ASTM E 96 E 96M-2005 材料透湿性能的标准试验方法

ASTM E 96 E 96M-2005 材料透湿性能的标准试验方法
ASTM E 96 E 96M-2005 材料透湿性能的标准试验方法

Designation:E96/E96M–05

Standard Test Methods for

Water Vapor Transmission of Materials1

This standard is issued under the?xed designation E96/E96M;the number immediately following the designation indicates the year

of original adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.

A superscript epsilon(e)indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the Department of Defense.

1.Scope

1.1These test methods cover the determination of water

vapor transmission(WVT)of materials through which the

passage of water vapor may be of importance,such as paper,

plastic?lms,other sheet materials,?berboards,gypsum and

plaster products,wood products,and plastics.The test methods

are limited to specimens not over11?4in.(32mm)in thickness

except as provided in Section9.Two basic methods,the

Desiccant Method and the Water Method,are provided for the

measurement of permeance,and two variations include service

conditions with one side wetted and service conditions with

low humidity on one side and high humidity on the other.

Agreement should not be expected between results obtained by

different methods.The method should be selected that more nearly approaches the conditions of use.

1.2The values stated in inch-pound units are to be regarded separately as the standard.Within the text,the SI units are shown in parentheses.The values stated in each system are not exact equivalents;therefore each system must be used inde-pendently of the https://www.360docs.net/doc/3c1232503.html,bining values from two systems will result in non-conformance with the standard.However derived results can be converted from one system to other using appropriate conversion factors(see Table1).

1.3This standard does not purport to address all of the safety problems,if any,associated with its use.It is the responsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.

2.Referenced Documents

2.1ASTM Standards:2

C168Terminology Relating to Thermal Insulation

D449Speci?cation for Asphalt Used in Dampproo?ng and Waterproo?ng

D2301Speci?cation for Vinyl Chloride Plastic Pressure-Sensitive Electrical Insulating Tape

E691Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method

3.Terminology

3.1De?nitions of terms used in this standard will be found in Terminology C168,from which the following is quoted:“water vapor permeability—the time rate of water vapor transmission through unit area of?at material of unit thickness induced by unit vapor pressure difference between two speci?c surfaces,under speci?ed temperature and humidity conditions.

3.1.1Discussion—Permeability is a property of a material, but the permeability of a body that performs like a material may be used.Permeability is the arithmetic product of per-meance and thickness.

water vapor permeance—the time rate of water vapor transmission through unit area of?at material or construction induced by unit vapor pressure difference between two speci?c surfaces,under speci?ed temperature and humidity conditions.

3.1.2Discussion—Permeance is a performance evaluation and not a property of a material.

3.2water vapor transmission rate—the steady water vapor ?ow in unit time through unit area of a body,normal to speci?c parallel surfaces,under speci?c conditions of temperature and humidity at each surface.”

4.Summary of Test Methods

4.1In the Desiccant Method the test specimen is sealed to the open mouth of a test dish containing a desiccant,and the

1These test methods are under the jurisdiction of ASTM Committee C16on Thermal Insulation and are the direct responsibility of Subcommittee C16.33on Thermal Insulation Finishes and Vapor Transmission.

Current edition approved May1,2005.Published June2005.Originally approved https://www.360docs.net/doc/3c1232503.html,st previous edition approved in2000as E96–00e1.

2For referenced ASTM standards,visit the ASTM website,https://www.360docs.net/doc/3c1232503.html,,or contact ASTM Customer Service at service@https://www.360docs.net/doc/3c1232503.html,.For Annual Book of ASTM Standards volume information,refer to the standard’s Document Summary page on the ASTM website.

TABLE1Metric Units and Conversion Factors A,B

Multiply by

To Obtain(for the

same test condition)

WVT

g/h·m2 1.43grains/h·ft2

grains/h·ft20.697g/h·m2

Permeance

g/Pa·s·m2 1.7531071Perm(inch-pound)

1Perm(inch-pound) 5.72310?8g/Pa·s·m2

Permeability

g/Pa·s·m 6.8831081Perm inch

1Perm inch 1.45310?9g/Pa·s·m

A These units are used in the construction trade.Other units may be used in other standards.

B All conversions of mm Hg to Pa are made at a temperature of0°C.

Copyright?ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959,United States.

--`,,`,``-`-`,,`,,`,`,,`---

assembly placed in a controlled atmosphere.Periodic weigh-ings determine the rate of water vapor movement through the specimen into the desiccant.

4.2In the Water Method,the dish contains distilled water, and the weighings determine the rate of vapor movement through the specimen from the water to the controlled atmo-sphere.The vapor pressure difference is nominally the same in both methods except in the variation,with extremes of humid-ity on opposite sides.

5.Signi?cance and Use

5.1The purpose of these tests is to obtain,by means of simple apparatus,reliable values of water vapor transfer through permeable and semipermeable materials,expressed in suitable units.These values are for use in design,manufacture, and marketing.A permeance value obtained under one set of test conditions may not indicate the value under a different set of conditions.For this reason,the test conditions should be selected that most closely approach the conditions of use. While any set of conditions may be used and those conditions reported,standard conditions that have been useful are shown in Appendix X1.

6.Apparatus

6.1Test Dish—The test dish shall be of any noncorroding material,impermeable to water or water vapor.It may be of any shape.Light weight is desirable.A large,shallow dish is preferred,but its size and weight are limited when an analytical balance is chosen to detect small weight changes.The mouth of the dish shall be as large as practical and at least4.65in.2(3000 mm2).The desiccant or water area shall be not less than the mouth area except if a grid is used,as provided in12.1,its effective area shall not exceed10%of the mouth area.An external?ange or ledge around the mouth,to which the specimen may be attached,is useful when shrinking or warping occurs.When the specimen area is larger than the mouth area, this overlay upon the ledge is a source of error,particularly for thick specimens.This overlay material should be masked as described in10.1so that the mouth area de?nes the test area. The overlay material results in a positive error,indicating excessive water vapor transmission.The magnitude of the error is a complex function of the thickness,ledge width,mouth area,and possibly the permeability.This error is discussed by Joy and Wilson(1)3(see13.4.3).This type of error should be limited to about10to12%.For a thick specimen the ledge should not exceed3?4in.(19mm)for a10-in.(254-mm)or larger mouth(square or circular)or1?8in.(3mm)for a5-in. (127-mm)mouth(square or circular).For a3-in.(76-mm) mouth(square or circular)the ledge should not exceed0.11in.

(2.8mm)wide.An allowable ledge may be interpolated for intermediate sizes or calculated according to Joy and Wil-son.(1)A rim around the ledge(Fig.X2.1)may be useful.If a rim is provided,it shall be not more than1?4in.(6mm)higher than the specimen as attached.Different depths may be used for the Desiccant Method and Water Method,but a3?4-in. (19-mm)depth(below the mouth)is satisfactory for either method.

