得x 的范围,可得函数()f x 增区间,()'0f x <求得x 的范围,可得函数()f x 的减区间;(Ⅲ) ()0,1x f x ><-,等价于ln 11x ax x--<-,等价于21ln 0ax x x -+->,设()21ln h x ax x x =-+-,只须证()0h x >成立,利用导数研究函数的单调性,利用单调性求出()h x 的最小值,证明最小值大于零即可得结论.试题解析:(Ⅰ)若0a =,则()11f =-,()()22ln ,12xf x f x''-==, 所以()f x 在点()1,1-处的切线方程为230x y --=.(Ⅱ)()()222ln 0,,.ax x x f x x --∞'∈+=令()22ln g x ax x =--,则()221ax g x x-='-.令()0g x '=,得x =(依题意102a ->).由()0g x '>,得x >()0g x '<,得0x <<所以()g x 在区间⎛⎝上单调递减,在区间⎫+∞⎪⎪⎭上单调递增,所以,()min 52g x g ==-因为1a <-,所以110,022a <-<<,所以()0g x >,即()0f x '>.所以函数()f x 的单调递增区间为()0,+∞.(Ⅲ)由()0,1x f x ><-,等价于ln 11x ax x--<-,等价于21ln 0ax x x -+->. 设()21ln h x ax x x =-+-,只须证()0h x >成立.因为()212121,12,a x x h x a xa x x--='--=<<由()0h x '=,得2210ax x --=有异号两根.令其正根为0x ,则200210ax x --=.在()00,x 上()0h x '<,在()0,x +∞上()0h x '>,则()h x 的最小值为()200001ln h x ax x x =-+-又()131220,230,222a h a h a ⎛⎫⎛⎫=->=-=-<⎪ ⎪⎝⎭'⎝⎭'所以01 1.2x <<则0030,ln 0.2x x ->->因此03ln 0,2x x -->即()00.h x >所以()0h x >.所以()1f x <-. 【方法点晴】本题主要考查利用导数求曲线切线方程以及利用导数研究函数的单调性、证明不等式,属于难题.求曲线切线方程的一般步骤是:(1)求出()y f x =在0x x =处的导数,即()y f x =在点P ()()00,x f x 出的切线斜率(当曲线()y f x =在P 处的切线与y 轴平行时,在 处导数不存在,切线方程为0x x =);(2)由点斜式求得切线方程()()00•y y f x x x '-=-.2.【2018河南郑州高三毕业年级第二次质量预测】已知函数()2xf x e x =-.(I )求曲线()f x 在1x =处的切线方程;(II )求证:当0x >时,()21ln 1x e e x x x+--≥+.【答案】(Ⅰ)()2 1.y e x =-+;(II )见解析.试题解析:(Ⅰ) ()'2xf x e x =-, 由题设得()'12f e =-,()11f e =-,()f x 在1x =处的切线方程为()2 1.y e x =-+(II ) ()'2xf x e x =-,()''2xf x e =-,∴()'f x 在()0,ln2上单调递减,在()ln2,+∞上单调递增,所以()()''ln222ln20f x f ≥=->,所以()f x 在[]0,1上单调递增,所以()()[]m a x 11,0,1fx f e x ==-∈.()f x 过点()1,1e -,且()y f x =在1x =处的切线方程为()21y e x =-+,故可猜测:当0,1x x >≠时,()f x 的图象恒在切线()21y e x =-+的上方.下证:当0x >时,()()21,f x e x ≥-+设()()()21,0g x f x e x x =--->,则()()()'22,''2xxg x e x e g x e =---=-,()'g x 在()0,ln2上单调递减,在()ln 2,+∞上单调递增,又()()'030,'10,0ln 21g e g =->=<<,∴()'ln20g <,所以,存在()00,12x n ∈,使得()0'0g x =,所以,当()()00,1,x x ∈⋃+∞时,()'0g x >;当()0,1x x ∈时,()'0g x <,故()g x 在()00,x 上单调递增,在()0,1x 上单调递减,在()1,+∞上单调递增,又()()010g g ==,∴()()2210xg x e x e x =----≥,当且仅当1x =时取等号,故()21,0x e e x x x x+--≥>.又ln 1x x ≥+,即()21ln 1x e e x x x+--≥+,当1x =时,等号成立.【点睛】解本题的关键是第(I )结论对第(II )问的证明铺平了路,只需证明()21x e e x x+--≥x ln 1x ≥+.所以利用导数证明不等式时,要进行适当的变形,特别是变形成第(I )问相似或相同形式时,将有利于快速证明. 3.【2018山东烟台高三下学期高考诊断性测试】已知()()21ln 2f x x a x a R =-∈有两个零点 (I )求a 的取值范围(II )设x 1、x 2是f (x )的两个零点,求证证:x 1+x 2>【答案】(I )(),e +∞;(II )见解析试题解析:(I )()()20a x af x x x x x-=-=>',当0a ≤时,()0f x '>,此时()f x 在()0,+∞单调递增,()f x 至多有一个零点.当0a >时,令()0f x '=,解得x =当(x ∈时,()0f x '<,()f x 单调递减,当)x ∈+∞,()0f x '>,()f x 单调递增,故当x =时函数取最小值()1ln .2afa =-当0a e <≤时,1ln 0a -≥,即0f≥,所以()f x 至多有一个零点.当a e >时,1ln 0a -≤,即()1ln 0.2a fa =-<因为()1102f =>,所以()f x 在(x ∈有一个零点;因为ln 1a a ≤-,所以ln221a a ≤-,()()2222ln22210f a a a a a a a a =-≥--=>,由于2a >()f x 在)x ∈+∞有一个零点.综上,a 的取值范围是(),e +∞.(II )不妨设12x x <,由(I )知,(1x ∈,)2x ∈+∞.构造函数()))(0g x fx fx x =-≤<,则()))ln ln.g x a x a x =-+()g x =='因为0x <<()0g x '<,()g x 在(单调递减.所以当(x ∈时,恒有()()00g x g <=,即)).f x fx <因为(1x ∈(1x ∈,于是()()))()21111.f x f x f x f x f x ⎤⎤==>=⎦⎦又))21,x x ∈+∞∈+∞,且()f x 在)+∞单调递增,所以21x x >,即12x x +>点睛:本题主要考查导数在函数中的应用,不等式的证明和不等式的恒成立问题,考查了转化与化归思想、逻辑推理能力与计算能力,导数是研究函数的单调性、极值(最值)最有效的工具,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、圆等知识联系;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题;(4)考查数形结合思想的应用.考向2 构造函数证明不等式【例3】【2018江西五校联考】已知函数()y f x =对任意的(,)22x ππ∈-满足()cos ()sin 0f x x f x x '+> (其中()f x '是函数()f x 的导函数),则下列不等式成立的是A ()()34f ππ-<-B ()()34f ππ< C .(0)2()3f f π> D .(0)()4f π>【答案】A【例4】【2018江苏南通高三上学期第一次调研】已知函数()32g x x ax bx =++ (),a b R ∈有极值,且函数()()x f x x a e =+的极值点是()g x 的极值点,其中e 是自然对数的底数.(极值点是指函数取得极值时对应的自变量的值)(I )求b 关于a 的函数关系式;(II )当0a >时,若函数()()()F x f x g x =-的最小值为()M a ,证明:()73M a <-. 【答案】(I )243b a a =---,32a ⎛⎫≠-⎪⎝⎭;(II )见解析. 【解析】试题分析:(I )先分别求两函数极值点,再根据条件得b 关于a 的函数关系式;最后求自变量取值范围;(II )先研究()F x 导函数零点情况,仅有一个零点,再根据导函数符号变化规律确定最小值,最后再利用导数求最小值函数单调性,根据单调性证明不等式试题解析:(I )因为()()'xxf x e x a e =++ ()1xx a e =++,令()'0f x =,解得1x a =--.列表如下.所以1x a =--时,()f x 取得极小值. 因为()2'32g x x ax b =++,由题意可知()'10g a --=,且24120a b ∆=-> 所以()()231210a a a b --+--+=, 化简得243b a a =---,由2412a b ∆=- ()()2412130a a a =+++>,得32a ≠-. 所以243b a a =---,32a ⎛⎫≠-⎪⎝⎭. (II )因为()()()F x f x g x =- ()()32x x a e x ax bx =+-++,所以()()()'''F x f x g x =- ()()()213213x x a e x ax a a ⎡⎤=++-+-++⎣⎦ ()()()1133xx a e x a x a =++-++--()()133xx a e x a =++-++记()33xh x e x a =-++,则()'3xh x e =-,令()'0h x =,解得ln3x =.列表如下.所以ln3x =时,()h x 取得极小值,也是最小值,此时,()ln3ln33ln33h e a =-++ 63ln3a =-+ ()32ln3a =-+ 23ln 03e a a ⎛⎫=+>> ⎪⎝⎭.令()'0F x =,解得1x a =--. 列表如下.所以1x a =--时,()F x 取得极小值,也是最小值.所以()()1M a F a =--=()()()()()3211111a a e a a a b a -------+--+--()()2112a e a a --=--++.令1t a =--,则1t <-,记()()21t m t e t t =--- 32t e t t =-+-,1t <-,则()2'32tm t e t t =-+-,1t <-.因为10t e e --<-<,2325t t ->,所以()'0m t >,所以()m t 单调递增.所以()172233tm t e -<--<--=-,所以()73M a <-. 点睛:利用导数证明不等式常见类型及解题策略(1) 构造差函数()()()h x f x g x =-.根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式.(2)根据条件,寻找目标函数.一般思路为利用条件将求和问题转化为对应项之间大小关系,或利用放缩、等量代换将多元函数转化为一元函数.【例5】【2018云南昆明高三教学质量检查第二次统考】已知函数()()234cos 1xf x ex x x x α=+++,()()1x g x e m x =-+.(I )当1m ≥时,求函数()g x 的极值; (II )若72a ≥-,证明:当()0,1x ∈时,()1f x x >+. 【答案】(I )见解析;(II )见解析.(II )不等式等价于3214cos 1xx x ax x x e++++>,由(I )得:1xe x ≥+, 所以()221xex ≥+,所以2111x x e x +<+,()0,1x ∈, ()3214cos 1x x x ax x x e ++++-> ()314cos 11x ax x x x +++-+34cos 1x x ax x x x =++++ 214cos 1x x x a x ⎛⎫=+++ ⎪+⎝⎭ 令()214cos 1h x x x a x =++++,则()()21'24sin 1h x x x x =--+, 令()24sin I x x x =-,则()()'24cos 212cos I x x x =-=-, 当()0,1x ∈时,1cos cos1cos32x π>>=,所以12cos 0x -<,所以()'0I x <,所以()I x 在()0,1上为减函数,所以()()00I x I <=,则()'0h x <,所以()h x 在()0,1上为减函数, 因此,()()314cos12h x h a >=++,因为4cos14cos 23π>=,而72a ≥-, 所以34cos102a ++>,所以()0h x >,而()0,1x ∈,所以()1f x x >+. 【点睛】利用导数证明不等式恒成立问题,不能强制多次求导,要考虑对不等式进行变形,特别题目有第(I )问是要考虑利用第(I )的结果,对不等式进行变形,特别注意常见函数不等式的切线放缩的几个常见式子.如本题就是利用了1xe x ≥+进行放缩变形.【跟踪练习】1.【2018山东济南高三一模】已知函数()()2ln 21f x a x x a x =-+- ()a R ∈有两个不同的零点.(I )求a 的取值范围;(II )设1x ,2x 是()f x 的两个零点,证明:122x x a +>. 【答案】(I ) ()1,+∞ (II )见解析试题解析:(I )【解法一】函数()f x 的定义域为:()0,+∞.()'221af x x a x =-+- ()()21x a x x+-=,①当0a ≤时,易得()'0f x <,则()f x 在()0,+∞上单调递增, 则()f x 至多只有一个零点,不符合题意,舍去. ②当0a >时,令()'0f x =得:x a =,则∴()()max f x f x =极大 ()()ln 1f a a a a ==+-. 设()ln 1g x x x =+-,∵()1'10g x x=+>,则()g x 在()0,+∞上单调递增. 又∵()10g =,∴1x <时,()0g x <;1x >时,()0g x >.因此:(i )当01a <≤时,()()max 0f x a g a =⋅≤,则()f x 无零点,不符合题意,舍去. (ii )当1a >时,()()max 0f x a g a =⋅>, ∵121f a e e ⎛⎫⎛⎫=- ⎪⎪⎝⎭⎝⎭ 2110e e --<,∴()f x 在区间1,a e ⎛⎫⎪⎝⎭上有一个零点,∵()()31ln 31f a a a -=- ()()()2312131a a a --+-- ()()ln 3131a a a ⎡⎤=---⎣⎦, 设()ln h x x x =-,(1)x >,∵()1'10h x x=-<,∴()h x 在()1,+∞上单调递减,则()()312ln220h a h -<=-<,∴()()31310f a a h a -=⋅-<,∴()f x 在区间(),31a a -上有一个零点,那么,()f x 恰有两个零点.综上所述,当()f x 有两个不同零点时,a 的取值范围是()1,+∞. (I )【解法二】函数的定义域为:()0,+∞.()'221af x x a x =-+- ()()21x a x x+-=, ①当0a ≤时,易得()'0f x <,则()f x 在()0,+∞上单调递增,则()f x 至多只有一个零点,不符合题意,舍去. ②当0a >时,令()'0f x =得:x a =,则∴()()maxf x f x =极大 ()()ln 1f a a a a ==+-. ∴要使函数()f x 有两个零点,则必有()()ln 10f a a a a =+->,即ln 10a a +->, 设()ln 1g a a a =+-,∵()1'10g a a=+>,则()g a 在()0,+∞上单调递增, 又∵()10g =,∴1a >; 当1a >时:∵121f a e e ⎛⎫⎛⎫=- ⎪⎪⎝⎭⎝⎭ 2110e e --<,∴()f x 在区间1,a e ⎛⎫⎪⎝⎭上有一个零点;设()ln h x x x =-,∵()11'1x h x x x-=-=,∴()h x 在()0,1上单调递增,在()1,+∞上单调递减, ∴()()110h x h ≤=-<,∴ln x x <,∴()()2ln 21f x a x x a x =-+- ()22213ax x a x ax x x ≤-+-=-- ()233ax x x a x ≤-=-,则()40f a <,∴()f x 在区间(),4a a 上有一个零点,那么,此时()f x 恰有两个零点. 综上所述,当()f x 有两个不同零点时,a 的取值范围是()1,+∞.(II )【证法一】由(I )可知,∵()f x 有两个不同零点,∴1a >,且当()0,x a ∈时,()f x 是增函数;当(),x a ∈+∞时,()f x 是减函数;不妨设:12x x <,则:120x a x <<<; 设()()()2F x f x f a x =--,()0,2x a ∈,则:()()()'''2F x f x f a x =-- ()2212a ax a x a x=-+-+- ()()2221a x a --+- ()()22222x a a ax a x x a x -=+-=--.当()0,x a ∈时,()'0F x >,∴()F x 单调递增,又∵()0F a =,∴()0F x <,∴()()2f x f a x <-, ∵()10,x a ∈,∴()()112f x f a x <-,∵()()12f x f x =,∴()()212f x f a x <-,∵()2,x a ∈+∞,()12,a x a -∈+∞,()f x 在(),a +∞上单调递减,∴212x a x >-,∴122x x a +>. (II )【证法二】由(I )可知,∵()f x 有两个不同零点,∴1a >,且当()0,x a ∈时,()f x 是增函数;当(),x a ∈+∞时,()f x 是减函数;不妨设:12x x <,则:120x a x <<<; 设()()()F x f a x f a x =+--,()0,x a ∈, 则()()()'''F x f a x f a x =++- ()()221a aa x a a x a x=-++-++- ()()221a x a --+- ()()222a a x a x a x a x a x =+-=+-+-. 当()0,x a ∈时,()'0F x >,∴()F x 单调递增,又∵()00F =,∴()0F x >,∴()()f a x f a x +>-,∵()10,a x a -∈,∴()()12f x f x = ()()()()11f a a x f a a x =--<+- ()12f a x =-,∵()2,x a ∈+∞,()12,a x a -∈+∞,()f x 在(),a +∞上单调递减,∴212x a x >-,∴122x x a +>.2.【2018山西平遥中学高三3月高考适应性调研考试】已知函数()()ln f x x ax x a R =+∈ (I )讨论函数()f x 的单调性;(II )若函数()ln f x x ax x =+存在极大值,且极大值点为1,证明:()2xf x e x -≤+.【答案】(I )见解析(II )见解析试题解析:(I )由题意0x >,()'1ln f x a a x =++. ①当0a =时,()f x x =,函数()f x 在()0,+∞上单调递增;②当0a >时,函数()'1l n f x a a x =++单调递增,()'1ln f x a a x =++ 1100ax e--=⇒=>,故当110,a x e --⎛⎫∈ ⎪⎝⎭时,()'0f x <,当11,a x e --⎛⎫∈+∞ ⎪⎝⎭时,()'0f x >,所以函数()f x 在110,a x e --⎛⎫∈ ⎪⎝⎭上单调递减,函数()f x 在11,a x e --⎛⎫∈+∞ ⎪⎝⎭上单调递增;③当0a <,函数()'1ln f x a a x =++单调递减,()'1ln f x a a x =++ 1100ax e--=⇒=>,故当110,a x e --⎛⎫∈ ⎪⎝⎭时,()'0f x >,当11,a x e --⎛⎫∈+∞ ⎪⎝⎭时,()'0f x <,所以函数()f x 在110,a x e --⎛⎫∈ ⎪⎝⎭上单调递增,函数()f x 在11,a x e --⎛⎫∈+∞ ⎪⎝⎭上单调递减.(II)由()10f '=得1a =-,令()2ln x h x e x x x x-=+-+,则()()()()()000112ln ,20,1,0x x h x e x x h x e x h x h x h x x e --⎛⎫=-++=++>∴∃∈=∴≥ ⎭'⎪⎝''' 当00ln 0x x +<时,000000ln 0x x x x x e e x --<-⇒<⇒-+< 所以0000ln 0x e x x x --+++<与0002ln 0x e x x --++=矛盾; 当00ln 0x x +>时,000000ln 0x x x x x e e x -->-⇒>⇒-+> 所以0000ln 0x e x x x --+++>与0002ln 0x e x x --++=矛盾; 当00ln 0x x +=时,000000ln 0x x x x x e e x --=-⇒=⇒-+= 得0002ln 0x e x x --++=,故00ln 0x x +=成立,得()()()00001ln 0h x x x x =++=,所以()0h x ≥,即()2xf x e x -≤+.点睛:利用导数证明不等式常见类型及解题策略(1)构造差函数()()()h x f x g x =-.根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式;(2)根据条件,寻找目标函数.一般思路为利用条件将求和问题转化为对应项之间大小关系,或利用放缩、等量代换将多元函数转化为一元函数.3.【2018河北衡水中学高三第十次模拟考试】已知函数()()ln 11x f x ax +=+.(I )当1a =,求函数()y f x =的图象在0x =处的切线方程;(II )若函数()f x 在()0,1上单调递增,求实数a 的取值范围;(III )已知x ,y ,z 均为正实数,且1x y z ++=,求证()()()()31l n 131l n 111x x y y x y -+-++--()()31ln 101z z z -++≤-.【答案】(I ) y x = (II ) 11,2ln21⎡⎤-⎢⎥-⎣⎦(3)见解析试题解析:(I )当1a =时,()()ln 11x f x x +=+则()00f =,()()()21ln 1'1x f x x -+=+则()'01f =,∴函数()y f x =的图象在0x =时的切线方程为y x =.(II )∵函数()f x 在()0,1上单调递增,∴10ax +=在()0,1上无解,当0a ≥时,10ax +=在()0,1上无解满足,当0a <时,只需1010a a +≥⇒-≤<,∴1a ≥-①()()()21ln 11'1ax a x x f x ax +-++=+, ∵函数()f x 在()0,1上单调递增,∴()'0f x ≥在()0,1上恒成立,即()()1ln 11a x x x ⎡⎤++-≤⎣⎦在()0,1上恒成立.设()()()11x x ln x ϕ=++ ()()()'ln 11x x x x ϕ-=+++,()11ln 11x x ⋅-=++, ∵()0,1x ∈,∴()'0x ϕ>,则()x ϕ在()0,1上单调递增,∴()x ϕ在()0,1上的值域为()0,2ln21-. ∴()()11ln 1a x x x≤++-在()0,1上恒成立,则12ln21a ≤-②综合①②得实数a 的取值范围为11,2ln21⎡⎤-⎢⎥-⎣⎦. (III )由(II )知,当1a =-时,()()ln 11x f x x+=-在()0,1上单调递增,于是当103x <≤时,()()ln 11x f x x+=- 134ln 323f ⎛⎫≤= ⎪⎝⎭,当113x ≤<时,()()ln 11x f x x +=- 134ln 323f ⎛⎫≥= ⎪⎝⎭, ∴()()31x f x - ()3431ln 23x ≥-⋅,即()()31ln 11x x x -+- ()3331ln 24x ≤-⋅,同理有()()31ln 11y y y -+- ()3331ln 24y ≤-⋅,()()31ln 11z z z -+- ()3331ln 24z ≤-⋅, 三式相加得()()31ln 11x x x -+- ()()31ln 11y y y -++- ()()31ln 101z z z -++≤-.考向3 不等式恒成立问题【例6】【2018皖江名校高三12月份大联考】设函数()f x 在R 上存在导函数()f x ',对任意的实数x 都有()()24f x x f x =--,当(),0x ∈-∞时,()142f x x +'<.若()()3132f m f m m +≤-++,则实数m 的取值范围是( ) A .1,2⎡⎫-+∞⎪⎢⎣⎭ B .3,2⎡⎫-+∞⎪⎢⎣⎭C .[)1,-+∞D .[)2,-+∞ 【答案】A【解析】(构造函数法)令()()22F x f x x =-,则()()1402F x f x x '-<-'=<,函数()F x 在(),0-∞上为减函数,因为()()()()240F x F x f x f x x -+=-+-=,即()()F x F x -=-,故()F x 为奇函数,于是()F x 在(),-∞+∞上为减函数,而不等式()()3132f m f m m +≤-++可化为()()1F m F m +≤-,则1m m +≥-,即12m ≥-.选A . 【例7】【2018陕西省高三第一次模拟】已知函数()ln f x x =,()1g x x =-. (I )求函数()y f x =的图像在1x =处的切线方程; (II )证明:()()f x g x ≤;(III )若不等式()()f x ag x ≤对任意的()1,x ∈+∞均成立,求实数a 的取值范围.【答案】(1) 1y x =-;(II )见解析;(III )1a ≥.试题解析:(I )∵()1'f x x=,∴()'11f =. 又由()10f =,得所求切线l :()()()1'11y f f x -=-,即所求切线为1y x =-. (II )设()()()ln 1h x f x g x x x =-=-+,则()1'1h x =-,令()'0h x =,得1x =,得下表:∴()()()max 10h x h x h ≤==,即()()f x g x ≤. (III )()1,+x ∀∈∞,()0f x >,()0g x > (i )当1a ≥时,()()()f x g x ag x ≤≤; (ii )当0a ≤时,()0f x >,()0g x <;(iii )当01a <<时,设()()()()ln 1e x f x ag x x a x =-=--,()1'e x a x=-, 令()'0e x =,得下表:∴()()max 110e x e e a ⎛⎫=>= ⎪⎝⎭,即不满足等式. 综上,1a ≥.点睛:导数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若()0f x >就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为()min 0f x >,若()0f x <恒成立,转化为()max 0f x <;(3)若()()f xg x >恒成立,可转化为()()min max f x g x >.【例8】【2018广东华南师大附中高三综合测试(三)】函数()()2ln 1f x x m x =++.(I )讨论()f x 的单调性;(II )若函数()f x 有两个极值点1x 、2x ,且12x x <,求证:()21122ln2f x x x >-+. 【答案】(I )见解析;(II )见解析.(I )由题设知,10x +>,令()222g x x x m =++,这是开口向上,以12x =-为对称轴的抛物线,1122g m ⎛⎫-=-+ ⎪⎝⎭,①当102g ⎛⎫-≥ ⎪⎝⎭,即12m ≥时,()0g x ≥,即()'0f x ≥在()1,-+∞上恒成立.②当102g ⎛⎫-< ⎪⎝⎭,即12m <时,由()2220g x x x m =++=得12x =-,令112x =-,2122x =-+,则112x <-,212x >-. 1)当()10g -≤即0m ≤时,11x <-,故在()21,x -上,()0g x <,即()'0f x <,在()2,x +∞上,()0g x >,即()'0f x >.2)当()10g ->时,即1m <<时,综上:0m ≤时,()f x 在11,2⎛-- ⎝⎭上单调递减,在12⎛⎫-++∞ ⎪ ⎪⎝⎭上单调递增; 102m <<时,()f x 在1122⎛--- ⎝⎭上单调递减,在11,2⎛--- ⎝⎭和12⎛⎫-++∞ ⎪ ⎪⎝⎭上单调递增;12m ≥时,()f x 在()1,-+∞上单调递增. (II )若函数()f x 有两个极值点1x 、2x ,且12x x <,则必是102m <<,()00g >,则121102x x -<<-<<,且()f x 在()12,x x 上单减,在()11,x -和()2,x +∞上单增,则()()200f x f <=,∵1x 、2x 是()2220g x x x m =++=的二根,∴12121{ 2x x m x x +=-=,即121x x =--,122m x x =,∴若证()21122ln2f x x x >-+成立,只需证()()2222222ln 1f x x m x =++()2212224ln 1x x x x =++()()22222241ln 1x x x x =-++ ()()22121ln2x x >---+--()22121ln2x x =+-+.即证()()22222241ln 1x x x x -++()()2112ln20x -+->对2102x -<<恒成立, 设()()()2241ln 1x x x x x ϕ=-++()()1112ln202x x ⎛⎫-+--<< ⎪⎝⎭,()()()4'412ln 1ln x x x eϕ=-+++,当102x -<<时,120x +>,()ln 10x +<,4ln 0e >,故()'0x ϕ>,故()x ϕ在1,02⎛⎫- ⎪⎝⎭上单增, 故()1111242422x ϕϕ⎛⎫⎛⎫>-=⨯-⨯⨯- ⎪ ⎪⎝⎭⎝⎭()11ln 12ln2022⨯-⨯-=, ∴()()22222241ln 1x x x x -++()()2112ln20x -+->对2102x -<<恒成立,∴()21122ln2f x x x >-+. 点睛:本题考查了导数的综合运用,难度较大;在求函数单调性时还要注意对其进行分类讨论,在证明不等式成立时结合根与系数之间的关系,将其中一个量用另一个量表示,然后转化为新函数,证明得出结果,有一定难度,注意将两个未知量转化为一个未知量. 【跟踪练习】1.【2018四川凉山州高中毕业班第二次诊断性检测】设函数()2f x x ax =+,()()ln 1g x b x =-(I )若3a =-,()()()F x f x g x =+在()1+∞,上单调递增.求b 的取值范围;(II )若()21g '=-,且()()()h x f x g x =-有两个极值点1x ,2x.求证:22123x x +>+【答案】(I ) 18b ≥;(II )见解析.解析:(I ) 2{1y x ax y x =+=--得()2110x a x +++=,()2140a =+-=,∴3a =-或1a =(舍). ()()23ln 1F x x x b x =-+-其中(1x >),∴()231bF x x x =-+-' 225301x x b x -++=≥-, 在()1+∞,恒成立,分子中,514x =>对,∴()25830b =-+≤,∴18b ≥. (II )∵()1b g x x '=-,()21g '=-得1b =-,()()2ln 1h x x ax x =++-,( 1x >) ()1201h x x a x +'=+=-有两根11x >,21x >,即:()22210x a x a +--+=,()0{1 10x ϕ>>>对,得22a <--又1212a x x +=-,1212a x x -+=,∴()2222121212234a x x x x x x +=+-=>+. 点睛:本题考查了导数的综合运用,在求函数单调递增时只需求导,令导函数大于或者等于零,结合题目求出范围,在证明不等式时,本题结合韦达定理,转化为两根之和与两根之积的问题,从而证明结果.2.【2018新疆乌鲁木齐高三下学期第二次诊断性测验】已知函数()()ln xf x e ex a =-+(其中 2.71828e =,是自然对数的底数).(Ⅰ)当a e =时,求()f x 的最小值; (Ⅱ)若()f x e >恒成立,求证1a e <-. 【答案】(Ⅰ)0;(Ⅱ)证明见解析.试题解析:(Ⅰ)当a e =时,()()1ln 1xf x e x =--+,()1(1)1xf x e x x +'=->-,设()()g x f x ='. ∵()()2101x g x e x +'=+>∴()g x 是增函数 又∵()00f '=,∴当10x -<<时,()0f x '<,()f x 递减;当0x >时,()0f x '>,()f x 递增; ∴()()min 00f x f ==.(Ⅱ)∵()xe af x e x ex a e ⎛'⎫=->- ⎪+⎝⎭,()()2'20xe f x e ex a =+'+> ∴()f x '是增函数∵axee e ->,由a aee e a ex e ex a e->⇒>-+ ∴当a ea x e e >-时()0f x '>;若11a x e a x e e e -+<-+⇒<,由11a ae e e a ex e ex a e-+-<⇒<-+.。