6.2Test Chamber—The room or cabinet where the as-sembled test dishes are to be placed shall have a controlled temperature(see Note1)and relative humidity.Some standard test conditions that have been useful are given in Appendix X1. The temperature chosen shall be determined according to the desired application of the material to be tested(see Appendix X1).The relative humidity shall be maintained at5062%, except where extremes of humidities are desired,when the conditions shall be10061.8°F(3861°C)and9062% relative humidity.Both temperature and relative humidity shall be measured frequently4or preferably recorded continuously. Air shall be continuously circulated throughout the chamber, with a velocity sufficient to maintain uniform conditions at all test locations.The air velocity over the specimen shall be between0.066and1ft/s(0.02and0.3m·s-1).Suitable racks shall be provided on which to place the test dishes within the test chamber.

N OTE1—Simple temperature control by heating alone is usually made possible at90°F(32°C).However,it is very desirable to enter the controlled space,and a comfortable temperature is more satisfactory for that arrangement.Temperatures of73.4°F(23°C)and80°F(26.7°C)are in use and are satisfactory for this purpose.With cyclic control,the average test temperature may be obtained from a sensitive thermometer in a mass of dry sand.The temperature of the chamber walls facing a specimen over water should not be cooler than the water to avoid condensation on the test specimen.

6.3Balance and Weights—The balance shall be sensitive to

a change smaller than1%of the weight change during the period when a steady state is considered to exist.The weights used shall be accurate to1%of the weight change during the steady-state period(Note2).A light wire sling may be substituted for the usual pan to accommodate a larger and heavier load.

6.4Thickness-Measuring Gage—The nominal thickness of the specimen shall be determined using a thickness-measuring gage with an accuracy of61%of the reading or0.0001in.

(0.0025mm),whichever is greater.

N OTE2—For example:1-perm(57ng·Pa-1·s-1·m-2)specimen10in. (254mm)square at80°F(26.7°C)passes8.6grains or0.56g/day.In18 days of steady state,the transfer is10g.For this usage,the balance must have a sensitivity of1%of10g or0.1g and the weights must be accurate to0.1g.If,however,the balance has a sensitivity of0.2g or the weights are no better than0.2g,the requirements of this paragraph can be met by continuing the steady state for36days.An analytical balance that is much more sensitive will permit more rapid results on specimens below1perm (57ng·Pa-1·s-1·m-2)when the assembled dish is not excessively heavy.

7.Materials

7.1Desiccant and Water:

7.1.1For the Desiccant Method,anhydrous calcium chlo-ride in the form of small lumps that will pass a No.8 (2.36-mm)sieve,and free of?nes that will pass a No.30

3The boldface numbers in parentheses refer to the list of references at the end of this standard.

4The minimum acceptable is to perform this measurement each time the sample is

weighed. --`,,`,``-`-`,,`,,`,`,,`---

(600-μm)sieve,shall be used(Note3).It shall be dried at 400°F(200°C)before use.

N OTE3—If CaCl

2will react chemically on the specimen,an adsorbing

desiccant such as silica gel,activated at400°F(200°C),may be used;but the moisture gain by this desiccant during the test must be limited to4%.

7.1.2For the Water Method,distilled water shall be used in the test dish.

7.2Sealant—The sealant used for attaching the specimen to the dish,in order to be suitable for this purpose,must be highly resistant to the passage of water vapor(and water).It must not lose weight to,or gain weight from,the atmosphere in an amount,over the required period of time,that would affect the test result by more than2%.It must not affect the vapor pressure in a water-?lled dish.Molten asphalt or wax is required for permeance tests below4perms(230ng·m-2·s-1·Pa-1).Sealing methods are discussed in Appendix X2. 8.Sampling

8.1The material shall be sampled in accordance with standard methods of sampling applicable to the material under test.The sample shall be of uniform thickness.If the material is of nonsymmetrical construction,the two faces shall be designated by distinguishing marks(for example,on a one-side-coated sample,“I”for the coated side and“II”for the uncoated side).

9.Test Specimens

9.1Test specimens shall be representative of the material tested.When a product is designed for use in only one position, three specimens shall be tested by the same method with the vapor?ow in the designated direction.When the sides of a product are indistinguishable,three specimens shall be tested by the same method.When the sides of a product are different and either side may face the vapor source,four specimens shall be tested by the same method,two being tested with the vapor ?ow in each direction and so reported.

9.2A slab,produced and used as a laminate(such as a foamed plastic with natural“skins”)may be tested in the thickness of use.Alternatively,it may be sliced into two or more sheets,each being separately tested and so reported as provided in9.4,provided also,that the“overlay upon the cup ledge”(6.1)of any laminate shall not exceed1?8in.(3mm).

9.3When the material as used has a pitted or textured surface,the tested thickness shall be that of use.When it is homogeneous,however,a thinner slice of the slab may be tested as provided in9.4.

9.4In either case(9.2or9.3),the tested overall thickness,if less than that of use,shall be at least?ve times the sum of the maximum pit depths in both its faces,and its tested permeance shall be not greater than5perms('300ng·m-2·s-1·Pa-1). 9.5For homogeneous(not laminated)materials with thick-ness greater than1?2in.,the overall nominal thickness of each specimen shall be measured with an accuracy of61%of the reading at the center of each quadrant and the results averaged.

9.6When testing any material with a permeance less than 0.05perms(3ng·m-2·s-1·Pa-1)or when testing a low permeance material that may be expected to lose or gain weight through-out the test(because of evaporation or oxidation),it is strongly recommended that an additional specimen,or“dummy,”be tested exactly like the others,except that no desiccant or water is put in the dish.Failure to use this dummy specimen to establish modi?ed dish weights may signi?cantly increase the time required to complete the test.Because time to reach equilibrium of water permeance increases as the square of thickness,thick,particularly hygroscopic,materials may take as long as60days to reach equilibrium conditions.

10.Attachment of Specimen to Test Dish

10.1Attach the specimen to the dish by sealing(and clamping if desired)in such a manner that the dish mouth de?nes the area of the specimen exposed to the vapor pressure in the dish.If necessary,mask the specimen top surface, exposed to conditioned air so that its exposure duplicates the mouth shape and size and is directly above it.A template is recommended for locating the mask.Thoroughly seal the edges of the specimen to prevent the passage of vapor into,or out of, or around the specimen edges or any portion thereof.The same assurance must apply to any part of the specimen faces outside their de?ned areas.Suggested methods of attachment are described in Appendix X2.

N OTE4—In order to minimize the risk of condensation on the interior surface of the sample when it is placed in the chamber,the temperature of the water prior to preparation of the test specimen should be within62°F (61°C)of the test condition.

11.Procedure for Desiccant Method

11.1Fill the test dish with desiccant within1?4in.(6mm)of the specimen.Leave enough space so that shaking of the dish, which must be done at each weighing,will mix the desiccant.

11.2Attach the specimen to the dish(see10.1)and place it in the controlled chamber,specimen up,weighing it at once. (This weight may be helpful to an understanding of the initial moisture in the specimen.)

11.3Weigh the dish assembly periodically,often enough to provide eight or ten data points during the test.A data point is the weight at a particular time.The time that the weight is made should be recorded to a precision of approximately1%of the time span between successive weighing.Thus,if weighings are made every hour,record the time to the nearest30s;if recordings are made every day,a time to the nearest15min would be allowed.At?rst the weight may change rapidly;later a steady state will be reached where the rate of change is substantially constant.Weighings should be accomplished without removal of the test dishes from the controlled atmo-sphere,but if removal is prescribed necessary,the time the specimens are kept at different conditions,temperature or relative humidity,or both,should be kept to a minimum.When results of water vapor transmission are expected to be less than 0.05perm(3ng·m-2·s-1·Pa-1),a dummy specimen is strongly recommended.Such a dummy specimen should be attached to an empty cup in the normal manner.The environmental effects of temperature variation and buoyancy variability due to barometric pressure?uctuation can be arithmetically tared out of the weighing values.This precaution permits earlier and more reliable achievement of equilibrium conditions.Analyze the results as prescribed in13.1

.--` , , ` , ` ` -` -` , , ` , , ` , ` , , ` ---

11.4Terminate the test or change the desiccant before the water added to the desiccant exceeds10%of its starting weight.This limit cannot be exactly determined and judgement is required.The desiccant gain may be more or less than the dish weight-gain when the moisture content of the specimen has changed.

N OTE5—The WVT of some materials(especially wood)may depend on the ambient relative humidity immediately before the test.An apparent hysteresis results in higher WVT if the prior relative humidity was above the test condition and vice versa.It is therefore recommended that specimens of wood and paper products be conditioned to constant weight in a50%relative humidity atmosphere before they are tested.Some specimens may be advantageously preconditioned to minimize the mois-ture that the specimen will give up to the desiccant.This applies when the specimen is likely to have high moisture content or when it is coated on the top(vapor source)side.

12.Procedure for Water Method

12.1Fill the test dish with distilled water to a level3?461?4 in.(1966mm)from the specimen.The air space thus allowed has a small vapor resistance,but it is necessary in order to reduce the risk of water touching the specimen when the dish is handled.Such contact invalidates a test on some materials such as paper,wood,or other hygroscopic materials.The water depth shall be not less than1?8in.(3mm)to ensure coverage of the dish bottom throughout the test.However,if the dish is of glass,its bottom must be visibly covered at all times but no speci?c depth is required.Water surges may be reduced by placing a grid of light noncorroding material in the dish to break the water surface.This grid shall be at least1?4in.(6mm) below the specimen,and it shall not reduce the water surface by more than10%.

N OTE6—For the Water Method,baking the empty dish and promptly coating its mouth with sealant before assembly is recommended.The water may be added most conveniently after the specimen is attached, through a small sealable hole in the dish above the water line.

12.2Attach the specimen to the dish(see10.1).Some specimens are likely to warp and break the seal during the test. The risk is reduced by preconditioning the specimen,and by clamping it to the dish ledge(if one is provided).

12.3Weigh the dish assembly and place it in the controlled chamber on a true horizontal surface.Follow the procedure given in11.3.If the test specimen cannot tolerate condensation on the surface,the dish assembly shall not be exposed to a temperature that differs by more than5°F(3°C)from the control atmosphere to minimize the risk of condensation on the specimen.When results of water vapor transmission are expected to be less than0.05perm(3ng·m-2·s-1·Pa-1),a dummy specimen is strongly recommended.Such a dummy specimen should be attached to an empty cup in the normal manner.The environment effects of temperature variation and buoyancy variability due to barometric pressure?uctuation can be arithmetically tared out of the weighing values.This precaution permits earlier and more reliable achievement of equilibrium conditions.Analyze the results as prescribed in 13.1.

12.4Where water is expected to be in contact with the barrier in service,proceed as in11.3except place the dish in an inverted position.The dish must be sufficiently level so that water covers the inner surface of the specimen despite any distortion of the specimen due to the weight of the water.With highly permeable specimens it is especially important to locate the test dish so that air circulates over the exposed surface at the speci?ed velocity.The test dishes may be placed on the balance in the upright position for weighing,but the period during which the wetted surface of the specimen is not covered with water must be kept to a minimum.

13.Calculation and Analysis of Results

13.1The results of the rate of water vapor transmission may be determined either graphically or numerically.

13.1.1Dummy Specimen—If a dummy specimen has been used to compensate for variability in test conditions,due to temperature or barometric pressure,or both,the daily recorded weights can be adjusted by calculating the weight change from initial to time of weighing.This adjustment is made by reversing the direction of the dummy’s weight change,relative to its initial weight,and modifying all the appropriate specimen weight(s)recorded at this time.This permits earlier achieve-ment of equilibrium conditions.An alternate procedure,par-ticular for tests of long duration and more than six weighings, is to subtract the arithmetic mean slope of the rate of weight change of the dummy specimen from the arithmetic mean slope of each similar specimen to get an effective rate of weight change.These procedures are also desirable if the specimen is changing weight due to a curing process while under test. 13.1.2Graphic Analysis—Plot the weight,modi?ed by the dummy specimen when used,against elapsed time,and in-scribe a curve that tends to become straight.Judgment here is required and numerous points are helpful.When a straight line adequately?ts the plot of at least six properly spaced points (periodic weight changes matching,or exceeding20%of the multiple of100times the scale sensitivity),a nominally steady state is assumed,and the slope of the straight line is the rate of water vapor transmission.

13.1.3Numerical Analysis—A mathematical least squares regression analysis of the weight,modi?ed by the dummy specimen when used,as a function of time will give the rate of water vapor transmission.An uncertainty,or standard deviation of this rate,can also be calculated to de?ne the con?dence band.For very low permeability materials,this method can be used to determine the results after30to60days when using an analytical balance,with a sensitivity of'1mg,even if the weight change does not meet the100times the sensitivity requirement of6.3.These specimens must be clearly identi?ed in the report.