高中集合试题及答案解析

高中集合试题及答案解析

高中集合试题及答案解析一、选择题1. 集合A={1, 2, 3},集合B={3, 4, 5},求A∩B的值。

A. {1, 2}B. {3}C. {4, 5}D. 空集答案:B解析:根据集合交集的定义,A∩B是指既属于集合A又属于集合B的所有元素组成的集合。

在本题中,只有3同时属于集合A和集合B,因此A∩B={3}。

2. 如果集合A={x|x<5},集合B={x|x>3},求A∪B的值。

A. {x|x<3}B. {x|x<5}C. {x|x>=3}D. {x|x>=5}答案:C解析:集合并集的定义是将两个集合中所有的元素合并在一起,不重复计算。

在本题中,集合A包含所有小于5的数,集合B包含所有大于3的数。

因此,A∪B包含所有大于等于3的数,即{x|x>=3}。

二、填空题3. 若集合M={x|x²-5x+6=0},请写出集合M的所有元素。

答案:{2, 3}解析:首先解方程x²-5x+6=0,通过因式分解得到(x-2)(x-3)=0,因此x=2或x=3。

所以集合M的元素为2和3。

4. 已知集合N={x|-2≤x≤2},求集合N的补集。

答案:{x|x<-2或x>2}解析:集合N的补集是指所有不属于N的元素组成的集合。

根据N的定义,它的补集是所有小于-2或大于2的实数。

三、解答题5. 集合P={x|0<x<10},集合Q={x|x是偶数},求P∩Q,并说明其性质。

答案:P∩Q={2, 4, 6, 8}解析:集合P包含所有0到10之间的实数,而集合Q包含所有偶数。

因此,P∩Q包含所有既是0到10之间又是偶数的实数,即{2, 4, 6, 8}。

这个集合是有限集,且每个元素都是正偶数。

6. 已知集合R={x|x²-4=0},求R的子集个数。

答案:4解析:集合R的元素可以通过解方程x²-4=0得到,即x=±2。

高中数学集合与常用逻辑用语100题(含答案解析)

高中数学集合与常用逻辑用语100题(含答案解析)