13.2Calculate the water vapor transmission,WVT,and permeance as follows:

13.2.1Water Vapor Transmission:

WVT5G/tA5~G/t!/A(1) where:

In inch-pound units:

G=weight change,grains(from the straight line),

t=time during which G occurred,h,

G/t=slope of the straight line,grains/h,

A=test area(cup mouth area),ft2,

and --`,,`,``-`-`,,`,,`,`,,`---

WVT=rate of water vapor transmission,grains/h·ft2.

In metric units:

G=weight change(from the straight line),g,

t=time,h,

G/t=slope of the straight line,g/h,

A=test area(cup mouth area),m2,and

WVT=rate of water vapor transmission,g/h·m2.

13.2.2Permeance:

Permeance5WVT/D p5WVT/S~R12R2!(2) where:

In inch-pound units:

D p=vapor pressure difference,in.Hg,

S=saturation vapor pressure at test temperature,in.Hg, R1=relative humidity at the source expressed as a fraction (the test chamber for desiccant method;in the dish for

water method),and

R2=relative humidity at the vapor sink expressed as a fraction.

In metric units:

D p=vapor pressure difference,mm Hg(1.3333102Pa), S=saturation vapor pressure at test temperature,mm Hg

(1.3333102Pa),

R1=relative humidity at the source expressed as a fraction (the test chamber for desiccant method;in the dish for

water method),and

R2=relative humidity at the vapor sink expressed as a fraction.

13.2.3In the controlled chamber the relative humidity and temperature are the average values actually measured during the test and(unless continuously recorded)these measurements shall be made as frequently as the weight measurements.In the dish the relative humidity is nominally0%for the desiccant and100%for the water.These values are usually within3% relative humidity of the actual relative humidity for specimens below4perms(230ng·Pa-1·s-1·m-2)when the required condi-tions are maintained(no more than10%moisture in CaCl2and no more than1in.(25mm)air space above water).

13.3The calculation of permeability is optional and can be done only when the test specimen is homogeneous(not laminated)and not less than1?2in.(12.5mm)thick,calculate its average permeability as follows:

Average permeability5Permeance3Thickness(3) 13.4Corrections—It is important that all applicable correc-tions be made to all measurements that result in permeance value more than2-perm(114ng·Pa-1·s-1·m-2).Corrections for materials with permeance value below2-perm(114ng·Pa-1·s-1·m-2)are insigni?cant and need not be done.The procedures for making various corrections,as summarized below,are found in the literature.(2,3,4,5)

13.4.1Buoyancy Correction—The duration for one set of measurements can be many days or weeks.The atmospheric pressure may signi?cantly change during such periods.If the test specimen is highly vapor resistant,the changes in mass due to vapor transport may be overshadowed by the apparent gravimetric changes observed.In such cases,all gravimetric data should be corrected to vacuum or any base line pressure. The following equation(2)can be used for buoyancy correc-tion.

m2

m1511

r a~r12r2!

r1~r22r a!

(4)

where:

m1=mass recorded by balance,kg,

m2=mass after buoyancy correction,kg,

r a=density of air,kg m-3,

r1=density of material of balance weights,kg m-3,and r2=bulk density of test assembly,kg m-3.

13.4.1.1The density of air can be calculated using the ideal gas law for the measured atmospheric pressure and ambient temperature.

13.4.1.2The buoyancy correction is important(6)when measured mass changes are in the range of0to100mg. 13.4.2Corrections for Resistance due to Still Air and Specimen Surface—In general,if the material is highly perme-able,these corrections are more signi?cant.With known thickness of the still air layer in the cup,the corresponding vapor resistance can be calculated using the following equation (3)for permeability.

d a5

2.30631025P o

R v TP

S T

273.15

D1.81(5)

where:

d a=permeability of still air,kg·m-1·s-1·Pa-1,

T=temperature,K,

P=ambient pressure,Pa,

P o=standard atmospheric pressure,that is,101325Pa,and R v=ideal gas constant for water,that is,461.5J·K-1·kg-1.

13.4.2.1In the absence of any measured data,the surface resistances(that is,inside and outside surfaces of the speci-men)may be approximated using Lewis’relation.(4)For cup methods that follow this standard,the total surface resistance (Hansen and Lund(5))should be'43107Pa·s·m2·kg-1. 13.4.3Edge Mask Correction—The following equation (Joy and Wilson(1))is to be used to correct the excess WVT effect due to edge masking:

Percent excess WVT5

400t

p S1log e S211e2~2p b/t!

D(6)

where:

t=specimen thickness,m,

b=width of masked edge,m,and

S1=four times the test area divided by the perimeter,m.

13.4.3.1If the cup assembly includes any edge masking this correction shall be made.

13.5Metric units and conversion factor are given in Table1.

13.6Example(in SI unit)—In a desiccant test on a sample of medium density glass?ber insulation the following results were recorded.

Thickness of the specimen=25.81mm

Test area=0.01642m2

Mass of the test specimen=20.44g

Mass of the desiccant=554.8g

Initial mass of the test assembly=1.257810kg

Thickness of air layer in the cup=15

mm

Elapsed Time (h)

Mass of the Test Assem-bly (g)Change in Mass (g)

Cham-ber Tem-pera-ture (°C)Cham-ber RH (%)

Baro-metric Pres-sure mm Hg (kPa)

0.0001257.8100.00022.8352.60744.7(99.27)6.0671259.469 1.65922.8452.6741.11(98.79)26.6331264.609 6.79922.7852.2744.41(99.23)53.1501271.06213.25222.8252.1743.21(99.07)143.7671290.77332.96322.7452.2757.69(101.00)168.2831296.38938.57922.7852.1749.81(99.95)192.883

1301.953

44.143

22.78

52.1

758.44(101.10)

13.6.1Buoyancy Correction —As mentioned in 13.4.1,the buoyancy effect will be insigni?cant for this set of readings as recorded changes of mass are all above 100mg.However,for example,the corrected mass of the test assembly weight 1257.810g (1st reading)can be calculated using Eq 4.

m 1=mass recorded by balance,kg =1257.810310-3kg P =Barometric pressure,Pa =99.273103Pa R =Gas constant for dry air =287.055J /(kg·K)

T =Chamber temperature =22.83+273.15=295.98K r a =density of air,kg m -3=P /(RT)=1.1684kg m -3

r 1=density of material of balance weights,kg m -3=8000kg m -3h 1=height of the test assembly,m =44.7310-3m d 1=diameter of the test assembly,m =168.0310-3m r 2=bulk density of test assembly,kg m -3

=43m 1p 3d 123h 1=1269.4kg m -3m 2=mass after buoyancy correction =1258.78310-3kg

13.6.2A graphic analysis of the data,according to 13.1.2is

shown in Fig.1.