高中数学集合与常用逻辑用语100题(含答案解析)一、单选题1.已知集合{}2,0xA y y x ==≥,(){}ln 2B x y x ==-,则A B =( )A .[]1,2B .()1,2C .[)1,2D .(),-∞+∞2.已知,R a b ∈,则“ln ln a b >”是“sin sin a b b a +>+”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.命题():0,p x ∀∈+∞,1ln x x +≤的否定为( ) A .()0,x ∃∈+∞,1ln x x +≤ B .()0,x ∀∈+∞,1ln x x +≥ C .()0,x ∃∈+∞,1ln x x +>D .()0,x ∀∈+∞,1ln x x +>4.若集合{}23A x Z x x =∈≤,{}2,B x y x y A ==∈,则A B =( )A .{}0,1,2B .{}0,2C .{}0,1D .{}1,25.已知向量(),2m k =-,()1,3n =,则“k 6<”是“m 与n 的夹角为钝角”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.已知集合2{|230}A x x x =--≥,{B x y ==,则A B ⋃=( ) A .[)3,+∞B .[)2,+∞C .(][),10,-∞-⋃+∞D .(][),12,-∞-⋃+∞7.已知集合{}2()1A xx a =-<∣,{1,0,1,2,3}B =-,若{0,1}A B =,则实数a 的取值范围是( ) A .[0,1]B .(0,1)C .[1,)+∞D .(,0)-∞8.方程22x x =的所有实数根组成的集合为( ) A .()0,2B .(){}0,2C .{}0,2D .{}22x x =9.设全集{}24U x N x =∈-<<,{}0,2A =,则UA 为( )A .{}1,3B .{}0,1,3C .{}1,1,3-D .{}1,0,1,3-10.已知0a >,则“3a a a >”是“3a >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件11.设p :3x <,q :()()130x x +-<,则p 是q 成立的( ) A .充分必要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件12.设π:3p α=;:tan q α=p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件13.设{M x x =≥,b = ) A .b M ⊆B .b M ∉C .{}b M ∉D .{}b M ⊆14.已知集合{A x y ==,{}1,2,3,4,5B =,则A B =( ). A .{}2,3B .{}1,2,3C .{}1,2,3,4D .{}2,3,415.已知非零向量a ,b ,c ,则“||1a b -≤,||2b c -≤”是“||3a c -≤”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件16.设集合{}|33A x x =-<<,集合{}|25B x x =-≤≤,则A B =( ) A .{}|35x x -<≤B .{}|32x x -<≤-C .{}|23x x -≤<D .{}|35x x <≤17.已知集合(){}{}22log 213,40A x x B x x =-≤=-≤,则()A B =R ( )A .122x x ⎧⎫-≤≤⎨⎬⎩⎭ B .122x x ⎧⎫<≤⎨⎬⎩⎭C .{}22x x -≤≤D .∅18.命题“0x ∀>,2x x >”的否定是( )A .00x ∃>,200x x ≤B .00x ∃≤,200x x ≤C .0x ∀>,2x x ≤D .0x ∀≤,2x x >19.若01a <<,则“log log a a x y >”是“x y a a >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件20.若数列{}n a 满足11a =-,则“m ∀,*n N ∈,m n m n a a a +=”是“{}n a 为等比数列”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件21.设集合{}1,0,1,2A =-,{B y y ==,则A B =( ) A .{}0B .{}0,1,2C .{}0,1D .{}0,2 22.已知集合(){}ln 3A x N y x =∈=-,{}12B x x =-≤<,则A B =( ) A .{}1,0,1-B .{}1C .{}0,1D .{}0,1,223.已知集合{1,0,1,2,3,4}A =-,{}2ln 2B x x =<,图中阴影部分为集合M ,则M 中的元素个数为( )A .1B .2C .3D .424.设x ∈R ,则“(1)(2)0x x -+≥”是“|2|1x -<”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件25.设全集{}2,1,0,1,2,3U =--,集合{}1,0,1,3A =-,{}2,0,2B =-,则U ()A B ⋂=( ) A .{}0,1,2B .2,0,2C .{}0,2D .{}1,1,3-26.给出下列三个命题:①“全等三角形的面积相等”的否命题 ①若“2lg 0x =,则1x =-”的逆命题 ①“若x y ≠或x y ≠-,则x y ≠”的逆否命题.其中真命题的个数是( ) A .0B .1C .2D .327.已知全集2,1,0,1,2U ,{}21A x Z x =∈-<<,{}1,0,1B =-,则()U B A ⋂=( )A .∅B .{}0C .{}1D .{}0,128.已知集合{}2230A x x x =∈--<Z ,{}1,1,2,3B =-,则A B =( )A .{}1,2-B .{}1,1,2,3-C .{}1,2D .{}1,329.“4a <”是“过点()1,1有两条直线与圆2220x y y a ++-=相切”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件30.已知集合{1,0,1,2,3,4,5}A =-,集合{|34}=-<<B x x ,则 A B =( ) A .{1,0,1,2,3}-B .{0,1,2,3}C .{1,0,1,2}-D .{1,0,1,2,3,4}-31.设集合{}12022A x x =-<<,{}22530B x x x =+-≤,则A B =( )A .{}32022x x -<≤B .132x x ⎧⎫-<≤⎨⎬⎩⎭C .112x x ⎧⎫-<≤⎨⎬⎩⎭D .{}1x x ≥-32.已知集合(){}2log 12A x x =-≤,{}2230B x x x =--≤,则()RA B =( )A .[]1,3B .()(),13,-∞-⋃+∞C .(]1,3D .(](),13,-∞⋃+∞33.已知集合{}2,3,4,5A =,{B x y ==,则A B =( )A .{}2B .{}3C .{}2,3D .{}2,3,434.“b <是“圆22:9C x y +=上有四个不同的点到直线:l y x b =-的距离等于1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件35.设命题3:,3n p n N n ∀∈>,则命题p 的否定为( ) A .3,3n n N n ∃∉> B .3,3n n N n ∃∉≤ C .3,3n n N n ∃∈≤D .3,3n n N n ∀∈>36.已知α,R β∈,则“cos cos αβ=”是“存在k Z ∈使得()1kk απβ=+-”的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件37.将有理数集Q 划分为两个非空的子集M 与N ,且满足M N Q M N ⋃=⋂=∅,,M 中的每一个元素都小于N 中的每一个元素,这种有理数的分割()M N ,就是数学史上有名的戴德金分割.试判断,对于任一戴德金分割()M N ,,下列选项中不可能成立的是( )A .M 有最大元素,N 有一个最小元素B .M 没有最大元素,N 也没有最小元素C .M 没有一个最大元素,N 有一个最小元素D .M 有一个最大元素,N 没有最小元素 38.设x R ∈,则“322x -≤”是“2102x x +≤-”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件39.设集合{}{}|14|3A x x B x x =-<<=≤,,则()B A =R ( )A .{}|34x x ≤<B .{}|34x x <<C .{}|13x x -<≤D .{}1x x >-40.若01a <<,则“log log a a b c <”是“b c >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件41.已知集合{}03A x x =<<,{}24B x x =≤,则A B =( )A .()0,2B .[)2,0-C .[)0,3D .(]0,242.已知集合{}02A x x =<<,{}2230B x x x =+-≥,则如图所示的阴影部分表示的集合为( )A .(][),32,-∞-⋃+∞B .()[),32,-∞-⋃+∞C .()(),02,-∞+∞D .(][),02,-∞⋃+∞43.若向量(),3a m =-,()3,1b =,则“1m <”是“向量a ,b 夹角为钝角”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件44.设集合{}A y y x ==,{B x y ==,全集为R ,则RA B =( )A .[)0,∞+B .(),0∞-C .{}0,1D .()(){}0,0,1,145.已知集合1|0,N 4x A x x x +⎧⎫=≤∈⎨⎬-⎩⎭,{0,1,2,3,4}B =,则( ) A .A B = B .B A C .A B B = D .A B46.若集合12xA x x ⎧⎫-=∈>⎨⎬⎩⎭R ,(){}2log 11B x x =+<,则A B =( ) A .1,3⎛⎫-∞ ⎪⎝⎭B .11,3⎛⎫- ⎪⎝⎭C .10,3⎛⎫⎪⎝⎭D .1,13⎛⎫ ⎪⎝⎭47.若集合{}20A x x x =-=,B x y ⎧=⎨⎩,则A B =( )A .∅B .{}0C .{}1D .{}0,148.已知集合{}24A x Z x =∈<,{}1,B a =,B A ⊆,则实数a 的取值集合为( ) A .{}2,1,0--B .{}2,1--C .{1,0}-D .{}1-49.若集合61A x ZN x ⎧⎫=∈∈⎨⎬-⎩⎭,(){}lg 3B x y x ==-,则A B =( ) A .{}2,3,4,7 B .{}3,4,7 C .{}1,4,7 D .{}4,750.已知集合{}2230A x x x =--<,{}15B x x =≤≤,则A B =( )A .(]1,5-B .(]1,1-C .()1,3D .[)1,351.已知,l m 是两条不同的直线,αβ,是两个不同的平面,命题p :若m α⊂,m β∥,则αβ∥;命题q :若m α⊥,l β⊥,αβ∥,则m l ∥;则下列命题正确的是( ) A .p q ∧B .p q ⌝∧C .p q ∨⌝D .p q ⌝∧⌝52.“2x =”是“2320x x -+=”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件53.已知命题p :0x ∃∈R ,0sin 1x <;命题q :0x ∃∈R ,00sin cos x x +,则下列命题中的真命题是( ) A .p q ∧B .()p q ⌝∧C .()p q ∧⌝D .()p q ⌝∨54.已知集合{}2,x A y y x R ==∈,{}24B x x =≤,则A B =( )A .[]22-,B .[)2,0-C .[]0,2D .(]0,255.已知集合{}1,2,3,4,5,6A =,6,1B xx A x ⎧⎫=∈∈⎨⎬-⎩⎭N ,则集合B 的子集的个数是( ) A .3B .4C .8D .1656.已知全集{}N 27U x x =∈-≤<,(){}1,5,6UA B ⋃=,{}2,4B =,则图中阴影部分表示的集合是( )A .{}2,1,0,3--B .{}0,3C .{}0,2,3,4D .{}357.已知集合{}34A x x =-<<,{}250B x x x =+>.则A B ( )A .()5,4-B .()0,4C .()3,0-D .()5,0-58.已知集合(){},22,0M x y y x xy ==-≤,(){}2,5N x y y x ==-,则M N ⋂中的元素个数为( ) A .0B .1C .2D .l 或259.设集合402x A xx -⎧⎫=>⎨⎬+⎩⎭,{}27100B x x x =-+≥,则()R A B ⋂=( ) A .{}22x x -<< B .{}22x x -≤≤ C .{4x x ≤或}5x ≥D .{2x x ≤或}5x ≥60.设非零复数1z ,2z 在复平面内分别对应向量OA ,OB ,O 为原点,则OA OB ⊥的充要条件是( )A .211z z =-B .21i zz =C .21z z 为实数D .21z z 为纯虚数61.命题“若24x <,则22x -<<”的逆否命题是( ) A .若22x -<<,则24x < B .若24x ≥,则2x ≥或2x -≤ C .若22x -<<,则24x ≥ D .若2x ≥或2x -≤,则24x ≥62.已知集合(){}22,4A x y xy =+=,(){},2B x y y ==,则集合A B 中元素的个数为( ) A .3B .2C .1D .063.已知集合{}213M x x =+<,{}N x x a =<,若N M ⊆,则实数a 的取值范围为( ) A .[)1,+∞ B .[)2,+∞ C .(],1-∞D .(),1-∞64.已知集合{}23180A x x x =--≤,{}2log 1B x x =>,则A B =( )A .[)(]3,22,6-B .[)(]3,22,6--⋃C .[)3,2--D .(]2,665.已知命题p :“23m <<是方程22123x y m m+=--表示椭圆”的充要条件;命题q :“2b ac =是a ,b ,c 成等比数列”的必要不充分条件,则下列命题为真命题的是( ) A .p q ∧B .p q ∨⌝C .p q ⌝∨⌝D .p q ⌝∧⌝66.已知命题p :()010,x ∃∈+∞,0lg 1x >,则命题p 的否定为( ) A .()10,x ∀∈+∞,1lg x ≤ B .()10,x ∀∈+∞,lg 1x C .()10,x ∀∉+∞,lg 1xD .()10,x ∀∉+∞,1lg x ≤67.集合{}0,1,2,3A =的真子集的个数是( ) A .16B .15C .8D .768.已知集合{}1A x x =>,{}13B x x =-≤<,则()R A B ⋂=( ) A .{}13x x <<B .{}11x x -≤<C .{}13x x ≤<D .{}11x x -≤≤69.若p :24x ≤≤,q :13x ≤≤,则p 为q 的( ) A .充分必要条件 B .充分不必要条件 C .必要不充分条件D .既不充分又不必要条件70.若命题p 为“0x ∃≥,()10x x -<”,则p ⌝为( ) A .0x ∀<,()10x x -≥ B .0x ∀≥,()10x x -≥ C .0x ∃≥,()10x x -≥D .0x ∃<,()10x x -<71.已知p :a m <(其中R a ∈,m ∈Z ),q :关于x 的一元二次方程2210ax x ++=有一正一负两个根.若p 是q 的充分不必要条件,则m 的最大值为( ) A .1B .0C .1-D .272.命题“0x ∀>,210x ->”的否定为( ) A .0x ∀>,210x -≤ B .0x ∀≤,210x -≤ C .00x ∃>,0210x -≤D .00x ∃>,0210x ->73.已知{}2430M x x x =-+<,{|N x y ==,则M N ⋃=( )A .(]1,2B .(](),21,3-∞-⋃C .(](),23,-∞-+∞ D .(](),21,-∞-⋃+∞74.命题“0x ∃∈R ,使得320000x ax bx c +++=”的否定是( ) A .x ∃∉R ,320x ax bx c +++≠ B .x ∀∈R ,320x ax bx c +++≠ C .x ∀∉R ,320x ax bx c +++≠D .x ∀∈R ,320x ax bx c +++=75.已知集合{}220A xx x =+-≤∣, 集合(){}2log 1B x y x ==+∣, 则A B ⋂=( ) A .[-21],B .(-11],C .(]12-,D .[)1,∞+ 76.若集合{12}A x x =-<<∣,{|1B x x =<或}3x >,则()R A B ⋂=( ) A .{13}xx -<<∣ B .{11}xx -<<∣ C .{23}x x <≤∣ D .{12}xx ≤<∣ 77.已知命题20:,0p x x ∃∈R ,则p ⌝是( )A .2,0x x ∀∉RB .2,0x x ∀∈<RC .200,0x x ∃∈RD .200,0x x ∃∈<R78.若方程22121x y m m +=+--表示的曲线为C ,则( )A .21m -<<-是C 为椭圆的充要条件B .21m -<<-是C 为椭圆的充分条件C .312m -<<-是C 为焦点在x 轴上椭圆的充要条件D .302m -<<是C 为焦点在x 轴上椭圆的充分条件79.已知集合{}{|ln 1|A x x B x =<=,,则()R A B =( ) A .[2,e )B .(0,2)C .(2,e ]D .(0,e )80.“0mn >”是“方程221x y m n-=为双曲线方程”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、多选题81.已知函数()()2221e xf x ax x =-+,则( )A .()f x 有零点的充要条件是1a <B .当且仅当(]0,1a ∈,()f x 有最小值C .存在实数a ,使得()f x 在R 上单调递增D .2a ≠是()f x 有极值点的充要条件 82.下列选项中,能够成为“关于x 的方程2||10x x a -+-=有四个不等实数根”的必要不充分条件是( ) A .51,4a ⎛⎫∈ ⎪⎝⎭B .51,4a ⎡⎫∈⎪⎢⎣⎭C .()1,2a ∈D .91,8a ⎛⎫∈ ⎪⎝⎭三、解答题83.若实数数列()12:,,,2n n A a a a n ≥满足()111,2,,1k k a a k n +-==-,则称数列nA 为E 数列.(1)请写出一个5项的E 数列5A ,满足150a a ==,且各项和大于零; (2)如果一个E 数列n A 满足:存在正整数()1234512345,,,,i i i i i i i i i i n <<<<≤使得12345,,,,i i i i i a a a a a 组成首项为1,公比为2-的等比数列,求n 的最小值;(3)已知()122,,,2m a a a m ≥为E 数列,求证:3211,,,222m a a a -为E 数列且224,,,222m a a a 为E 数列”的充要条件是“122,,,m a a a 是单调数列”.84.已知命题p :实数x 满足()42220x x a a ⋅+-⋅-≤;命题q :实数x 满足2320x x -+<.若p 是q 的必要条件,求实数a 的取值范围.85.设p :()224300x ax a a -+<>,q :211180x x -+≤.(1)若命题“()1,2x ∀∈,p 是真命题”,求a 的取值范围;(2)若p 是q 的充分不必要条件,求a 的取值范围.86.著名的“康托尔三分集”是由德国数学家康托尔构造的,是人类理性思维的产物,其操作过程如下:将闭区间[]0,1均分为三段,去掉中间的区间段12,33⎛⎫ ⎪⎝⎭记为第一次操作;再将剩下的两个闭区间10,3⎡⎤⎢⎥⎣⎦,2,13⎡⎤⎢⎥⎣⎦分别均分为三段,并各自去掉中间的区间段,记为第二次操作;…,如此这样,每次在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷.每次操作后剩下的闭区间构成的集合即是“康托尔三分集”.例如第一次操作后的“康托尔三分集”为120,,,133⎧⎫⎡⎤⎡⎤⎨⎬⎢⎥⎢⎥⎣⎦⎣⎦⎩⎭. (1)求第二次操作后的“康托尔三分集”;(2)定义[],s t 的区间长度为t s -,记第n 次操作后剩余的各区间长度和为()*n a n N ∈,求4a ;(3)记n 次操作后“康托尔三分集”的区间长度总和为n T ,若使n T 不大于原来的110,求n 的最小值.(参考数据:lg 20.3010=,lg30.4771=)87.已知命题p :“0x R ∃∈,20048x a x +≤”为假命题,命题q :“实数a 满足415a>-”.若p q ∨是真命题,p q ∧是假命题,求a 的取值范围. 88.求证:角θ为第二象限角的充要条件是sin 0tan 0θθ>⎧⎨<⎩. 89.已知P ={x |x 2-x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }.若x ①P 是x ①S 的必要条件,求m 的取值范围.90.已知p :()222100x x a a -+-≥>,q :()()150x x +-<.(1)当3x =-时,p 为真命题,求实数a 的取值范围;(2)若p ⌝是q 的充分不必要条件:求实数a 的取值范围.91.已知集合{}2,12x A y y x ==-≤≤,集合{}1ln 2B x x =<≤,集合{}22320,0C x x ax a a =-+≤>. (1)求A B ;(2)若C A ⊆,求实数a 的取值范围.92.判断命题的真假:如果12,n n 分别是直线12,l l 的一个方向向量,则1l 与2l 垂直的充要条件是1n 与2n 垂直.四、填空题93.设集合{}{}240,,20A xx x A x x a =-≤∈=+≤R ∣∣,且[]2,1A B =-,则=a ___________.94.以下有关命题的说法错误的命题的序号是_______.①若命题p :某班所有男生都爱踢足球,则¬p :某班至少有一个男生爱踢足球; ①已知a ,b 是实数,那么“a b >”是"ln ln "a b >的必要不充分条件;①若αβ>则sin sin αβ>;①幂函数253(1)m y m m x --=--在,()0x ∈+∞时为减函数,则2m =.95.已知函数2()43f x x x =-+,()52g x mx m =+-,若对任意的[]11,4x ∈,总存在[]21,4x ∈,使12()()f x g x =成立,则实数m 的取值范围是 ________.96.曲线0:p x ∃∈R ,320010x x -+≥,则p ⌝为___________.97.命题“0x ∃①R ,使20mx -(m +3)x 0+m ≤0”是假命题,则实数m 的取值范围为__________.98.命题“x R ∃∈,20x +≤”的否定是______.五、概念填空99.存在量词与存在量词命题100.判断正误.(1)命题“任意一个自然数都是正整数”是全称量词命题.( )(2)命题“三角形的内角和是180 ”是全称量词命题.( )(3)命题“梯形有两边平行”不是全称量词命题.( )参考答案:1.C【解析】【分析】利用指数函数的性质可化简集合A ,根据对数函数性质得集合B ,然后计算交集.【详解】 由已知{}2,0[1,)x A y y x ∞==≥=+,{}ln(2)B x y x ==-(){|20}{|2},2x x x x =->=<=-∞,①[1,2)A B ⋂=.故选:C .2.A【解析】【分析】由ln ln a b >及对数函数的单调性可得0a b >>;将sin sin a b b a +>+变形化同构,进而构造函数,利用导数讨论函数的单调性可得a b >,即可得解.【详解】由ln ln a b >,得0a b >>.由sin sin a b b a +>+,得sin sin a a b b ->-.记函数()sin ()x x f x x R =-∈,则()1cos 0f x x '=-≥,所以函数()f x 在R 上单调递增,又sin sin a a b b ->-,则()()f a f b >,所以a b >.因此“ln ln a b >”是“sin sin a b b a +>+”的充分不必要条件.故选:A .3.C【解析】【分析】根据全称量词命题的否定直接得出结果.【详解】因为全称量词命题的否定是特称量词命题,故原命题的否定是()0,x ∃∈+∞,1ln x x +>.故选:C4.C【解析】【分析】先解不等式求出集合A ,再求出集合B ,然后求两集合的交集即可【详解】解不等式23x x ≤,得03x ≤≤,又x ∈Z ,所以{}0,1,2,3A =, 所以{}132,0,,1,22B x y x y A ⎧⎫==∈=⎨⎬⎩⎭,所以{}0,1A B =. 故选:C5.B【解析】【分析】先求出m 与n 的夹角为钝角时k 的范围,即可判断.【详解】当m 与n 的夹角为钝角时,0m n ⋅<,且m 与n 不共线,即6032k k -<⎧⎨≠-⎩所以k 6<且23k ≠-.故“k 6<”是“m 与n 的夹角为钝角”的必要不充分条件.故选B.6.D【解析】【分析】根据一元二次不等式的解法和函数定义域的定义,求得集合,A B ,集合集合并集的运算,即可求解.【详解】由不等式2230x x --≥,解得1x ≤-或3x ≥,所以集合{|1A x x =≤-或3}x ≥, 又由20x -≥,解得2x ≥,所以集合{}2B x x =≥,所以(][),12,A B ⋃=-∞-⋃+∞.故选:D .7.B【解析】【分析】按照交集的定义,在数轴上画图即可.【详解】由题可得集合{}{}2()111A xx a x a x a =-<=-<<+∣,所以要使{0,1}A B =,则需110112a a -≤-<⎧⎨<+≤⎩,解得01a <<, 故选:B.8.C【解析】【分析】首先求出方程的解,再根据集合的表示方法判断即可;【详解】解:由22x x =,解得2x =或0x =,所以方程22x x =的所有实数根组成的集合为{}{}2|20,2x R xx ∈==; 故选:C9.A 【解析】【分析】根据全集U 求出A 的补集即可.【详解】{}{}24=0,1,2,3U x N x =∈-<<,{}0,2A =,{}U =1,3A ∴.故选:A.10.B【解析】【分析】对a 的取值进行分类讨论,结合指数函数的单调性解不等式3a a a >,利用集合的包含关系判断可得出结论.【详解】若01a <<,由3a a a >可得3a <,此时01a <<;若1a =,则3a a a =,不合乎题意;若1a >,由3a a a >可得3a >,此时3a >.因此,满足3a a a >的a 的取值范围是{01a a <<或}3a >, 因为{01a a <<或}3a > {}3a a >,因此,“3a a a >”是“3a >”的必要不充分条件.故选:B.11.C【解析】【分析】解不等式化简命题q ,再利用充分条件、必要条件的定义直接判断作答.【详解】解不等式得:13x ,即:13q x -<<,显然{|13}x x -<< {|3}x x <,所以p 是q 成立的必要不充分条件.故选:C12.A【解析】【分析】根据特殊角的三角函数值以及充分条件与必要条件的定义可得结果.【详解】当π3α=时,tan α=p 则q 成立;当tan α=,3k k Z παπ=+∈,即若q 则p 不成立;综上得p 是q 充分不必要条件,故选:A.13.D【解析】【分析】根据元素与集合的关系,集合与集合的关系判断即可得解.【详解】解:因为{M x x =≥,b =所以b M ∈,{}b M ⊆.故选:D.14.C【解析】【分析】先化简集合A ,再利用集合的交集运算求解.【详解】因为集合{{}4A x y x x ==≤,{}1,2,3,4,5B =,所以A B = {}1,2,3,4,故选:C15.A【解析】【分析】根据充分、必要性的定义,结合向量减法的几何意义判断条件间的推出关系,即可得答案.【详解】由||1a b -≤,||2b c -≤,如下图示,||||||3a c a b b c -≤-+-≤,当且仅当a ,b ,c 共线时前一个等号成立,充分性成立;当||3a c -≤,不一定有||1a b -≤,||2b c -≤,必要性不成立. 综上,“||1a b -≤,||2b c -≤”是“||3a c -≤”的充分而不必要条件. 故选:A16.C【解析】【分析】利用集合的交运算求A B 即可.【详解】由题设,A B ={}|33x x -<<⋂{}|25{|23}x x x x -≤≤=-≤<. 故选:C17.A【解析】【分析】先求出集合A 和集合A 的补集,集合B ,再求出()A B ⋂R【详解】由22log (21)3log 8x -≤=,得0218x <-≤,解得1922x <≤, 所以1922A x x ⎧⎫=<≤⎨⎬⎩⎭,所以12R A x x ⎧=≤⎨⎩或x >92}, 由240x -≤得22x -≤≤,所以{}22B x x =-≤≤,所以()A B =R 122x x ⎧⎫-≤≤⎨⎬⎩⎭故选:A18.A【解析】【分析】根据命题的否定的定义判断.【详解】全称命题的否定是特称命题,命题“0x ∀>,2x x >”的否定是:00x ∃>,200x x ≤.故选:A.19.A【解析】【分析】根据一直关系判断,x y 的大小关系进行等价转化即可得解.【详解】由01a <<,log log 0a a x y y x >⇔>>,x y a a y x ≥⇔>,故为充分不必要条件. 故选:A20.A【解析】【分析】利用等比数列的定义通项公式即可判断出结论.【详解】解:“m ∀,*n N ∈,m n m n a a a +=”,取1m =,则11n n a a +=-, {}n a ∴为等比数列.反之不成立,{}n a 为等比数列,设公比为q ()0q ≠,则1m n m n a q +-+=-,()()112n n m m m n a a q q q --+-=-⨯-=,只有1q =-时才能成立满足m n m n a a a +=. ∴数列{}n a 满足11a =-,则“m ∀,*n N ∈,m n m n a a a +=”是“{}n a 为等比数列”的充分不必要故选:A .21.B【解析】【分析】求得集合B 中对应函数的值域,再求A B 即可.【详解】因为{B y y ==∣{|0}y y =≥,又{}1,0,1,2A =-, 故A B ={}0,1,2.故选:B22.C【解析】【分析】由对数函数定义域可求得集合A ,由交集定义可得结果.【详解】由30x ->得:3x <,(){}{}ln 30,1,2A x N y x ∴=∈=-=,{}0,1A B ∴⋂=.故选:C.23.C【解析】【分析】由Venn 图得到()A M A B =⋂求解. 【详解】如图所示()A M A B =⋂,2ln 2x <,22ln ln e x ∴<,解得e e x -<<且0x ≠,(e,0)(0,e)B ∴=-又{1,0,1,2,3,4}A =-,{1,1,2}A B ∴=-,(){0,3,4}A A B ∴⋂=,{0,3,4}M ∴=,所以M 中元素的个数为3 故选:C24.B【分析】根据充分必要条件的定义判断.【详解】(1)(2)0x x -+≥,则2x -≤或1≥x ,不满足21x -<,如2x =-,不充分,21x -<时,13x <<,满足(1)(2)0x x -+≥,必要性满足.应为必要不充分条件.故选:B .25.D【解析】【分析】根据集合的运算法则计算.【详解】由已知{1,1,3}U B =-,所以U (){1,1,3}A B =-.故选:D .26.B【解析】【分析】写出相应命题,根据相关知识直接判断可得.【详解】“全等三角形的面积相等”的否命题为:不全等的三角形的面积不相等.易知为假命题;若“2lg 0x =,则1x =-”的逆命题为:若1x =-,则2lg 0x =.显然为真命题;“若x y ≠或x y ≠-,则x y ≠”的逆否命题为:若x y =,则x y =且x y =-.易知为假命题. 故选:B27.C【解析】【分析】根据集合的运算法则计算.{2,1,2}U A =-,(){1}U B A =.故选:C .28.C【解析】【分析】求出集合A ,利用交集的定义可求得结果.【详解】{}{}{}2230130,1,2A x x x x x =∈--<=∈-<<=Z Z ,因此,{}1,2A B =. 故选:C.29.B【解析】【分析】先由已知得点()1,1在圆2220x y y a ++-=外,求出a 的范围,再根据充分条件和必要条件的定义分析判断【详解】由已知得点()1,1在圆2220x y y a ++-=外,所以22211210240a a ⎧++⨯->⎨+>⎩,解得14a -<<, 所以“4a <”是“过点()1,1有两条直线与圆2220x y y a ++-=相切”的必要不充分条件, 故选:B30.A【解析】【分析】根据交集的定义计算.【详解】由已知{1,0,1,2,3}A B =-.故选:A .【解析】【分析】化简集合B ,结合交集运算即可.【详解】 因为集合{}21253032B x x x x x ⎧⎫=+-≤=-≤≤⎨⎬⎩⎭,所以112A B x x ⎧⎫⋂=-<≤⎨⎬⎩⎭, 故选:C .32.D【解析】【分析】先解出集合A 、B ,再求A B ,从而求解补集.【详解】由()2log 12x -≤,即014x <-≤,解得15x <≤,所以(]1,5A =.由2230x x --≤得()3x -⋅()10x +≤,即13x -≤≤,所以[]1,3B =-,由此(]1,3A B =,于是()(]()R ,13,A B ⋂=-∞⋃+∞,故选:D.33.C【解析】【分析】由一元二次不等式的解法求出函数y B ,然后根据交集的定义即可求解.【详解】解:因为集合{}2,3,4,5A =,集合{{}{}23003B x y x x x x x ===-≥=≤≤,所以{}2,3A B ⋂=.故选:C.34.A【分析】根据直线和圆的位置关系求出b ,然后利用充分条件和必要条件的定义进行判断.【详解】①圆22:9C x y +=的半径3r =,若圆C 上恰有4个不同的点到直线l 的距离等于1,则必须满足圆心(0,0)到直线:l y x b =-的距离2d =<,解得b -<<又((⊆-,①“b <是“圆22:9C x y +=上有四个不同的点到直线:l y x b =-的距离等于1”的充分不必要条件.故选:A.35.C【解析】【分析】由全称命题的否定是特称命题即可得解.【详解】根据全称命题的否定是特称命题可知,命题3:,3n p n N n ∀∈>的否定命题为3,3n n N n ∃∈≤,故选:C36.D【解析】【分析】根据充分条件,必要条件的定义,以及诱导公式即可判断.【详解】(1)当存在k Z ∈使得()1kk απβ=+-时, 则()cos ,2,cos cos (1)cos ,21,k k n n Z k k n n Z βαπββ=∈⎧=+-=⎨-=+∈⎩;即不能推出cos cos αβ=.(2)当cos cos αβ=时,2k αβπ=+或2k απβ=-,k Z ∈,所以对第二种情况,不存在k Z ∈时,使得()1kk απβ=+-成立,故“cos cos αβ=”是“存在k Z ∈使得()1k k απβ=+-”的既不充分不必要条件.故选:D37.A【解析】【分析】由题意依次举例对四个命题判断,从而确定答案.【详解】M 有一个最大元素,N 有一个最小元素,设M 的最大元素为m ,N 的最小元素为n ,若有m <n ,不能满足M①N=Q ,A 错误;若{|M x Q x =∈<,{|2}N x Q x =∈;则M 没有最大元素, N 也没有最小元素,满足其它条件,故B 可能成立;若{|0}M x Q x =∈<,{|0}N x Q x =∈,则M 没有最大元素,N 有一个最小元素0,故C 可能成立;若{|0}M x Q x =∈,{}0N x Q x =∈;M 有一个最大元素,N 没有最小元素,故D 可能成立;故选:A .38.D【解析】 【分析】 首先解出绝对值不等式与分式不等式,再根据充分条件、必要条件的定义判断即可;【详解】解:因为322x -≤,所以33222x -≤-≤,解得1722x ≤≤;由2102x x +≤-,即()()212020x x x ⎧+-≤⎨-≠⎩,解得122x -≤<;所以1722x ≤≤与122x -≤<互相不能推出,故“322x -≤”是“2102x x +≤-”的既不充分也不必要条件; 故选:D39.B【解析】【分析】根据补集运算得{}R |3x B x =>,再根据交集运算求解即可.【详解】解:因为{}{}|14|3A x x B x x =-<<=≤,,所以{}R |3x B x =>,所以{}()|34R B A x x ⋂=<<故选:B40.A【解析】【分析】利用函数log a y x =在(0,)+∞单调递减,可得log log 0a a b c b c <⇔>>,分析即得解【详解】由01a <<,故函数log a y x =在(0,)+∞单调递减故log log 0a a b c b c <⇔>>即log log a a b c b c <⇒>,充分性成立; b c >推不出log log a a b c <,必要性不成立;故“log log a a b c <”是“b c >”的充分不必要条件.故选:A41.D【解析】解一元二次不等式求集合B ,再利用集合交运算求A B .【详解】 由题设,{}24{|22}B x x x x =≤=-≤≤,又{}03A x x =<<, 所以{}(]{|22}030,2A x x B x x -≤≤⋂<<==.故选:D42.A【解析】【分析】根据阴影部分表示的集合为R A B ⋂求解.【详解】 因为集合{}02A x x =<<,所以R {|0A x x =≤或2}x ≥, 又因为{}2230{|3B x x x x x =+-≥=≤-或1}x ≥, 所以阴影部分表示的集合为R {|3A B x x ⋂=≤-或2}x ≥,故选:A43.B【解析】【分析】 由向量a ,b 夹角为钝角可得0a b ⋅<且a ,b 不共线,然后解出m 的范围,然后可得答案.【详解】若向量a ,b 夹角为钝角,则0a b ⋅<且a ,b 不共线所以330133m m -<⎧⎨⋅≠-⋅⎩,解得1m <且9m所以“1m <”是“向量a ,b 夹角为钝角”的必要不充分条件故选:B44.B【分析】化简集合A ,B ,根据补集及交集运算即可.【详解】{}A y y x R ===,{[0,)B x y ∞===+(,0)R R A B B ∴==-∞,故选:B45.D【解析】【分析】解分式不等式求集合A ,再判断集合之间的包含关系,即可判断各选项的正误.【详解】由题设,{|14,N}{0,1,2,3}A x x x =-≤<∈=,又{0,1,2,3,4}B =,所以A B ,即A 、B 、C 错误,D 正确.故选:D46.C【解析】【分析】根据分式不等式解法解出集合A ,根据对数的运算法则计算出集合B ,再根据集合交集运算得结果. 【详解】(){}113003A x x x x x ⎧⎫=-⋅>=<<⎨⎬⎩⎭, (){}{}{}2log 1101211B x x x x x x =+<=<+<=-<<,①10,3A B ⎛⎫ ⎪⎝=⎭. 故选:C.47.B【解析】先化简集合A ,B ,再利用交集运算求解.【详解】 因为{}{}200,1A x x x =-==,B x y ⎧=⎨⎩={}|1x x <, 所以A B ={}0,故选:B48.C【解析】【分析】先解出集合A ,再根据B A ⊆确定集合B 的元素,可得答案.【详解】由题意得,{}{|22}1,0,1A x Z x =∈-<<=-,①{}1,B a =,B A ⊆, ①实数a 的取值集合为{}1,0-,故选:C.49.D【解析】【分析】首先用列举法表示集合A ,再根据对数函数的性质求出集合B ,最后根据交集的定义计算可得;【详解】 解:集合{}62,3,4,71A x Z N x ⎧⎫=∈∈=⎨⎬-⎩⎭,集合(){}{}lg 33B x y x x x ==-=>,则{}4,7A B ⋂=,故选:D .50.D【解析】【分析】先根据一元二次不等式解得集合A ,然后利用交集运算法则求出答案.【详解】解:由题意得:{}{}2230|13A x x x x x =--<=-<<,{}15B x x =≤≤ {}[)|131,3A B x x ∴=≤<=故选:D51.B【解析】【分析】先根据空间线面位置关系判断命题,p q 的真假,再根据且、或、非命题判断真假即可.【详解】解:命题p :若m α⊂,m β∥,则αβ∥,还可能相交,故是假命题,;命题q :若m α⊥,l β⊥,αβ∥,则m l ∥,是真命题.所以p ⌝为真命题,q ⌝为假命题,所以p q ∧,p q ∨⌝,p q ⌝∧⌝均为假命题,p q ⌝∧为真命题,故选:B52.A【解析】【分析】解方程2320x x -+=,利用集合的包含关系判断可得出结论.【详解】解方程2320x x -+=可得1x =或2x =,{}2 {}1,2,因此,“2x =”是“2320x x -+=”的充分不必要条件.故选:A.53.A【解析】【分析】判断命题p ,q 的真假,再借助真值表逐一判断作答.【详解】因当00x =时,0sin 01x =<,即命题p 是真命题,因当04x π=时,00sin cos x x +,即命题q 是真命题, 因此,p q ∧,p q ∨都是真命题,()p q ⌝∨是假命题,而p ⌝是假命题,则()p q ⌝∧是假命题,同理()p q ∧⌝是假命题,所以,B ,C ,D 都不正确,A 正确.故选:A54.D【解析】【分析】首先解一元二次不等式求出集合B ,再根据指数函数的性质求出集合A ,最后根据交集的定义计算可得;【详解】解:由24x ≤,即()()220x x -+≤,解得22x -≤≤,所以{}{}24|22B x x x x =≤=-≤≤,又{}()2,0,x A y y x R ∞==∈=+,所以(]0,2A B ⋂=. 故选:D55.C【解析】【分析】先求出集合B ,再根据子集的定义即可求解.【详解】依题意{}2,3,4B =,所以集合B 的子集的个数为328=,故选:C.56.B【解析】【分析】确定全集中的元素,根据(){}1,5,6U A B ⋃=可确定A B ⋃={}0,2,3,4,再结合图中阴影部分的含义即可得答案.全集{}{}N 270,1,2,3,4,5,6U x x =∈-≤<=,又因为(){}1,5,6U A B ⋃=,所以A B ⋃={}0,2,3,4,而{}2,4B =所以阴影部分表示的集合是()U A B ∩即为{}0,3,故选:B.57.B【解析】【分析】解不等式求得集合B ,由此求得A B .【详解】()()()2550,50,x x x x B +=+>⇒=-∞-⋃+∞, 又{34}A x x =-<<,所以()0,4A B =.故选:B58.A【解析】【分析】首先联立方程,然后判断交点个数,即可判断选项.【详解】首先联立方程22250y x y x xy =-⎧⎪=-⎨⎪≤⎩,得2230x x --=,解得:1x =-或3x =,当1x =-时,4y =-,此时0xy >,舍去;当3x =时,4y =,此时0xy >,舍去,所以M N ⋂为空集.故选:A59.B【分析】根据不等式的解法,分别求得集合,A B ,结合集合补集和交集的运算,即可求解.【详解】 由不等式402x x ->+,解得2x <-或4x >,所以{|2A x x =<-或4}x >, 又由不等式27100x x -+≥,解得2x ≤或5x ≥,所以{|2B x x =≤或5}x , 可得R {|24}A x x =-≤≤,所以()R A B ⋂={}22x x -≤≤.故选:B.60.D【解析】【分析】设()11111i ,z x y x y R =+∈,()22222i ,z x y x y R =+∈,则11(,)OA x y =,22(,)OB x y =,计算出21z z ,然后结合OA OB ⊥可得答案. 【详解】设()11111i ,z x y x y R =+∈,()22222i ,z x y x y R =+∈,则11(,)OA x y =,22(,)OB x y =, 且21212122122111()i z x x y y x y x y z x y ++-=+, 由OA OB ⊥知12120x x y y +=且12x y -210x y ≠,故OA OB ⊥的充要条件是21z z 为纯虚数, 故选:D .61.D【解析】【分析】根据命题和逆否命题的关系可得答案.【详解】 原命题的条件是“若24x <”,结论为“22x -<<”,则其逆否命题是:若2x ≥或2x -≤,则24x ≥,故选:D .【解析】【分析】利用直线与圆的位置关系判断.【详解】因为圆心(0,0)到直线y =2的距离d =2=r ,所以直线2y =与圆224x y +=相切,所以A B 的元素的个数是1,故选:C .63.C【解析】【分析】根据集合的包含关系,列出参数a 的不等关系式,即可求得参数的取值范围.【详解】①集合{}{}2131M x x x x =+<=<,且N M ⊆,①1a ≤.故选:C .64.B【解析】【详解】先求解集合A 和集合B 中的不等式,利用交集的定义即得解【分析】由2318(6)(3)0x x x x --=-+≤,解得36x -≤≤,则[]3,6A =-, 不等式2log 1x >,即2x ,可得2x <-或2x >,则(,2)(2,)B =-∞-⋃+∞所以[)(]3,22,6A B ⋂=--⋃故选:B .65.C【解析】【分析】先判断命题p,q 的真假,从而判断,p q ⌝⌝的真假,再根据“或”“且”命题的真假判断方法,可得答案.【详解】 当52m =时,22123x y m m+=--表示圆, 故命题p :“23m <<是方程22123x y m m+=-- 表示椭圆”的充要条件是假命题, 命题q :“2b ac =是a ,b ,c 成等比数列”的必要不充分条件为真命题,则p ⌝是真命题,q ⌝是假命题,故p q ∧是假命题,p q ∨⌝是假命题,p q ⌝∨⌝是真命题,p q ⌝∧⌝是假命题, 故选:C66.A【解析】【分析】根据特称命题的否定是全称命题,结合已知条件,即可求得结果.【详解】因为命题p :()010,x ∃∈+∞,0lg 1x >,故命题p 的否定为:()10,x ∀∈+∞,1lg x ≤. 故选:A.67.B【解析】【分析】确定集合的元素个数,利用集合真子集个数公式可求得结果.【详解】集合A 的元素个数为4,故集合A 的真子集个数为42115-=.故选:B.68.D【解析】【分析】先求出集合A 的补集,进而求交集即可.【详解】①{}1A x x =>,①(]R ,1A ∞=-,又{}13B x x =-≤<,①()[]R 1,1A B ⋂=-.故选:D69.D【解析】【分析】根据充分条件和必要条件的定义即可得出答案.【详解】解:因为p :24x ≤≤,q :13x ≤≤, 所以,p q q p ⇒⇒,所以p 为q 的既不充分又不必要条件.故选:D.70.B【解析】【分析】特称命题的否定是全称命题,把存在改为任意,把结论否定.【详解】“0x ∃≥,()10x x -<”的否命题为“0x ∀≥,()10x x -≥”,故选:B71.C【解析】【分析】 由一元二次方程根的分布可得010a∆>⎧⎪⎨<⎪⎩求命题q 的参数a 范围,再由命题间的关系求m 的最值即可.【详解】因为2210ax x ++=有一正一负两个根,所以224010a a ⎧∆=->⎪⎨<⎪⎩,解得0a <. 因为p 是q 的充分不必要条件,所以0m <,且m ∈Z ,则m 的最大值为1-.故选:C72.C【解析】【分析】根据含有一个量词的命题的否定的方法进行求解.【详解】全称命题的否定是特称命题,则命题“0x ∀>,210x ->”的否定为“00x ∃>,0210x -≤”. 故选:C.73.D【解析】【分析】利用集合M 、N 的含义,将其化简,然后求其并集即可.【详解】解:由2430x x -+<可得13x <<,所以(1,3)M =,由240x -≥可得2x -≤或2x ≥,所以(][),22,N =-∞-+∞, 所以(](),21,M N =-∞-+∞.故选:D.74.B【解析】【分析】根据特称命题的否定的知识确定正确选项.【详解】原命题是特称命题,其否定是全称命题,注意否定结论,所以,命题“0x ∃∈R ,使得320000x ax bx c +++=”的否定是x ∀∈R ,320x ax bx c +++≠.故选:B75.B【解析】【分析】先求出集合A ,B ,进而根据交集的定义求得答案.【详解】由题意,()(){}[]()|1202,1,1,A x x x B =-+≤=-=-+∞,所以(1,1]A B ⋂=-故选:B.76.D【解析】【分析】先求得R B ,然后求得正确答案.【详解】{}R |13B x x =≤≤,()R A B ⋂={12}x x ≤<∣故选:D77.B【解析】【分析】根据存在量词命题的否定的知识确定正确选项.【详解】原命题是存在量词命题,其否定是全称量词命题,注意到要否定结论,所以B 选项符合. 故选:B78.C【解析】【分析】根据椭圆的性质及焦点的性质可写出其充要条件,然后逐项分析即可.【详解】解:对于A 、B 选项: 曲线22:121x y C m m -=++表示椭圆的充要条件是2010,2121m m m m m +>⎧⎪-->⇔-<<-⎨⎪+≠--⎩且32m ≠-,所以A ,B 不正确;对于C 、D 选项: 方程22121x y m m +=+--表示焦点在x 轴上椭圆321012m m m ⇔+>-->⇔-<<-,所以C 对,D 错.故选:C79.A【解析】【分析】先化简集合A ,B ,再利用集合的补集和交集运算求解.【详解】因为集合{}(){|ln 10,|[1,2)A x x e B x =<==-=,, 所以{|1R B x x =<-或2}x ≥,()[. 2,)R A B e ⋂=故选:A80.C【解析】【分析】 先求出方程221x y m n -=表示双曲线时,m n 满足的条件, 然后根据“小推大”的原则进行判断即可.【详解】 因为方程221x y m n-=为双曲线方程,所以0mn >, 所以“0mn >”是“方程221x y m n-=为双曲线方程”的充要条件. 故选:C.81.BCD【解析】【分析】对于A ,将函数有零点的问题转化为方程有根的问题,根据一元二次方程有根的条件可判断其正误;对于B ,分类讨论a 的取值范围,利用导数判断函数的最值情况;对于C ,可举一具体实数,说明()f x 在R 上单调递增,即可判断其正误;对于D ,根据导数与函数极值的关系判断即可. 【详解】对于A ,函数()()2221e xf x ax x =-+有零点⇔方程2210ax x -+=有解,当0a =时,方程有一解12x =; 当0a ≠时,方程2210ax x -+=有解01,0440a a a a ≠⎧⇔⇒≤≠⎨∆=-≥⎩, 综上知()f x 有零点的充要条件是1a ≤,故A 错误;对于B ,由()()2221e xf x ax x =-+得()()222e x f x x ax a '=+-,当0a =时,()24e xf x x '=-,()f x 在(),0∞-上单调递增,在()0,∞+上单调递减,此时()f x 有最大值()0f ,无最小值;当01a <<时,方程2210ax x -+=有两个不同实根1x ,()212x x x <,当[]12,x x x ∈时,()f x 有最小值()00f x <,当()()12,,x x x ∈-∞⋃+∞时,()0f x >;当1a =时,()()221e x f x x =-有最小值0;当1a >时,()0f x >且当x →-∞时,()0f x →,()f x 无最小值; 当0a <时,x →+∞时,()f x →-∞,()f x 无最小值, 综上,当且仅当(]0,1a ∈时,()f x 有最小值,故B 正确;对于C ,因为当2a =时,()()22221e xf x x x =-+,()224e 0x f x x '=≥在R 上恒成立,此时()f x 在R 上单调递增,故C 正确;对于D ,由()()222e xf x x ax a '=+-知,当0a =时,0x =是()f x 的极值点,当0a ≠,2a ≠时,0x =和2ax a-=都是()f x 的极值点,。