13.6.3A linear least-squares analysis of the data according to 13.1.3gives the slope of the straight line as 0.22560.002g·h -1,with a linear regression coefficient >0.998.

WVT =0.225g·h -1/0.01642m 2

=19.595grains·h -1·ft -2('3.813106ng·m -2·s -1)S =2775.6Pa R 1=0.523R 2=0

Permeance =3.813106ng·m -2·s -1/(2775.6Pa 30.523)=2630ng·m -2·s -1·Pa -1

13.6.4Corrections for Resistance due to Still Air and Specimen Surface :

Permeability of still air layer (Eq 5)

=d a =

2.306310253101325

461.53~22.791273.15!399860

S 22.791273.15273.15D

1.81

=198ng·m -1·s -1·Pa -1

Permeance of 15mm still air layer =(198)/(0.015)ng·m -2·s -1·Pa -1=13200ng·m -2·s -1·Pa -1

Hence,the 15mm air layer offers a vapor resistance =1/(13200)m 2·s·Pa·ng -1'7.63107m 2·s·Pa·kg -1Surface resistances (see 13.4.2)'4.03107m 2·s·Pa·kg -1

Total corrections for resistance due to still air and specimen surface =(7.63107+4.03107)m 2·s·Pa·kg -1

13.6.5Edge Mask Correction —The test assembly used does

not include any edge masking.However,for example,if it

includes an edge mask of width 5mm then the following correction is to be made (see 13.4.3).

t =specimen thickness,m =25.81310-3m b =width of masked edge,m =5310-3m Test area =0.01642m 2Perimeter =0.4541m

S 1=four times the test area divided by the perimeter

=

430.01642

0.454150.1446m Percent excess WVT

=400325.8131023

p 30.1446log e S 211e

2~2p 3531023!/~25.8131023!D

=9.86%

13.6.6The applicable corrections required for the analysis

of the test results in this case are due to resistance of still air and specimen surface.

Water vapor resistance of the test specimen +corrections =1/Permeance =(1/2630)m 2·s·Pa·ng -1=3.803108m 2·s·Pa·kg -1

The water vapor resistance of the test specimen

=(3.803108?(7.63107+4.03107))m 2·s·Pa·kg -1=2.643108m 2·s·Pa·kg -1

Permeance of the test specimen =1/(2.643108m 2·s·Pa·kg -1)=3.79310-9kg·m -2·s -1·Pa -1=3790ng·m -2·s -1·Pa -1Permeability

=3790ng·m -2·s -1·Pa -130.02581m =97.8ng·m -1·s -1·Pa -1

14.Report

14.1The report shall include the following:

14.1.1Identi?cation of the material tested,including prod-uct thickness for homogeneous materials (not laminated)greater than 1?2in.,

14.1.2Test method used (desiccant or water),14.1.3Test temperature,

14.1.4Relative humidity in the test chamber,

14.1.5Permeance of each specimen in perms (to two signi?cant ?gures),

14.1.6The side of each specimen on which the higher vapor pressure was applied.(The sides shall be distinguished as “side A”and “side B”when there is no obvious difference between them.When there is an obvious difference,this difference shall also be stated,such as “side A waxed”and “side B unwaxed.”),14.1.7The average permeance of all specimens tested in each position,

14.1.8The permeability of each specimen (as limited by 13.3),and the average permeability of all specimens tested,14.1.9Include a portion of the plot indicating the section of the curve used to calculate permeability,and

14.1.10State design of cup and type or composition of sealant.

15.Precision and Bias

15.1Precision —Table 2is based on interlaboratory tests conducted in 1988and 1991.5In 1988four materials (A,B,C,D)were tested using the dessicant method and the water method in triplicate.Fifteen laboratories contributed data,with

5

Supporting data have been ?led at ASTM International Headquarters and may be obtained by requesting Research Report RR:

C16-1014.

E 96/E 96M –05

--`,,`,``-`-`,,`,,`,`,,`---

full results secured from four laboratories.In 1991ten labora-tories contributed data for material E,using triplicate speci-mens,again using both the dessicant method and the water method.Tables 3and 4are based on another interlaboratory test conducted in 1995–96.(7)One material at a nominal thickness of 1in.(25mm)was tested by ten participating laboratories.Results from only nine laboratories were used in the analyses because of the presence of severe outliers (see Practice E 691)in the observation of tenth laboratory.

15.1.1Test results were analyzed using Practice E 691.15.2Bias —This test method has no bias because water vapor transmission of materials is de?ned in terms of this test method.

16.Keywords

16.1permeability;plastics (general);plastic sheet and ?lm;sheet material;thermal-insulating materials;thermal insulation permeability ?lms;water vapor transmission

(WVT)

FIG.1

TABLE 2Results on Precision from Interlaboratory Testing

For Desiccant Method at 23°C Repeatability

Reproducibility

Material Thickness (mm)A Mean Permeance (ng·m -2·s -1·Pa -1)B

s

(ng·m -2·s -1·Pa -1)B

CV (%)LSD

(ng·m -2·s -1·Pa -1)B

s

(ng·m -2·s -1·Pa -1)B

CV (%)LSD

(ng·m -2·s -1·Pa -1)B

A 0.025434.70.95 2.7 2.7 5.616.215.9

B 0.13970.740.1621.70.460.3142.60.92

C 12.7 3.510.257.20.69 1.0630.2 2.8

D 25.444.8 1.5 3.3 4.2 3.57.810.0E

0.3556

2.64

0.13

5.00.40

0.31

11.70.86

For Water Method at 23°C Repeatability

Reproducibility

Material Thickness (mm)A Mean Permeance (ng·m -2·s -1·Pa -1)B

s

(ng·m -2·s -1·Pa -1)B

CV (%)LSD

(ng·m -2·s -1·Pa -1)B

s

(ng·m -2·s -1·Pa -1)B

CV (%)LSD

(ng·m -2·s -1·Pa -1)B

A 0.025440.910.77 1.9 2.28.921.825.2

B 0.13970.900.1314.00.350.1213.40.34

C 12.7 5.550.31 5.70.92 1.120.1 3.1

D 25.459.5 1.1 1.8 3.112.420.935.5E

0.3556

3.40

0.19

5.7

0.57

0.47

13.8

1.3A 1in.=25.4mm

B

1perm (inch-pound)=57.2ng·m -2·s -1·Pa -1

Legend:

s =standard deviation

CV =percent coefficient of variation (s 3100/Mean)

LSD =least signi?cant difference between two individual test results based on a 95%con?dence level =2=2s

N OTE —Material B was Te?on 5PTFE ?uorocarbon resin brand of tetra?uoroethylene.It was extremely difficult to provide a seal to this sample,which accounts for the poor

repeatability.

--`,,`,``-`-`,,`,,`,`,,`---

APPENDIXES

(Nonmandatory Information)X1.STANDARD TEST CONDITIONS

X1.1Standard test conditions that have been useful are:X1.1.1Procedure A —Desiccant Method at 73.4°F (23°C).X1.1.2Procedure B —Water Method at 73.4°F (23°C).X1.1.3Procedure BW —Inverted Water Method at 73.4°F (23°C).

X1.1.4Procedure C —Desiccant Method at 90°F (32.2°C).X1.1.5Procedure D —Water Method at 90°F (32.2°C).X1.1.6Procedure E —Desiccant Method at 100°F (37.8°C).

TABLE 3Results on Precision from Interlaboratory Testing—Dry Cup Measurements on Expanded Polystyrene

Lab Permeability (ng·m -1·s -1·Pa -1)A

x –s d h k Spec #1Spec #2Spec #31 2.54 2.46 2.21 2.40 1.72E-01-7.01E-01-1.50 1.062 2.65 2.87 2.68 2.73 1.19E-01-3.71E-01-0.790.733 3.79 3.49 3.65 3.64 1.50E-01 5.39E-01 1.150.924 2.77 2.73 2.69 2.73 4.00E-02-3.74E-01-0.800.255 2.67 2.66 2.79 2.717.23E-02-3.98E-01-0.850.446 3.26 3.38 3.29 3.31 6.24E-02 2.06E-010.440.387 3.05 3.72 3.33 3.37 3.37E-01 2.62E-010.56 2.078 3.76 3.53 3.87 3.72 1.73E-01 6.16E-01 1.31 1.079

3.24

3.48

3.26

3.33 1.33E-01

2.22E-01

0.470.82

x 5s r s x -s R 3.10

1.63E-01

4.69E-01

4.87E-01

A

1perm in.=1.45(ng·m -1·s -1·Pa -1)

N OTE 1—The average of the cell averages gives the permeability for the round robin material,according to the dry cup measurements,as 3.10ng·m -1·s -1·Pa -1.

N OTE 2—The repeatability standard deviation is 1.6310-1ng·m -1·s -1·Pa -1.N OTE 3—The reproducibility standard deviation is 4.9310-1ng·m -1·s -1·Pa -1.

TABLE 4Results on Precision from Interlaboratory Testing—Wet Cup Measurements on expanded polystyrene

Lab Permeability (ng·m -1·s -1·Pa -1)A

x –s d h k Spec #1Spec #2Spec #31 2.90 3.14 2.94 2.99 1.29E-01-3.58E-01-0.940.772 3.50 3.46 3.52 3.49 3.06E-02 1.43E-010.370.183 4.23 3.76 3.65 3.88 3.08E-01 5.29E-01 1.39 1.845 3.32 3.29 2.97 3.19 1.94E-01-1.58E-01-0.41 1.166 2.61 2.82 2.80 2.74 1.16E-01-6.08E-01-1.590.697 3.53 3.18 3.41 3.37 1.77E-01 1.92E-020.05 1.068 3.30 3.42 3.29 3.347.23E-02-1.42E-02-0.040.439

3.75

3.97

3.67

3.80 1.55E-01

4.46E-01

1.170.93

x 5s r s x -s R 3.35

1.67E-01

3.82E-01

4.06E-01

A

1perm in.=1.45ng·m -1·s -1·Pa -1

Legend:x -=Cell average or the average from one laboratory

s =Cell standard deviation,or the standard deviation for one laboratory x 5

=Average of the Cell averages

d =Cell deviation or th

e difference (x -?x 5

)

s r =Repeatability standard deviation (within a laboratory)

s R =Reproducibility standard deviation (between the laboratories)h =the between-laboratory consistency statistic k =the within-laboratory consistency statistic

N OTE 1—The average of the cell averages gives the permeability for the round robin material,according to the wet cup measurements,as 3.35ng·m -1·s -1·Pa -1.

N OTE 2—The repeatability standard deviation is 1.7310-01ng·m -1·s -1·Pa -1.N OTE 3—The reproducibility standard deviation is 4.1310-01ng·m -1·s -1·Pa -1

.

--`,,`,``-`-`,,`,,`,`,,`---

X2.CUP DESIGN AND SEALING METHODS

X2.1An ideal sealing material has the following properties:X2.1.1Impermeability to water in either vapor or liquid form.

X2.1.2No gain or loss of weight from or to the test chamber (evaporation,oxidation,hygroscopicity,and water solubility being undersirable).

X2.1.3Good adhesion to any specimen and to the dish (even when wet).

X2.1.4Complete conformity to a rough surface.

X2.1.5Compatibility with the specimen and no excessive penetration into it.

X2.1.6Strength or pliability (or both).

X2.1.7Easy handleability (including desirable viscosity and thermal of molten sealant).

X2.1.8Satisfactory sealants possess these properties in varying degrees and the choice is a compromise,with more tolerance in items at the beginning of this list for the sake of those at the latter part of the list when the requirements of 7.2are met.Molten asphalt or wax is required for permeance tests below 4perms (240ng·m -2·s -1·Pa -1).Tests to determine sealant behavior should include:

X2.1.8.1An impervious specimen (metal)normally sealed to the dish and so tested,and

X2.1.8.2The seal normally assembled to an empty dish with no specimen and so tested.

X2.2The following materials are recommended for general use when the test specimen will not be affected by the temperature of the sealant:

X2.2.1Asphalt,180to 200°F (82to 93°C)softening point,meeting the requirements of Speci?cation D 449,Type C.Apply by pouring.

X2.2.2Beeswax and rosin (equal weights).A temperature of 275°F (135°C)is desirable for brush application.Pour at lower temperature.

X2.2.3Microcrystalline wax 6(60%),mixed with re?ned crystalline paraffin wax (40%).

X2.3The materials listed in X2.3.1are recommended for particular uses such as those shown in Fig.X2.1.The suggested procedure described in X2.3.2applies to an 113?8-in.(289-mm)square specimen if its permeance exceeds 4perms (240ng·m -2·s -1·Pa -1)(limited by evaporation of sealants).X2.3.1Materials :

X2.3.1.1Aluminum foil,0.005in.(0.125mm)minimum thickness.

X2.3.1.2Tape,meeting the requirements of Speci?cation D 2301,vinyl chloride plastic pressure-sensitive,electrical insulating tape.

X2.3.1.3Cement,contact bond,preferably rubber base.X2.3.2Procedure :

X2.3.2.1Step 1—Seal aluminum foil around edges of speci-men,leaving a 100-in.2(0.0654-m 2)exposed test area on each https://www.360docs.net/doc/3c1232503.html,e contact bond cement as directed by the manufacturer.X2.3.2.2Step 2—Spread sealant on inside of rim and ledge.Place desiccant (dry),or water and surge control material (wet)in pan.Press specimen in place.Avoid squeezing compound into the test area.