高考数学复习压轴题型专题讲解与练习01 集合(解析版)

高考数学复习压轴题型专题讲解与练习01 集合(解析版)

高考数学复习压轴题型专题讲解与练习专题01 集合一、单选题1.(2021·上海杨浦·高三期中)非空集合A ⊆R ,且满足如下性质:性质一:若a ,b A ∈,则a b A +∈;性质二:若a A ∈,则a A -∈.则称集合A 为一个“群”以下叙述正确的个数为( )①若A 为一个“群”,则A 必为无限集;②若A 为一个“群”,且a ,b A ∈,则a b A -∈;③若A ,B 都是“群”,则A B 必定是“群”;④若A ,B 都是“群”,且A B A ≠,A B B ≠,则A B 必定不是“群”;A .1B .2C .3D .4【答案】C【分析】根据性质,运用特例法逐一判断即可.【详解】①:设集合{}1,0,1A =-,显然110,101,101-+=-+=-+=,符合性质一,同时也符合性质二,因此集合{}1,0,1A =-是一个群,但是它是有限集,故本叙述不正确; ②:根据群的性质,由b A ∈可得:b A -∈,因此可得a b A -∈,故本叙述是正确; ③:设A B C =,若c C ∈,一定有,c A c B ∈∈,因为A ,B 都是“群”,所以,c A c B -∈-∈,因此c C -∈,若d C ∈,所以,d A d B ∈∈,c d C +∈,故本叙述正确;④:因为A B A ≠,A B B ≠,一定存在a A ∈且a B ∉,b A ∉且b B ∈,因此a b A +∉且a b B +∉,所以()a b A B +∉,因此本叙述正确,故选:C【点睛】关键点睛:正确理解群的性质是解题的关键.2.(2021·贵州贵阳·高三开学考试(文))“群”是代数学中一个重要的概念,它的定义是:设G 为某种元素组成的一个非空集合,若在G 内定义一个运算“*”,满足以下条件:①a ∀,b G ∈,有a b G *∈②如a ∀,b ,c G ∈,有()()a b c a b c **=**;③在G 中有一个元素e ,对a G ∀∈,都有a e e a a *=*=,称e 为G 的单位元;④a G ∀∈,在G 中存在唯一确定的b ,使a b b a e *=*=,称b 为a 的逆元.此时称(G ,*)为一个群.例如实数集R 和实数集上的加法运算“+”就构成一个群(),+R ,其单位元是0,每一个数的逆元是其相反数,那么下列说法中,错误的是( )A .G Q =,则(),+G 为一个群B .G R =,则(),G ⨯为一个群C .{}1,1G =-,则(),G ⨯为一个群D .G ={平面向量},则(),+G 为一个群【答案】B【分析】对于选项A,C,D 分别说明它们满足群的定义,对于选项B, 不满足④,则(),G ⨯不为一个群,所以该选项错误.【详解】A. G Q =,两个有理数的和是有理数,有理数加法运算满足结合律,0为G 的单位元,逆元为它的相反数,满足群的定义,则(),+G 为一个群,所以该选项正确;B. G R =,1为G 的单位元,但是1a b b a ⨯=⨯=,当0a =时,不存在唯一确定的b ,所以不满足④,则(),G ⨯不为一个群,所以该选项错误;C. {}1,1G =-,满足①②,1为G 的单位元满足③,1-是-1的逆元,1是1的逆元,满足④,则(),G ⨯为一个群,所以该选项正确;D. G ={平面向量},满足①②,0→为G 的单位元,逆元为其相反向量,则(),+G 为一个群,所以该选项正确.故选:B3.(2022·上海·高三专题练习)设集合{}2110P x x ax =++>,{}2220P x x ax =++>,{}210Q x x x b =++>,{}2220Q x x x b =++>,其中,R a b ∈,下列说法正确的是( ) A .对任意a ,1P 是2P 的子集,对任意的b ,1Q 不是2Q 的子集B .对任意a ,1P 是2P 的子集,存在b ,使得1Q 是2Q 的子集C .存在a ,使得1P 不是2P 的子集,对任意的b ,1Q 不是2Q 的子集D .存在a ,使得1P 不是2P 的子集,存在b ,使得1Q 是2Q 的子集【答案】B【分析】运用集合的子集的概念,令1m P ∈,推得2m P ∈,可得对任意a ,1P 是2P 的子集;再由1b =,5b =,求得1Q ,2Q ,即可判断B 正确,A ,C ,D 错误.【详解】解:对于集合21{|10}P x x ax =++>,22{|20}P x x ax =++>,可得当1m P ∈,即210m am ++>,可得220m am ++>,即有2m P ∈,可得对任意a ,1P 是2P 的子集;故C 、D 错误当5b =时,21{|50}Q x x x R =++>=,22{|250}Q x x x R =++>=,可得1Q 是2Q 的子集;当1b =时,21{|10}Q x x x R =++>=,22{|210}{|1Q x x x x x =++>=≠-且}x R ∈,可得1Q 不是2Q 的子集,故A 错误.综上可得,对任意a ,1P 是2P 的子集,存在b ,使得1Q 是2Q 的子集.故选:B.4.(2022·浙江·高三专题练习)设3124a M a a a =+,其中1a ,2a ,3a ,4a 是1,2,3,4的一个组合,若下列四个关系:①11a =;②21a ≠;③33a =;④44a ≠有且只有一个是错误的,则满足条件的M 的最大值与最小值的差为( )A .233B .323C .334D .454【答案】C【分析】因为只有一个错误,故分类讨论,若①错,有两种情况,若②错则互相矛盾,若③错,有三种情况,若④错,有一种情况,分别求解M 即可得结果.【详解】若①错,则11a ≠,21a ≠,33a =,44a ≠有两种情况:12a =,24a =,33a =,41a =,3124324111a M a a a =+=⨯+= 或14a =,22a =,33a =,41a =,3124342111a M a a a =+=⨯+=; 若②错,则11a =,21a =,互相矛盾,故②对;若③错,则11a =,21a ≠,33a ≠,44a ≠有三种情况:11a =,22a =,34a =,43a =,31244101233a M a a a =+=⨯+=;11a =,23a =,34a =,42a =,312441352a M a a a =+=⨯+=; 11a =,24a =,32a =,43a =,31242141433a M a a a =+=⨯+=; 若④错,则11a =,21a ≠,33a =,44a =只有一种情况:11a =,22a =,33a =,44a =,31243111244a M a a a =+=⨯+= 所以max min 11331144M M -=-= 故选:C 5.(2021·福建·福州四中高三月考)用()C A 表示非空集合A 中元素的个数,定义()(),()()()(),()()C A C B C A C B A B C B C A C A C B -≥⎧*=⎨-<⎩,已知集合{}2|0A x x x =+=,()(){}22|10B x x ax x ax =+++=,且1A B *=,设实数a 的所有可能取值构成集合S ,则()C S =( )A .0B .1C .2D .3【答案】D【分析】根据条件可得集合B 要么是单元素集,要么是三元素集,再分这两种情况分别讨论计算求解.【详解】由{}2|0A x x x =+=,可得{}1,0A =-因为22()(1)0x ax x ax +++=等价于20x ax 或210x ax ++=,且{}1,0,1A A B =-*=,所以集合B 要么是单元素集,要么是三元素集.(1)若B 是单元素集,则方程20x ax 有两个相等实数根,方程210x ax ++=无实数根,故0a =;(2)若B 是三元素集,则方程20x ax 有两个不相等实数根,方程210x ax ++=有两个相等且异于方程20x ax 的实数根,即2402a a -=⇒=±且0a ≠.综上所求0a =或2a =±,即{}0,22S =-,,故()3C S =, 故选:D .【点睛】关键点睛:本题以A B *这一新定义为背景,考查集合中元素个数问题,考查分类讨论思想的运用,解答本题的关键是由新定义分析得出集合B 要么是单元素集,要么是三元素集,即方程方程20x ax 与方程210x ax ++=的实根的个数情况,属于中档题.6.(2020·陕西·长安一中高三月考(文))在整数集Z 中,被4除所得余数k 的所有整数组成一个“类”,记为[]k ,即[]{}4k n k n Z =+∈,0,1,2,3k =.给出如下四个结论:①[]20151∈;②[]22-∈;③[][][][]0123Z =;④“整数a ,b 属于同一‘类’”的充要条件是“[]0a b -∈”.其中正确的个数为( )A .1B .2C .3D .4【答案】C【分析】根据“类”的定义计算后可判断①②④的正误,根据集合的包含关系可判断③的正误,从而可得正确的选项.【详解】因为201550343=⨯+,故[]20153∈,故①错误,而242-=+,故[]22-∈,故②正确.若整数a ,b 属于同一“类”,设此类为[]{}()0,1,2,3r r ∈,则4,4a m r b n r =+=+,故()4a b m n -=-即[]0a b -∈,若[]0a b -∈,故-a b 为4的倍数,故,a b 除以4的余数相同,故a ,b 属于同一“类”, 故整数a ,b 属于同一“类”的充要条件为[]0a b -∈,故④正确.由“类”的定义可得[][][][]0123Z ⊆,任意c Z ∈,设c 除以4的余数为{}()0,1,2,3r r ∈,则[]c r ∈,故[][][][]0123c ∈,所以[][][][]0123Z ⊆, 故[][][][]0123Z =,故③正确.故选:C.【点睛】方法点睛:对于集合中的新定义问题,注意根据理解定义并根据定义进行相关的计算,判断两个集合相等,可以通过它们彼此包含来证明.7.(2021·全国·高三专题练习(理))在整数集Z 中,被6除所得余数为k 的所有整数组成一个“类”,记为[]k ,即[]{}6k n k n Z =+∈,1k =,2,3,4,5给出以下五个结论:①[]55-∈;②[][][][][][]012345Z =;③“整数a 、b 属于同一“类””的充要条件是“[]0a b -∈”;④“整数a 、b 满足[]1∈a ,[]2b ∈”的充要条件是“[]3+∈a b ”,则上述结论中正确的个数是( )A .1B .2C .3D .4【答案】B【分析】 根据“类”的定义逐一进行判断可得答案.【详解】①因为[]{}565|n n Z =+∈,令655n +=-,得10563n =-=-Z ∉,所以[]55-∉,①不正确; ②[][][][][][]012345{}{}{}1122336|61|62|n n Z n n Z n n Z =∈+∈+∈{}4463|n n Z +∈{}5564|n n Z +∈{}6665|n n Z +∈Z =,故②正确;③若整数a 、b 属于同一“类”,则整数,a b 被6除所得余数相同,从而-a b 被6除所得余数为0,即[]0a b -∈;若[]0a b -∈,则-a b 被6除所得余数为0,则整数,a b 被6除所得余数相同,故“整数a 、b 属于同一“类””的充要条件是“[]0a b -∈”,所以③正确; ④若整数a 、b 满足[]1∈a ,[]2b ∈,则161a n =+,1n Z ∈,262b n =+,2n Z ∈, 所以126()3a b n n +=++,12n n Z +∈,所以[]3+∈a b ;若[]3+∈a b ,则可能有[][]2,1a b ∈∈,所以“整数a 、b 满足[]1∈a ,[]2b ∈”的必要不充分条件是“[]3+∈a b ”,所以④不正确. 故选:B【点睛】关键点点睛:对新定义的理解以及对充要条件的理解是本题解题关键.8.(2021·浙江·路桥中学模拟预测)设集合,S T 中至少两个元素,且,S T 满足:①对任意,x y S ∈,若x y ≠,则x y T +∈ ,②对任意,x y T ∈,若x y ≠,则x y S -∈,下列说法正确的是( )A .若S 有2个元素,则S T 有3个元素B .若S 有2个元素,则S T 有4个元素C .存在3个元素的集合S ,满足S T 有5个元素D .存在3个元素的集合S ,满足S T 有4个元素【答案】A【分析】不妨设{,}S a b =,由②知集合S 中的两个元素必为相反数,设{,}S a a =-,由①得0T ∈,由于集合T 中至少两个元素,得到至少还有另外一个元素m T ∈,分集合T 有2个元素和多于2个元素分类讨论,即可求解.【详解】若S 有2个元素,不妨设{,}S a b =,以为T 中至少有两个元素,不妨设{},x y T ⊆,由②知,x y S y x S -∈-∈,因此集合S 中的两个元素必为相反数,故可设{,}S a a =-, 由①得0T ∈,由于集合T 中至少两个元素,故至少还有另外一个元素m T ∈, 当集合T 有2个元素时,由②得:m S -∈,则,{0,}m a T a =±=-或{0,}T a =.当集合T 有多于2个元素时,不妨设{0,,}T m n =,其中,,,,,m n m n m n n m S ----∈,由于,0,0m n m n ≠≠≠,所以,m m n n ≠-≠-,若m n =-,则n m =-,但此时2,2m n m m m n n n -=≠-=-≠,即集合S 中至少有,,m n m n -这三个元素,若m n ≠-,则集合S 中至少有,,m n m n -这三个元素,这都与集合S 中只有2个运算矛盾,综上,{0,,}S T a a =-,故A 正确;当集合S 有3个元素,不妨设{,,}S a b c =,其中a b c <<,则{,,}a b b c c a T +++⊆,所以,,,,,c a c b b a a c b c a b S ------∈,集合S 中至少两个不同正数,两个不同负数,即集合S 中至少4个元素,与{,,}S a b c =矛盾,排除C ,D.故选:A.【点睛】解题技巧:解决以集合为背景的新定义问题要抓住两点:1、紧扣新定义,首先分析新定义的特点,把心定义所叙述的问题的本质弄清楚,应用到具体的解题过程中;2、用好集合的性质,解题时要善于从试题中发现可以使用的集合的性质的一些因素.9.(2021·广东番禺中学高一期中)设{}1,2,3,4I =,A 与B 是I 的子集,若{}1,2A B =,则称(),A B 为一个“理想配集”.规定(),A B 与(),B A 是两个不同的“理想配集”,那么符合此条件的“理想配集”的个数是( )A .4B .6C .8D .9【答案】D【分析】对子集A 分{}1,2A =,{}1,2,3A =,{}1,2,4A =,{}1,2,3,4A =四种情况讨论,列出所有符合题意的集合B 即可求解.【详解】{}1,2,3,4I =,A 与B 是I 的子集,{}1,2A B =, 对子集A 分情况讨论:当{}1,2A =时,{}1,2B =,{}1,2,3B =,{}1,2,4B =,{}1,2,3,4B =,有4种情况;当{}1,2,3A =时,{}1,2B =,{}1,2,4B =,有2种情况; 当{}1,2,4A =时,{}1,2B =,{}1,2,3B =,有2种情况; 当 {}1,2,3,4A =时,{}1,2B =,有1种情况; 所以共有42219+++=种, 故选:D.10.(2020·上海奉贤·高一期中)对于区间(1,10000)内任意两个正整数m ,n ,定义某种运算“*”如下:当m ,n 都是正偶数时,n m n m *=;当m ,n 都为正奇数时,log m m n n *=,则在此定义下,集合(){},4M a b a b =*=中元素个数是( ) A .3个 B .4个 C .5个 D .6个【答案】C 【分析】分别讨论a ,b 都是正偶数时,4b a b a *==,a ,b 都是正奇数时,log 4a a b b *==,所以4a b =,再由,(1,10000)a b ∈即可求出集合M ,进而可得集合M 中的元素的个数. 【详解】因为当m ,n 都是正偶数时,n m n m *=; 当m ,n 都为正奇数时,log m m n n *=,所以当a ,b 都是正偶数时,4b a b a *==,可得2a b ==; 当a ,b 都是正奇数时,log 4a a b b *==,所以4a b =, 因为,(1,10000)a b ∈, 所以3a =,81b =;5a =,625b =; 7a =,2401b =;9a =,6561b =;所以()()()()(){}2,2,3,81,5,625,7,2401,9,6561M =, 所以集合M 中的元素有5个, 故选:C.11.(2021·全国·高三专题练习)设X 是直角坐标平面上的任意点集,定义*{(1X y =-,1)|(x x -,)}y X ∈.若*X X =,则称点集X“关于运算*对称”.给定点集{}22(,)|1A x y x y +==,{}(,)|1==-B x y y x ,(){},|1|||1=-+=C x y x y ,其中“关于运算 * 对称”的点集个数为( )A .0B .1C .2D .3【答案】B 【分析】令1y X -=,1x Y -=,则1y X =-,1x Y =+,从而由A ,B ,C 分别求出*A ,*B ,*C ,再根据点集X “关于运算*对称”的定义依次分析判断即可得出答案. 【详解】解:令1y X -=,1x Y -=, 则1y X =-,1x Y =+,22{(,)|1}A x y x y =+=,*{(A X∴=,22)|(1)(1)1}Y Y X ++-=,故*A A ≠;{(,)|1}B x y y x ==-,*{(,)|111B X Y X Y ∴=-=+-,即1}Y X =-,故*B B ≠;{(,)||1|||1}C x y x y =-+=,*{(,)||11||1|1C X Y Y X ∴=+-+-=,即|||1|1}Y X +-=,故*C C =;所以“关于运算 * 对称”的点集个数为1个. 故选:B.12.(2021·黑龙江·哈师大附中高一月考)设集合X 是实数集R 的子集,如果点0x ∈R 满足:对任意0a >,都存在x X ∈,使得00x x a <-<,那么称0x 为集合X 的聚点.则在下列集合中,以0为聚点的集合是( ) A .{|0}1nn Z n n ∈≥+, B .{|0}x x x ∈≠R ,C .221,0n n Z n n ⎧⎫+∈≠⎨⎬⎩⎭∣D .整数集Z【答案】B 【分析】根据给出的聚点定义逐项进行判断即可得出答案. 【详解】 A 中,集合{|0}1n n Z n n ∈≥+,中的元素除了第一项0之外,其余的都至少比0大12, 所以在102a <<的时候,不存在满足0x a <<的x ,0∴不是集合{|0}1nn Z n n ∈≥+,的聚点;故A 不正确;B 中,集合{|0}x x x ∈≠R ,,对任意的a ,都存在(2a x =实际上任意比a 小的数都可以),使得02a x a <=<,所以0是集合{|0}x x x ∈≠R ,的聚点;故B 正确;C 中,因为2211n n+>,所以当01a <<时,不存在满足0x a <<的x ,0∴不是集合221,0n n Z n n ⎧⎫+∈≠⎨⎬⎩⎭∣的聚点,故C 不正确;D ,对于某个1a <,比如0.5a =,此时对任意的x ∈Z ,都有00x -=或者01x -≥,也就是说不可能满足000.5x <-<,从而0不是整数集Z 的聚点.故D 不正确. 综上得以0为聚点的集合是选项B 中的集合. 故选:B .二、多选题13.(2020·广东广雅中学高三月考)设整数4n ≥,集合{}1,2,3,,X n =.令集合{(,,),,S x y z x y z X =∈,且三条件,x y z <<,y z x <<z x y <<恰有一个成立},若(),,x y z 和(),,z w x 都在S 中,则下列选项不正确的是( ) A .(),,y z w S ∈,(),,x y w S ∉ B .(),,y z w S ∈,(),,x y w S ∈ C .(),,y z w S ∉,(),,x y w S ∈ D .(),,y z w S ∉,(),,x y w S ∉【答案】ACD 【分析】根据集合S 的定义可以得到,,x y z 和,,z w x 的大小关系都有3种情况,然后交叉结合,利用不等式的传递性和无矛盾性原则得到正确的选项. 【详解】因为(,,)x y z S ∈,则,,x y z 的大小关系有3种情况,同理,(,,)z w x S ∈,则,,z w x 的大小关系有3种情况,由图可知,,,,x y w z 的大小关系有4种可能,均符合(,,)y z w S ∈,(,,)x y w S ∈,所以ACD 错, 故选:ACD. 【点睛】本题考查新定义型集合,涉及不等式的基本性质,首先要理解集合S 中元素的性质,利用列举画图,根据无矛盾性原则和不等式的传递性分析是关键.14.(2021·河北·石家庄二中高三月考)若集合A 具有以下性质:(1)0A ∈,1A ∈;(2)若x 、y A ,则x y A -∈,且0x ≠时,1A x∈.则称集合A 是“完美集”.下列说法正确的是( )A .集合{}1,0,1B =-是“完美集” B .有理数集Q 是“完美集”C .设集合A 是“完美集”,x 、y A ,则x y A +∈D .设集合A 是“完美集”,若x 、y A 且0x ≠,则yA x∈ 【答案】BCD 【分析】利用第(2)条性质结合1x =,1y =-可判断A 选项的正误;利用题中性质(1)(2)可判断B 选项的正误;当y A 时,推到出y A -∈,结合性质(2)可判断C 选项的正误;推导出xy A ∈,结合性质(2)可判断D 选项的正误.【详解】对于A 选项,取1x =,1y =-,则2x y A -=∉,集合{}1,0,1B =-不是“完美集”,A 选项错误;对于B 选项,有理数集Q 满足性质(1)、(2),则有理数集Q 为“完美集”,B 选项正确; 对于C 选项,若y A ,则0y y A -=-∈,()x y x y A ∴+=--∈,C 选项正确; 对于D 选项,任取x 、y A ,若x 、y 中有0或1时,显然xy A ∈; 当x 、y 均不为0、1且当x A ∈,y A 时,1x A -∈,则()11111A x x x x -=∈--,所以()1x x A -∈,()21x x x x A ∴=-+∈,()()2222221111122A xy xy xy x y x y x y x y ∴=+=+∈+--+--,xy A ∴∈, 所以,若x 、y A 且0x ≠,则1A x∈,从而1yy A x x=⋅∈,D 选项正确. 故选:BCD. 【点睛】本题考查集合的新定义,正确理解定义“完美集”是解题的关键,考查推理能力,属于中等题.15.(2022·全国·高三专题练习)(多选)若非空数集M 满足任意,x y M ∈,都有x y M +∈,x y M-∈,则称M 为“优集”.已知,A B 是优集,则下列命题中正确的是( )A .AB 是优集B .A B 是优集C .若A B 是优集,则A B ⊆或B A ⊆D .若A B 是优集,则A B 是优集【答案】ACD 【分析】结合集合的运算,紧扣集合的新定义,逐项推理或举出反例,即可求解. 【详解】对于A 中,任取,x A B y A B ∈∈,因为集合,A B 是优集,则,x y A x y B +∈+∈,则 x y A B +∈,,x y A x y B -∈-∈,则x y A B -∈,所以A 正确;对于B 中,取{|2,},{|3,}A x x k k Z B x x m m Z ==∈==∈, 则{|2A B x x k ⋃==或3,}x k k Z =∈,令3,2x y ==,则5x y A B +=∉,所以B 不正确; 对于C 中,任取,x A y B ∈∈,可得,x y A B ∈, 因为A B 是优集,则,x y A B x y A B +∈-∈, 若x y B +∈,则()x x y y B =+-∈,此时 A B ⊆; 若x y A +∈,则()x x y y A =+-∈,此时 B A ⊆, 所以C 正确;对于D 中,A B 是优集,可得A B ⊆,则A B A =为优集; 或B A ⊆,则A B B =为优集,所以A B 是优集,所以D 正确. 故选:ACD. 【点睛】解决以集合为背景的新定义问题要抓住两点:1、紧扣新定义,首先分析新定义的特点,把心定义所叙述的问题的本质弄清楚,应用到具体的解题过程中;2、用好集合的性质,解题时要善于从试题中发现可以使用的集合的性质的一些因素.16.(2020·山东·高三专题练习)已知集合()(){}=,M x y y f x =,若对于()11,x y M ∀∈,()22,x y M ∃∈,使得12120x x y y +=成立,则称集合M 是“互垂点集”.给出下列四个集合:(){}21,1M x y y x ==+;(){2,M x y y ==;(){}3,xM x y y e ==;(){}4,sin 1M x y y x ==+.其中是“互垂点集”集合的为( ) A .1M B .2MC .3MD .4M【答案】BD 【分析】根据题意知,对于集合M 表示的函数图象上的任意点()11,P x y ,在图象上存在另一个点P ',使得OP OP '⊥,结合函数图象即可判断. 【详解】由题意知,对于集合M 表示的函数图象上的任意点()11,P x y ,在图象上存在另一个点P ',使得OP OP '⊥.在21y x =+的图象上,当P 点坐标为(0,1)时,不存在对应的点P ', 所以1M 不是“互垂点集”集合;对y = 所以在2M 中的任意点()11,P x y ,在2M 中存在另一个P ',使得OP OP '⊥, 所以2M 是“互垂点集”集合;在x y e =的图象上,当P 点坐标为(0,1)时,不存在对应的点P ', 所以3M 不是“互垂点集”集合;对sin 1y x =+的图象,将两坐标轴绕原点进行任意旋转,均与函数图象有交点, 所以所以4M 是“互垂点集”集合, 故选:BD . 【点睛】本题主要考查命题的真假的判断,以及对新定义的理解与应用,意在考查学生的数学建模能力和数学抽象能力,属于较难题.第II 卷(非选择题)三、填空题17.(2021·上海市进才中学高三期中)进才中学1996年建校至今,有一同学选取其中8个年份组成集合{}1996,1997,2000,2002,2008,2010,2011,2014A =,设i j x x A ∈、,i j ≠,若方程i j x x k -=至少有六组不同的解,则实数k 的所有可能取值是_________.【答案】{}3,6,14 【分析】根据i j x x k -=,用列举法列举出集合A 中,从小到大8个数中(设两数的差为正),相邻两数,间隔一个数,间隔二个数,间隔三个数,间隔四个数,间隔五个数,间隔六个数的两数差,从中找出差数出现次数不低于3的差数即可. 【详解】集合A 中,从小到大8个数中,设两数的差为正: 则相邻两数的差:1,3,2,6,2,1,3; 间隔一个数的两数差:4,5,8,8,3,4; 间隔二个数的两数差:6,11,10,9,6; 间隔三个数的两数差:12,13,11,12; 间隔四个数的两数差:14,14,14; 间隔五个数的两数差:15,17; 间隔六个数的两数差:18;这28个差数中,3出现3次,6出现3次,14出现3次,其余都不超过2次, 故k 取值为:3,6,14时,方程i j x x k -=至少有六组不同的解, 所以k 的可能取值为:{}3,6,14, 故答案为:{}3,6,1418.(2021·北京·高三开学考试)记正方体1111ABCD A B C D -的八个顶点组成的集合为S .若集合M S ⊆,满足i X ∀,j X M ∈,k X ∃,l X M ∈使得直线i j k l X X X X ⊥,则称M 是S 的“保垂直”子集. 给出下列三个结论:①集合{}1,,,A B C C 是S 的“保垂直”子集;②集合S 的含有6个元素的子集一定是“保垂直”子集;③若M 是S 的“保垂直”子集,且M 中含有5个元素,则M 中一定有4个点共面. 其中所有正确结论的序号是______. 【答案】② 【分析】首先弄清楚可取其中的5,6,7,8个点时,符合M 是S 的“保垂直”子集,且正方体的两条体对角线不垂直,然后根据定义逐项判断可得答案. 【详解】对于①,当取体对角线1AC 时,找不到与之垂直的直线,①错误; 对于②,当8个点任取6个点时,如图当M 集合中的6个点是由上底面四个点和下底面两个点;或者由上底面两个点和下底面四个点构成时,必有四点共面,根据正方体的性质,符合M 是S 的“保垂直”子集; 当M 集合中的6个点是由上底面三个点和下底面三个点构成时,如{}111,,,,,M B C A C A B =,则存在11,,,B A A B 四点共面,根据正方体的性质,符合M 是S 的“保垂直”子集; 如{}111,,,,,M B C A C A D =,取,B A 存在11BC A D ⊥,取,B C 存在11BC C D ⊥,取,C A 存在1AC BD ⊥,符合M 是S 的“保垂直”子集,所以②正确;对于③,举反例即可,如{}11,,,,M B C D C A =,③错误.故答案为:②.19.(2021·江苏扬州·模拟预测)对于有限数列{}n a ,定义集合()1212,110k i i i k a a a S k s s i i i k ⎧⎫+++⎪⎪==≤<<<≤⎨⎬⎪⎪⎩⎭,,其中k ∈Z 且110k ≤≤,若n a n =,则()3S 的所有元素之和为___________.【答案】660【分析】可得()3S 123123,1103i i i s s i i i ⎧⎫++==≤<<≤⎨⎬⎩⎭,得出()3S 中的每个元素就是从1,2,,10中挑选3个出来求平均值,求出每个数字被选中的次数即可求解.【详解】()1231233,1103i i i a a a S s s i i i ⎧⎫++⎪⎪==≤<<≤⎨⎬⎪⎪⎩⎭ 123123,1103i i i s s i i i ⎧⎫++==≤<<≤⎨⎬⎩⎭, 则()3S 中的每个元素就是从1,2,,10中挑选3个出来求平均值,1,2,,10每个被选出的次数是相同的,若()110i i ≤≤被选中,则共有29C 种选法,即1,2,,10每个被选出的次数为29C ,则()3S 的所有元素之和为()()29101109812102266033C ⨯+⨯⨯⋅+++==. 故答案为:660.【点睛】关键点睛:解决本题的关键是判断出()3S 中的每个元素就是从1,2,,10中挑选3个出来求平均值,再求出每个数字被选中的次数.20.(2021·北京东城·一模)设A 是非空数集,若对任意,x y A ∈,都有,x y A xy A +∈∈,则称A 具有性质P .给出以下命题:①若A 具有性质P ,则A 可以是有限集;②若12,A A 具有性质P ,且12A A ≠∅,则12A A 具有性质P ; ③若12,A A 具有性质P ,则12A A 具有性质P ;④若A 具有性质P ,且A ≠R ,则A R 不具有性质P .其中所有真命题的序号是___________.【答案】①②④【分析】举特例判断①;利用性质P 的定义证明②即可;举反例说明③错误;利用反证法,结合举反例判断④.【详解】对于①,取集合{}0,1A =具有性质P ,故A 可以是有限集,故①正确;对于②,取12,x y A A ∈,则1x A ∈,2x A ∈,1y A ∈,2y A ∈,又12,A A 具有性质P ,11,x y A xy A ∴+∈∈,22,x y A xy A +∈∈,1212,x y xy A A A A ∴+∈∈,所以12A A 具有性质P ,故②正确;对于③,取{}1|2,A x x k k Z ==∈,{}2|3,A x x k k Z ==∈,12A ∈,23A ∈,但1223A A +∉,故③错误;对于④,假设A R 具有性质P ,即对任意,x y A ∈R ,都有,x y A xy A +∈∈R R ,即对任意,x y A ∉,都有,x y A xy A +∉∉,举反例{}|2,A x x k k Z ==∈,取1A ∉,3A ∉,但134A +=∈,故假设不成立,故④正确;故答案为:①②④【点睛】关键点点睛:本题考查集合新定义,解题的关键是对集合新定义的理解,及举反例,特例证明,考查学生的逻辑推理与特殊一般思想,属于基础题.。