6

The sole source of supply of the microcrystalline wax known to the committee at this time is E.I.DuPont de Nemours &Co.,Inc.,Polymer Products Dept.,Wilmington,DE 19898.If you are aware of alternative suppliers,please provide this information to ASTM International Headquarters.Your comments will receive careful consideration at a meeting of the responsible technical committee,1which you may

attend.

FIG.X2.1Apparatus for Water Vapor Transmission Tests of Large Thick

Specimens

--`,,`,``-`-`,,`,,`,`,,`---

X2.3.2.3Step 3—Coat outside of rim and bottom of ledge with contact bond cement,and place foil strips from edge of template,around rim,and bottom of ledge.

X2.4A method of using hot asphalt,as applied to a 10-in.(254-mm)square-mouth dish with ledge and rim,is as follows:X2.4.1Apparatus :

X2.4.1.1Template —A square frame of brass or steel,3?16in.(5mm)thick and 3?4in.(19mm)deep.The 3?16-in.(5-mm)thickness is tapered to zero at the bottom of the frame where it will touch the test specimen and maintain a 10-in.(254-mm)square test area.

X2.4.1.2Sealant —Asphalt (see X2.3.1used at the proper pouring consistency of 375to 450°F (179to 232°C).

X2.4.1.3Melting Pot ,for the asphalt,electrically heated,with one dimension greater than 113?8in.(289mm).X2.4.1.4Small Ladle ,for pouring.

X2.4.2Procedure —Mark the 113?8-in.(289-mm)square specimen with a line at an equal distance from each edge,so that the area enclosed by the lines is as nearly as possible a 10-in.(254-mm)square.The template may be used for marking.Dip each edge of the specimen in molten asphalt up to the line,so that the test area is de?ned and all edges are coated with a heavy layer of asphalt.Place the specimen over the pan containing water or desiccant.Lightly oil the template or coat with petroleum jelly on its outer side,and place on the specimen.Pour molten asphalt into the space between the template and the rim of the pan.After the asphalt has cooled for a few minutes,the template should be easily removable.X2.5Hot wax may be applied like asphalt.It may also be applied (freely)with a small brush.Its lower working tempera-ture may be advantageous when a specimen contains moisture.X2.6Several designs for dishes with supporting rings and ?anges are shown in Fig.X2.2.Various modi?cations of these designs may be made provided that the principle of prevention of edge leakage by means of a complete seal is retained.The dishes may be constructed of any rigid,impermeable,corrosion-resistant material,provided that they can be accom-modated on the available analytical balance.A lightweight metal,such as aluminum or one of its alloys,is generally used for larger-size dishes.In some cases when an aluminum dish is

employed and moisture is allowed to condense on its surface,there may be appreciable oxidation of the aluminum with a resulting gain in weight.Any gain in weight will ordinarily depend on the previous history of the dish and the cleanness of the surface.An empty dish carried through the test procedure as a control will help to determine whether any error may be expected from this cause.When aluminum dishes are used for the water methods,a pressure may develop inside the assembly during a test due to corrosion.This can cause seal failure or otherwise affect the result.Where this is a problem,it can be overcome by providing inside the dish a protective coating of baked-on epoxy resin or similar material.Dishes with ?anges or rings that project from the inner walls of the dish are to be avoided,as such projections in?uence the diffusion of the water vapor.The depth of the dish for the water procedures is such that there is a 0.8060.20-in.(2065-mm)distance between the water surface and the under surface of the specimen,with a water depth of about 0.20in.(5mm).

X2.6.1For the desiccant-in-dish procedures,the dishes need not be as deep as those required for the water-in-dish proce-dures.The desiccant is within 1?4in.(6mm)of the under surface,and a minimum depth of only 1?2in.(12mm)of desiccant is required.

X2.6.2The dishes shown in Fig.X2.2require a molten seal.X2.6.3A template such as is shown in Fig.X2.3is usually used for de?ning the test area and effecting the wax seal.It consists of a circular metal dish 1?8in.(3.18mm)or more in thickness with the edge beveled to an angle of about 45°.The diameter of the bottom (smaller)face of the template is approximately equal to,but not greater than,the diameter of the effective opening of the dish in contact with the specimen.Small guides may be attached to the template to center it automatically on the test specimen.A small hole through the template to admit air,and petrolatum applied to the beveled edge of the template facilitate its removal after sealing the test specimen to the dish.In use,the template is placed over the test specimen and when it is carefully centered with the dish opening,molten wax is ?owed into the annular space surround-ing the beveled edge of the template.As soon as the wax has solidi?ed,the template is removed from the sheet with a twisting motion.The outside ?ange of the dish should be high enough to extend over the top of the specimen,thus allowing the wax to completely envelop the edge.

X2.6.4Gasketed types of seals are also in use on appropri-ately designed dishes.These simplify the mounting of

the

FIG.X2.2Several Types of Dishes for Water Vapor Transmission

Tests of Materials in Sheet

Form

FIG.X2.3Template Suitable for Use in Making the Wax Seals on

Test

Dishes

specimen,but must be used with caution,since the possibility of edge leakage is greater with gasketed seals than with wax seals.Gasketed seals are not permitted for the measurement of permeance less than4perms(240ng·m-2·s-1·Pa-1).As a further precaution when gasketed seals are used instead of preferred sealants,a blank test run is suggested using glass or metal as a dummy specimen.

X2.6.5A suitable weighing cover consists of a circular disk of aluminum1?32to3?32in.(0.8to 2.4mm)in thickness provided with a suitable knob in the center for lifting.The cover?ts over the test specimen when assembled and makes contact with the inside beveled surface of the wax seal at,or just above,the plane of the specimen.The cover is free of sharp edges that might remove the wax and is numbered or otherwise identi?ed to facilitate its exclusive use with the same dish.

REFERENCES

(1)Joy,F.A.,and Wilson,H.G.,“Standardization of the Dish Method for

Measuring Water Vapor Transmissions,”National Research Council of Canada,Research Paper279,January1966,p.263.

(2)McGlashan,M.L.,“Physico-Chemical Quantities and Units,”Royal

Institute of Chemistry Monographs for Teachers,No.15,1971,p.8.

(3)Schirmer,R.ZVDI,Beiheft Verfahrenstechnik,Nr.6,S.170,1938.

(4)Pedersen,C.R.,Ph.D thesis,Thermal Insulation Laboratory,The

Technical University of Denmark,1990,p.10.