高考数学一轮复习 考点01 集合必刷题 理(含解析)-人教版高三全册数学试题

高考数学一轮复习 考点01 集合必刷题 理(含解析)-人教版高三全册数学试题

考点01 集合1.若集合A={-1,0,1},B={y|y=x2,x∈A},则A∩B=( )A.{0} B.{1}C.{0,1} D.{0,-1}【答案】C【解析】因为B={y|y=x2,x∈A}={0,1},所以A∩B={0,1}.2.设集合,集合,则()A. B. C. D.【答案】B【解析】集合=,集合,则。

故答案为:B.3.已知全集为整数集Z.若集合A={x|y=1-x,x∈Z},B={x|x2+2x>0,x∈Z},则A∩(∁Z B)=( ) A.{-2} B.{-1}C.[-2,0] D.{-2,-1,0}【答案】D【解析】由题意可知,集合A={x|x≤1,x∈Z},B={x|x>0或x<-2,x∈Z},故A∩(∁Z B)={-2,-1,0}.故选D.4.已知集合A={x|0<x≤6},B={x∈N|2x<33},则集合A∩B中的元素个数为( )A.6 B.5C.4 D.3【答案】B【解析】集合A={x|0<x≤6},B={x∈N|2x<33}={0,1,2,3,4,5},∴A∩B={1,2,3,4,5},∴A∩B中元素个数为5.故选B.5.已知集合,,则()A. B. C. D.【答案】A【解析】因为集合,,所以A∩B={0,1}.故答案为:A.6.若集合M={x||x|≤1},N={y|y=x2,|x|≤1},则( )A .M =NB .M ⊆NC .M ∩N =∅D .N ⊆M【答案】D【解析】∵M ={x ||x |≤1}={x |-1≤x ≤1},N ={y |y =x 2,|x |≤1}={y |0≤y ≤1},∴N ⊆M .故选D. 7.已知集合 ,,则( )A .B .C .D .【答案】C 【解析】由题意得,,.故选C.8.已知集合A ={1,a 2},B ={2a ,-1},若A ∩B ={4},则实数a 等于( ) A .-2 B .0或-2 C .0或2 D .2【答案】D【解析】因为A ∩B ={4},所以4∈A 且4∈B ,故⎩⎪⎨⎪⎧a 2=4,2a =4,a =2.故选D.9.已知集合,,则集合( )A .B .C .D .【答案】D 【解析】已知集合,,∴A∩B 中的元素满足:解得: 则A∩B=. 故选D.10.设全集U =R ,已知集合A ={x ||x |≤1},B ={x |log 2x ≤1},则(∁U A )∩B =( ) A .(0,1] B .[-1,1] C .(1,2]D .(-∞,-1]∪[1,2]【答案】C【解析】因为A={x||x|≤1}={x|-1≤x≤1},B={x|log2x≤1}={x|0<x≤2},所以∁U A={x|x>1或x<-1},则(∁U A)∩B=(1,2].11.已知全集U=R,集合A={0,1,2,3,4},B={x|x2-2x>0},则图中阴影部分表示的集合为( )A.{0,1,2} B.{1,2}C.{3,4} D.{0,3,4}【答案】A【解析】∵全集U=R,集合A={0,1,2,3,4},B={x|x2-2x>0}={x|x>2或x<0},∴∁U B={x|0≤x≤2},∴图中阴影部分表示的集合为A∩(∁U B)={0,1,2}.故选A.12.设集合M={x|x<4},集合N={x|x2-2x<0},则下列关系中正确的是( )A.M∩N=M B.M∪(∁R N)=MC.N∪(∁R M)=R D.M∩N=N【答案】D【解析】由题意可得N=(0,2),M=(-∞,4),N⊆M.故选D.13.设集合A={x|y=lg(-x2+x+2)},B={x|x-a>0}.若A⊆B,则实数a的取值X围是( ) A.(-∞,-1) B.(-∞,-1]C.(-∞,-2) D.(-∞,-2]【答案】B【解析】集合A={x|y=lg(-x2+x+2)}={x|-1<x<2},B={x|x-a>0}={x|x>a},因为A⊆B,所以a≤-1.14.已知,则()A. B.C. D.【答案】C【解析】由题可得则故选C.15.已知集合A={x|x<1},B={x|x2-x-6<0},则( )A.A∩B={x|x<1}B.A∪B=RC.A∪B={x|x<2}D.A∩B={x|-2<x<1}【答案】D【解析】集合A={x|x<1},B=x{x|x2-x-6<0}={x|-2<x<3},则A∩B={x|-2<x<1},A∪B={x|x <3}.故选D.16.设U=R,已知集合A={x|x≥1},B={x|x>a},且(∁U A)∪B=R,则实数a的取值X围是( ) A.(-∞,1) B.(-∞,1]C.(1,+∞)D.[1,+∞)【答案】A【解析】∵U=R,集合A={x|x≥1}=[1,+∞),∴∁U A=(-∞,1),由B={x|x>a}=(a,+∞)以及(∁U A)∪B=R可知实数a的取值X围是(-∞,1).故选A.17.已知集合,集合,则A. B. C. D.【答案】A【解析】由题得A={x|-2<x<3},所以={x|x≤-2或x≥3},所以=.故答案为:A18.已知集合,,则∁A. B. C. D.【答案】A【解析】由,即,解得或,即,∁,解得,即,则∁,故选A.1.A ,B 为两个非空集合,定义集合A -B ={x |x ∈A 且x ∉B },若A ={-2,-1,0,1,2},B ={x |(x -1)(x +2)<0},则A -B =( ) A .{2} B .{1,2} C .{-2,1,2} D .{-2,-1,0}【答案】C【解析】∵A ,B 为两个非空集合,定义集合A -B ={x |x ∈A 且x ∉B },A ={-2,-1,0,1,2},B ={x |(x -1)(x +2)<0}={x |-2<x <1},∴A -B ={-2,1,2}.故选C.20.对于任意两集合A ,B ,定义A -B ={x |x ∈A 且x ∉B },A *B =(A -B )∪(B -A ),记A ={y |y ≥0},B ={x |-3≤x ≤3},则A *B =________. 【答案】[-3,0)∪(3,+∞)【解析】由题意知A -B ={x |x >3},B -A ={x |-3≤x <0},所以A *B =[-3,0)∪(3,+∞). 21.设集合I ={x |-3<x <3,x ∈Z },A ={1,2},B ={-2,-1,2},则A ∩(∁I B )=________. 【答案】{1}【解析】∵集合I ={x |-3<x <3,x ∈Z }={-2,-1,0,1,2},A ={1,2},B ={-2,-1,2},∴∁I B ={0,1},则A ∩(∁I B )={1}.22.(2018某某红色七校联考)集合A ={x |x 2+x -6≤0},B ={y |y =x ,0≤x ≤4},则A ∩(∁R B )=________. 【答案】[-3,0)【解析】∵A ={x |x 2+x -6≤0}={x |-3≤x ≤2},B ={y |y =x ,0≤x ≤4}={y |0≤y ≤2},∴∁R B ={y |y <0或y >2},∴A ∩(∁R B )=[-3,0).23.已知集合A ={y |y 2-(a 2+a +1)y +a (a 2+1)>0},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪ y =12x 2-x +52,0≤x ≤3.若A ∩B =∅,则实数a 的取值X 围是________. 【答案】(-∞,-3]∪[3,2]【解析】由题意可得A ={y |y <a 或y >a 2+1},B ={y |2≤y ≤4}.当A ∩B =∅时,⎩⎪⎨⎪⎧a 2+1≥4,a ≤2,∴3≤a ≤2或a ≤-3,∴a 的取值X 围是(-∞,-3]∪[3,2]. 24.已知集合,,则_________.【答案】【解析】因为,,所以,故{0,7},故填. 25.已知集合,.(1)若A∩B=,某某数m的值;(2)若,某某数m的取值X围.【答案】(1)2;(2)【解析】由已知得:,.(1)因为,所以,故,所以.(2).因为,或,所以或.所以的取值X围为.。

专题1 集合 跳出题海之高中数学必做黄金100题(解析版)

专题1 集合  跳出题海之高中数学必做黄金100题(解析版)
二.考场精彩·真题回放
【2020高考全国1卷,理1】设集合A={x|x2–4≤0},B={x|2x+a≤0},且A∩B={x|–2≤x≤1},则a=()
A.–4B. –2C.2D. 4
【答案】B
【解析】求解二次不等式x240可得:Ax|2x2,
求解一次不等式2xa0可得:Bx|xa.
2
由于ABx|2x1,故:a1,解得:a2.
【答案】D
【解析】∵A1,Bxx2mx31,AB,
∴1为方程x2mx31的解,即1m31,解得m3,故选D.
2.(2018年高考全国Ⅱ卷理数)已知集合Ax,yx2y2≤3,xZ,yZ,则A中元素的个数为
A.9B.8C.5D.4
【答案】A
【解析】x2+y2≤3,x2≤3,x C Z,x敬潃潬,湯,潬,当x敬潃潬时,y敬潃潬,湯,潬;
【答案】D
防范:一是不要忽视元
【解析】集合M中:x21,解得1x1,集合N中:ylog2x是单调递
增函数x2,所以y1即Mx1x1,Ny y1
素的互异性;二是保证运算的准确性。
A选项中,MNN,所以错误;B选项中,CRNyy1,所以
MCRNx1x1,所以错误;C选项中,MNU,所
以错误
确.故选
D
D
选项中,Mx1x
∴集合Ax|x1或x0,
∵集合B{x|ylog2(x1)},
∴集合B{x|x1},∴AB{x|x1}, 故选:A.
4.(2020·重庆高三)已知集合Ax|xx26x80,AB0,2,4,6,则集合B中必有的元素是()
A.0B.2C.4D.6
【答案】D
【解析】由xx26x80,得x0,或x=2,或x4
的集合化为最简形式再

集合练习题及讲解高中必刷

集合练习题及讲解高中必刷

集合练习题及讲解高中必刷### 高中数学集合练习题及讲解练习题1:已知集合A={x|x<5},B={x|-3≤x<2},求A∩B。

解析:根据集合的交集定义,我们需要找出同时满足A和B条件的元素。

集合A包含所有小于5的实数,而集合B包含所有大于等于-3且小于2的实数。

因此,A∩B将包含所有大于等于-3且小于2的实数。

答案:A∩B={x|-3≤x<2}。

练习题2:集合P={x|x²-1=0},Q={x|x²-4=0},求P∪Q。

解析:首先解方程x²-1=0和x²-4=0。

对于x²-1=0,解得x=±1;对于x²-4=0,解得x=±2。

集合P包含所有解得x²-1=0的实数,即P={-1,1};集合Q包含所有解得x²-4=0的实数,即Q={-2,2}。

根据并集的定义,P∪Q包含P和Q中的所有元素。

答案:P∪Q={-2,-1,1,2}。

练习题3:集合M={x|-2<x<3},N={x|x>1},判断M⊆N。

解析:要判断M是否是N的子集,我们需要验证M中的所有元素是否也属于N。

集合M包含所有大于-2且小于3的实数,而集合N包含所有大于1的实数。

显然,M中的所有元素都大于1,因此M中的元素也属于N。

答案: M⊆N。

练习题4:集合S={x|0<x<10},T={x|x>0},求S∩T。

解析:根据交集的定义,我们需要找出同时满足S和T条件的元素。

集合S包含所有大于0且小于10的实数,而集合T包含所有大于0的实数。

因此,S∩T将包含所有大于0且小于10的实数。

答案:S∩T={x|0<x<10}。

练习题5:集合U={x|x>0},V={x|x<0},求U∩V。

解析:根据交集的定义,我们需要找出同时满足U和V条件的元素。

集合U包含所有大于0的实数,而集合V包含所有小于0的实数。

高中数学好题100题速递(含答案解析)

高中数学好题100题速递(含答案解析)

1.已知P 是ABC ∆内任一点,且满足AP xAB yAC =+u u u r u u u r u u u r,x 、y R ∈,则2y x +的取值范围是 ___ .解法一:令1x y AQ AP AB AC x y x y x y ==++++u u u r u u u r u u u r u u u r ,由系数和1x yx y x y+=++,知点Q 在线段BC 上.从而1AP x y AQ +=<u u u r u u u r .由x 、y 满足条件0,0,1,x y x y >>⎧⎨+<⎩易知2(0,2)y x +∈. 解法二:因为题目没有特别说明ABC ∆是什么三角形,所以不妨设为等腰直角三角形,则立刻变为线性规划问题了.2.在平面直角坐标系中,x 轴正半轴上有5个点, y 轴正半轴有3个点,将x 轴上这5个点和y 轴上这3个点连成15条线段,这15条线段在第一象限内的交点最多有 个. 答案:30个好题速递21.定义函数()[[]]f x x x =,其中[]x 表示不超过x 的最大整数,如:[1.5]1[ 1.3]2=-=-,,当*[0)()x n n N ∈∈,时,设函数()f x 的值域为A ,记集合A 中的元素个数为n a ,则式子90n a n+的最小值为 . 【答案】13.【解析】当[)0,1n ∈时,[]0x x ⎡⎤=⎣⎦,其间有1个整数;当[),1n i i ∈+,1,2,,1i n =-L 时,[]2(1)i x x i i ⎡⎤≤<+⎣⎦,其间有i 个正整数,故(1)112(1)12n n n a n -=++++-=+L ,9091122na n n n +=+-, 由912n n=得,当13n =或14时,取得最小值13. 2. 有七名同学站成一排照毕业纪念照,其中甲必须站在正中间,并且乙、丙两倍同学要站在一起,则不同的站法有 种. 答案:192种好题速递31.已知直线l ⊥平面α,垂足为O .在矩形ABCD 中,1AD =,2AB =,若点A 在l 上移动,点B 在平面α上移动,则O ,D 两点间的最大距离为 .解:设AB 的中点为E ,则E 点的轨迹是球面的一部分,1OE =,DE所以1OD OE ED ≤+当且仅当,,O E D 三点共线时等号成立.2. 将A、B、C、D四个球放入编号为1,2,3的三个盒子中,每个盒子中至少放一个球且A、B两个球不能放在同一盒子中,则不同的放法有 种. 答案:30种1. 在平面直角坐标系xOy 中,设定点(),A a a ,P 是函数()10y x x=>图象上一动点.若点,P A 之间的最短距离为22,则满足条件的实数a 的所有值为 . 解:函数解析式(含参数)求最值问题()222222211112222AP x a a x a x a x a a x x x x ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-=+-++-=+-+- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦因为0x >,则12x x+≥,分两种情况: (1)当2a ≥时,2min 222AP a =-=,则10a = (2)当2a <时,2min 24222AP a a =-+=,则1a =-2. 将5名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则不同的分配方案有 种. 答案:90种好题速递51.已知,x y ∈R ,则()222x y x y ⎛⎫++- ⎪⎝⎭的最小值为 .解: 构造函数1y x =,22y x =-,则(),x x 与2,y y ⎛⎫- ⎪⎝⎭两点分别在两个函数图象上,故所求看成两点(),x x 与2,y y ⎛⎫- ⎪⎝⎭之间的距离平方,令222080222y x m x mx m m y x =+⎧⎪⇒++=⇒∆=-=⇒=⎨=-⎪⎩,所以22y x =+是与1y x =平行的22y x=-的切线,故最小距离为2d =所以()222x y x y ⎛⎫++- ⎪⎝⎭的最小值为42. 某单位要邀请10位教师中的6人参加一个研讨会,其中甲、乙两位教师不能同时参加,则邀请的不同方法有 种.答案:140种好题速递61.已知定圆12,O O 的半径分别为12,r r ,圆心距122O O =,动圆C 与圆12,O O 都相切,圆心C 的轨迹为如图所示的两条双曲线,两条双曲线的离心率分别为12,e e ,则1212e e e e +的值为( ) A .1r 和2r 中的较大者 B .1r 和2r 中的较小者 C .12r r + D .12r r -解:取12,O O 为两个焦点,即1c =若C e 与12,O O e e 同时相外切(内切),则121221CO CO R r R r r r -=--+=- 若C e 与12,O O e e 同时一个外切一个内切,则121221CO CO R r R r r r -=---=+ 因此形成了两条双曲线.此时21211212212111221122r r r r e e e e r r r r +-++=-+,不妨设21r r >,则12212e e r e e +=2.某班学生参加植树节活动,苗圃中有甲、乙、丙3种不同的树苗,从中取出5棵分别种植在排成一排的5个树坑内,同种树苗不能相邻,且第一个树坑和第5个树坑只能种甲种树苗的种法共有 种. 答案:6种好题速递71. 已知12,F F 是双曲线()222210,0x y a b a b -=>>的左右焦点,以12F F 为直径的圆与双曲线的一条渐近线交于点M ,与双曲线交于点N ,且M 、N 均在第一象限,当直线1//MF ON 时,双曲线的离心率为e ,若函数()222f x x x x =+-,则()f e = .解:()222,x y c M a b by x a ⎧+=⎪⇒⎨=⎪⎩1F M b k a c =+,所以ON b k a c =+,所以ON 的方程为b y x a c=+,所以22221x y a a c a b N b y x a c ⎧-=⎪⎛⎫+⎪⇒⎨⎪=⎪+⎩又N 在圆222x y c +=上,所以222a a c c ⎛⎫⎛⎫++= 所以322220e e e +--=,所以()2222f e e e e=+-=2.用0,1,2,3,4这五个数字组成无重复数字的五位数,其中恰有一个偶数数字夹在两个奇数数字之间,这样的五位数的个数有 个. 答案:28个好题速递81. 已知ABC ∆的三边长分别为,,a b c ,其中边c 为最长边,且191a b+=,则c 的取值范围是 .解:由题意知,,a c b c ≤≤,故1919101a b c c c=+≥+=,所以10c ≥又因为a b c +>,而()1991016b a a b a b a b a b ⎛⎫+=++=++≥ ⎪⎝⎭所以16c <故综上可得1016c ≤<2. 从5名志愿者中选出3名,分别从事翻译、导游、保洁三项不同的工作,每人承担一项,其中甲不能从事翻译工作,则不同的选派方案共有 种. 解: 48种好题速递91.在平面直角坐标系xoy 中,已知点A 是半圆()224024x y x x +-=≤≤上的一个动点,点C 在线段OA 的延长线上.当20OA OC =u u u r u u u rg时,则点C 的纵坐标的取值范围是 . 解:设()22cos ,2sin A θθ+,()22cos ,2sin C λλθλθ+,1λ>,,22ππθ⎡⎤∈-⎢⎥⎣⎦由20OA OC =u u u r u u u r g 得:522cos λθ=+所以()()[]5sin 055sin 2sin 5,522cos 1cos cos 1C y θθθθθθ-=⋅⋅==∈-++--2. 编号为1、2、3、4、5的五个人分别去坐编号为1、2、3、4、5的五个座位,其中有且只有两个的编号与座位号一致的坐法是 种. 答案:20种好题速递101.点D 是直角ABC ∆斜边AB 上一动点,3,2AC BC ==,将直角ABC ∆沿着CD 翻折,使'B DC∆与ADC ∆构成直二面角,则翻折后'AB 的最小值是 .解:过点'B 作'B E CD ⊥于E ,连结,BE AE , 设'BCD B CD α∠=∠=,则有'2sin ,2cos ,2B E CE ACE πααα==∠=-在AEC ∆中由余弦定理得22294cos 12cos cos 94cos 12sin cos 2AE παααααα⎛⎫=+--=+- ⎪⎝⎭在'RT AEB ∆中由勾股定理得22222''94cos 12sin cos 4sin 136sin 2AB AE B E ααααα=+=+-+=-所以当4πα=时,'AB 取得最小值为72.从1到10这是个数中,任意选取4个数,其中第二大的数是7的情况共有 种. 答案:45种好题速递111.已知函数()421421x x x x k f x +⋅+=++,若对于任意的实数123,,x x x 均存在以()()()123,,f x f x f x 为三边长的三角形,则实数k 的取值范围是 . 解:()421111421212x x x x xx k k f x +⋅+-==+++++ 令()110,13212x x g x ⎛⎤=∈ ⎥⎝⎦++ 当1k ≥时,()213k f x +<≤,其中当且仅当0x =时取得等号 所以若对于任意的实数123,,x x x 均存在以()()()123,,f x f x f x 为三边长的三角形,只需223k +≥,所以14k ≤≤ 当1k <时,()213k f x +≤<,其中当且仅当0x =时取得等号 所以若对于任意的实数123,,x x x 均存在以()()()123,,f x f x f x 为三边长的三角形,只需2213k +⋅≥,所以112k -≤<综上可得,142k -≤≤2.在一条南北方向的步行街同侧有8块广告牌,牌的底色可选用红、蓝两种颜色,若只要求相邻两块牌的底色不都为红色,则不同的配色方案共有 种.答案:55种好题速递121.已知函数()2221f x x ax a =-+-,若关于x 的不等式()()0f f x <的解集为空集,则实数a 的取值范围是 .解:()()()222111f x x ax a x a x a =-+-=---+⎡⎤⎡⎤⎣⎦⎣⎦ 所以()0f x <的解集为()1,1a a -+所以若使()()0f f x <的解集为空集就是1()1a f x a -<<+的解集为空,即min ()1f x a ≥+ 所以11a -≥+,即2a ≤-2.某校举行奥运知识竞赛,有6支代表队参赛,每队2名同学,12名参赛同学中有4人获奖,且这4人来自3人不同的代表队,则不同获奖情况种数共有 种.答案:31116322C C C C 种好题速递131. 已知定义在R 上的函数()f x 满足①()()20f x f x +-=;②()()20f x f x ---=;③在[]1,1-上的表达式为()[](]21,1,01,0,1x x f x x x ⎧-∈-⎪=⎨-∈⎪⎩,则函数()f x 与函数()122,0log ,0xx g x x x ⎧≤⎪=⎨>⎪⎩的图象在区间[]3,3-上的交点个数为 .2. 若5(1)ax -的展开式中3x 的系数是80,则实数a 的值是 . 答案:2好题速递141.()f x 是定义在正整数集上的函数,且满足()12015f =,()()()()212f f f n n f n +++=L ,则()2015f = .解:()()()()212f f f n n f n +++=L ,()()()()()212111f f f n n f n +++-=--L 两式相减得()()()()2211f n n f n n f n =--- 所以()()111f n n f n n -=-+ 所以()()()()()()()()201520142201420132012121201512015201420131201620152014320161008f f f f f f f f =⋅⋅=⋅⋅⋅==L 2. 某次文艺汇演,要将A 、B 、C 、D 、E 、F 这六个不同节目编排成节目单,如下表:序号 1 2 3 4 5 6 节目有 种. 答案:144种好题速递151. 若,a b r r 是两个非零向量,且a b a b λ==+r r r r ,3,1λ⎡⎤∈⎢⎥⎣⎦,则b r 与a b -r r 的夹角的取值范围是 .解:令1a b ==r r ,则1a b λ+=r r设,a b θ=r r ,则由余弦定理得()22221111cos 1cos 22λπθθλ+--==-=- 又3,1λ⎡⎤∈⎢⎥⎣⎦,所以11cos ,22θ⎡⎤∈-⎢⎥⎣⎦所以2,33ππθ⎡⎤∈⎢⎥⎣⎦,所以由菱形性质得25,,36b a b ππ⎡⎤-∈⎢⎥⎣⎦r r r2. 若()11n x -的展开式中第三项系数等于6,则n = . 答案:121. 函数()22f x x x =+,集合()()(){},|2A x y f x f y =+≤,()()(){},|B x y f x f y =≤,则由A B I 的元素构成的图形的面积是 .解:()()(){}()()(){}22,|2,|114A x y f x f y x y x y =+≤=+++≤()()(){}()()(){},|,|22B x y f x f y x y x y x y =≤=-++≤画出可行域,正好拼成一个半圆,2S π=2. 甲、乙、丙、丁四个公司承包8项工程,甲公司承包3项,乙公司承包1项,丙、丁两公司各承包2项,共有承包方式 种. 答案:1680种好题速递171. 在棱长为1的正方体1111ABCD A B C D -中,112AE AB =u u u ru u u ur ,在面ABCD 中取一个点F ,使1EF FC +u u u r u u u u r最小,则这个最小值为 .解:将正方体1111ABCD A B C D -补全成长方体,点1C 关于面ABCD 的对称点为2C ,连接2EC 交平面ABCD 于一点,即为所求点F ,使1EF FC +u u u r u u u u r最小.其最小值就是2EC .连接212,AC B C ,计算可得21213,5,2AC B C AB ===,所以12AB C ∆为直角三角形,所以214EC =2. 若()62601261mx a a x a x a x +=++++L 且123663a a a a ++++=L ,则实数m 的值为 . 答案:1或-31. 已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为12,F F ,过1F 的直线分别交双曲线的两条渐近线于点,P Q .若点P 是线段1FQ 的中点,且12QF QF ⊥,则此双曲线的离心率等于 .解法一:由题意1F P b =,从而有2,a ab P c c ⎛⎫- ⎪⎝⎭,又点P 为1FQ 的中点,()1,0F c -,所以222,a ab Q c c c ⎛⎫-+ ⎪⎝⎭ 所以222ab b a c c a c ⎛⎫=-+ ⎪⎝⎭,整理得224a c =,所以2e = 解法二:由图可知,OP 是线段1F P 的垂直平分线,又OQ是12Rt F QF ∆斜边中线,所以1260FOP POQ QOF ∠=∠=∠=o ,所以2e = 解法三:设(),,0Q am bm m >,则()1,QF c am bm =---u u u r,()2,QF c am bm =--u u u u r由()()12,,0QF QF c am bm c am bm ⊥⇒-----=u u u r u u u u r,解得1m =所以(),Q a b ,,22a c b P -⎛⎫⎪⎝⎭所以22b b ac a -=-⋅,即2c a =,所以2e =2. 现有甲、已、丙三个盒子,其中每个盒子中都装有标号分别为1、2、3、4、5、6的六张卡片,现从甲、已、丙三个盒子中依次各取一张卡片使得卡片上的标号恰好成等差数列的取法数为 . 答案:18好题速递191. 已知O 为坐标原点,平面向量,,OA OB OC u u u r u u u r u u u r 满足:24OA OB ==u u u r u u u r,0OA OB =u u u r u u u r g ,()()20OC OA OC OB --=u u u r u u u r u u u r u u u rg ,则对任意[]0,2θπ∈和任意满足条件的向量OC u u u r ,cos 2sin OC OA OB θθ-⋅-⋅u u u r u u u r u u u r的最大值为 .解:建立直角坐标系,设()()(),,4,0,0,2C x y A B 则由()()20OC OA OC OB --=u u u r u u u r u u u r u u u rg ,得22220x y x y +--=()()22cos 2sin 4cos 4sin OC OA OB x y θθθθ-⋅-⋅=-+-u u u r u u u r u u u r等价于圆()()22112x y -+-=上一点与圆2216x y +=上一点连线段的最大值即为224+2. 已知数列{n a }的通项公式为121n n a -=+,则01n a C +12n a C +33n a C +L +1nn na C += . 答案:23n n +好题速递201. 已知实数,,a b c 成等差数列,点()3,0P -在动直线0ax by c ++=(,a b 不同时为零)上的射影点为M ,若点N 的坐标为()2,3,则MN 的取值范围是 .解:因为实数,,a b c 成等差数列,所以2b a c =+,方程0ax by c ++=变形为2()20ax a c y c +++=,整理为()2(2)0a x y c y +++=所以2020x y y +=⎧⎨+=⎩,即12x y =⎧⎨=-⎩,因此直线0ax by c ++=过定点()1,2Q -画出图象可得90PMQ ∠=o ,25PQ =点M 在以PQ 为直径的圆上运动,线段MN 的长度满足55FN MN FN -≤≤+ 即5555MN -≤≤+2. 如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”,在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是 个. 答案:48好题速递211. 已知函数是定义在R 上的偶函数,当0x ≥时,()()()2502161122xx x f x x ⎧≤≤⎪⎪=⎨⎛⎫⎪+> ⎪⎪⎝⎭⎩.若关于x 的方程()()20,,f x af x b a b ++=∈⎡⎤⎣⎦R ,有且仅有6个不同实数根,则实数a 的取值范围是 .解:设()t f x =,问题等价于()20g t t at b =++=有两个实根12,t t ,12501,14t t <≤<<或1255,144t t =<<所以()()0091014504g g h a g ⎧⎪>⎪⎪≤⇒-<<-⎨⎪⎛⎫⎪> ⎪⎪⎝⎭⎩或()5124591024504a g h a g ⎧<-<⎪⎪⎪>⇒-<<-⎨⎪⎛⎫⎪= ⎪⎪⎝⎭⎩综上, 5924a -<<-或914a -<<- 2.在24的展开式中,x 的幂的指数是整数的项共有 项.答案:5好题速递221. 已知椭圆221:132x y C +=的左、右焦点为12,F F ,直线1l 过点1F 且垂直于椭圆的长轴,动直线2l 垂直于1l 于点P ,线段2PF 的垂直平分线与2l 的交点的轨迹为曲线2C ,若()()()11221,2,,,,A B x y C x y 是2C 上不同的点,且AB BC ⊥,则2y 的取值范围是 .解:由题意22:4C y x =设:(2)1AB l x m y =-+代入22:4C y x =,得()24840y my m -+-= 所以142y m =-,()()2144121x m m m =-+=- 设()21:(42)21BC l x y m m m =--++-代入22:4C y x =,得()2248164210y y m m m ⎡⎤+++--=⎢⎥⎣⎦所以122442y y m y m+=-+=- 所以(][)2442,610,y m m=--+∈-∞-+∞U 2. 5人排成一排照相,要求甲不排在两端,不同的排法共有________种.(用数字作答) 答案:72好题速递231. 数列{}n a 是公比为23-的等比数列,{}n b 是首项为12的等差数列.现已知99a b >且1010a b >,则以下结论中一定成立的是 .(请填上所有正确选项的序号) ①9100a a <;②100b >;③910b b >;④910a a >解:因为数列{}n a 是公比为23-的等比数列,所以该数列的奇数项与偶数项异号,即:当10a >时,2120,0k k a a -><;当10a <时,2120,0k k a a -<>;所以9100a a <是正确的; 当10a >时,100a <,又1010a b >,所以100b <结合数列{}n b 是首项为12的等差数列,此时数列的公差0d <,数列{}n b 是递减的. 故知:910b b >当10a <时,90a <,又99a b >,所以90b <结合数列{}n b 是首项为12的等差数列,此时数列的公差0d <,数列{}n b 是递减的. 故知:910b b >综上可知,①③一定是成立的.2. 设5nx (的展开式的各项系数之和为M , 二项式系数之和为N ,若M -N =240, 则展开式中x 3的系数为 . 答案:150好题速递241. 已知集合(){}2,|21A x y y x bx ==++,()(){},|2B x y y a x b ==+,其中0,0a b <<,且A B I 是单元素集合,则集合()()(){}22,|1x y x a y b -+-≤对应的图形的面积为 .解:()()()2221221202y x bx x b a x ab y a x b ⎧=++⎪⇒+-+-=⎨=+⎪⎩ ()()2222241201b a ab a b ∆=---=⇒+=所以由2210,0a b a b ⎧+=⎪⎨<<⎪⎩得知,圆心(),a b 对应的是四分之一单位圆弧¼MPN (红色). 此时()()(){}22,|1x y x a y b -+-≤所对应的图形是以这四分之一圆弧¼MPN上的点为圆心,以1为半径的圆面.从上到下运动的结果如图所示:是两个半圆(¼ABO 与¼ODE )加上一个四分之一圆(AOEF ),即图中被绿实线包裹的部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1题 集合的性质与运算
(][)(),210,R C A B =-∞+∞,()
[)(),37,C A B =-∞+∞,
)[)(,37,,,R C B -∞+∞=-∞()[))2,37,10B =,
(]
[)[)),23,710,B =-∞+∞.
【试题来源】人教版版必修一第14页A 组第题
各类运算的方法直接求解,但需要注意区间方向以及区间端点值的验证,确保准确无误!二.考场精彩·真题回放
2020高考全国1卷,理1】设集合A ={x |x 2–4≤0}
{A
B x x ={A
B x x ={
U A x x =∈)集合的运算性质: ,A
B A B A A B A A B =⇔⊆=⇔⊆;,A
A A A =∅=∅;③ A
A A A A =∅=,;
(C )U U U U A
C A A C A U C A A =∅==,,.
四.题型攻略·深度挖掘
【考试方向】这类试题在考查题型上,通常基本以选择题或填空题的形式出现,难度较小,往往与函数的N U =
【答案】D
【解析】集合M 中:
C. 4
D. 6
,得4
x≤,
的有(1,7),(2,6),(3,5),(4,4)【温馨提醒】认清元素的属性,解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.
故选:C.
考向4 集合与不等式
1 2⎫


,1
2

重庆高三)已知集合{|A x x =
7.(2020·天水市第一中学高三二模)已知集合{}2|3100M x x x =--<,{}
2
9N x y x ==-,且M 、
N 都是全集R (R 为实数集)的子集,则如图所示韦恩图中阴影部分所表示的集合为( )
A .{}
35x x <≤
B .{
3x x <-或}5x >
C .{}
32x x -≤≤- D .{}
35x x -≤≤
【答案】C
【解析】由韦恩图可知:阴影部分表示()R N
M ,
()(){}{}52025M x x x x x =-+<=-<<,{}
{}29033N x x x x =-≥=-≤≤, (){}32R N M x x ∴⋂=-≤≤-.
故选:C .
R
(
))【答案】D
【解析】因为A =}
(2log 10,2x <=。

相关文档
最新文档