(5)Hansen,K.K.and Lund,H.B.,“Cup Method for Determination of

Water Vapor Transmission Properties of Building Materials.Sources of Uncertainty in the Methods,”Proceedings of the2nd Symposium, Building Physics in the Nordic Countries,Trondheim,1990,pp.

291-298.(6)Lackey,J.C.,Marchand,R.G.,and Kumaran,M.K.,“A Logical

Extension of the ASTM Standard E96to Determine the Dependence of Water Vapor Transmission on Relative Humidity,”Insulation Materi-als:Testing and Applications;3rd V olume,ASTM STP1320,R.S.

Graves and R.R.Zarr,Eds.,American Society for Testing and Materials,West Conshohocken,PA,1997,pp.456-470

(7)Kumaran,M.K.,“Interlaboratory Comparison of the ASTM Standard

Test Methods for Water Vapor Transmission of Materials(E96-95),”

Journal of Testing and Evaluation,JTEV A,American Society for Testing and Materials,West Conshohocken,PA,V ol26,No.2,March 1998,pp.83-88.

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this https://www.360docs.net/doc/3c1232503.html,ers of this standard are expressly advised that determination of the validity of any such patent rights,and the risk of infringement of such rights,are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every?ve years and if not revised,either reapproved or withdrawn.Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters.Your comments will receive careful consideration at a meeting of the responsible technical committee,which you may attend.If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards,at the address shown below.

This standard is copyrighted by ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959, United States.Individual reprints(single or multiple copies)of this standard may be obtained by contacting ASTM at the above address or at610-832-9585(phone),610-832-9555(fax),or service@https://www.360docs.net/doc/3c1232503.html,(e-mail);or through the ASTM website

(https://www.360docs.net/doc/3c1232503.html,).

Q345qC桥梁板执行标准及应用

Q345qC,Q345qD,Q345qE 1、Q345qC,Q345qD,Q345qE是桥梁用结构钢板,本标准适用于厚度不大于150mm的桥梁用结构钢板。 Q-桥梁用钢屈服强度的“屈”字汉语拼音的首字母; 345--规定最小屈服强度数值,单位MPa; q--桥梁用钢的“桥”字汉语拼音首位字母; C,D,E--质量等级为C,D,E级。 2、Q345qC,Q345qD,Q345qE钢板执行标准:GB/T 714-2015 3、Q345qC,Q345qD,Q345qE钢板冶炼方法:由转炉或电炉冶炼,并应进行炉外精炼。 4、Q345qC,Q345qD,Q345qE钢板交货状态: a.钢材应以热轧、正火、热机械轧制及调质(含在线淬火+高温回火)中任何一种交货状态交货,并在质量证明书中注明。 b. 正火状态交货的钢材,当采用比在空气中冷却速率快的其他介质中冷却时,应进行高温回火处理(回火温度不小于580℃)。 c.对于裸露使用的具有耐大气腐蚀性能的钢材,应采用除正火外的上述其他任何一种交货状态交货。当采用比在空气中冷却速率快的冷却方式进行冷却时,应进行回火处理。 5、Q345qC,Q345qD,Q345qE钢板技术要求 a.当需方要求保证厚度方向性能时,应符合GB/T5313的规定。 b.钢材的成品化学成分允许偏差应符号GB/T222。

8、Q345qC,Q345qD,Q345qE钢板应用范围 Q345qC,Q345qD,Q345qE是桥梁用结构钢板。要求有较高的强度、韧性以及承受机车车辆的载荷和冲击,且要有良好的抗疲劳性、一定的低温韧性和耐大气腐蚀性。拴焊桥梁用钢还应具有良好的焊接性能和低的缺口敏感性。

【国内标准文件】常见颜色的RGB值

常见颜色的RGB值 2007年11月04日星期日 21:01 128/0/0 深红 255/0/0 红 255/0/255 粉红 255/153/204 玫瑰红 153/51/0 褐色 255/102/0 桔黄 255/153/0 浅桔黄 255/204/0 金色 255/204/153 棕黄 51/51/0 橄榄绿 128/128/0 深黄 153/204/0 酸橙色 255/255/0 黄色 255/255/153 浅黄 0/51/0 深绿 0/128/0 绿色 51/153/102 海绿 0/255/0 鲜绿 204/255/204 浅绿 0/51/102 深灰蓝 0/128/128 青色 51/204/204 宝石蓝 0/255/255 青绿 204/255/255 浅青绿 0/0/128 深蓝 0/0/255 蓝色 51/102/255 浅蓝 0/204/255 天蓝 153/204/255 浅蓝 51/51/153 靛蓝 102/102/153 蓝灰 128/0/128 紫色 153/51/102 梅红 204/153/255 淡紫 51/51/51 80%灰 128/128/128 50%灰 153/153/153 40%灰 192/192/192 25%灰 常见颜色的RGB值

(2008-05-10 14:51:24) 分类:经验交流标签:颜色rgb红色黄色紫色银色蓝色校 园 颜色 R G B 白色:FFFFFF 红色:FF0000 绿色:00FF00 蓝色:0000FF 洋红:FF00FF 墨绿:00FFFF 黄色:FFFF00 黑色:000000 爱丽丝兰:F0F8FF 碧绿:70DB93 巧克力色:5C3317 蓝紫色:9F5F9F 黄铜:B5A642 亮金:D9D919 褐色:A62AA2 青铜:8C7853 青铜2:A67D3D 藏青:5F9F9F 亮铜:D98719 铜色:B87333 珊瑚色:FF7F00 矢车菊兰:42426F 深褐色:5C4033 深绿色:2F4F2F 深铜绿色:4A766E 深橄榄绿:4F4F2F 紫色:9932CD 深紫色:871F78 深石板蓝:6B238E 深石板灰:2F4F4F 深黄褐色:97694F 深蓝玉色:7093DB 暗木色:855E42 暗灰:545454 暗玫瑰色:856363 长石色:D19275 砖红色:8E2323

检修界限划分规定

****有限公司 设备设施检修界线划分规定 第一章总则 第一条划分检修界线的目的 为更加积极有效开展设备检修工作,确保公司生产安全、平稳、连续正常运行。确保投运设备“用、管、修”到位,避免设备失修、漏修、欠修,以及因此而导致设备故障、事故发生。 第二条本规定适用于****有限公司(以下简称公司)。 第三条定义或概念(说明) 本规定的检修范围为厂区内的所有设备及管网。 第二章规范的事项 第四条本办法规范以下事项 明确各单位设备检修范围、内容、界线,根据此进一步明确设备使用、维护、检修的职责。 第三章具体工作内容、程序 第五条设备的检修内容、范围及界线包括以下工作内容:(一)电解一、二分厂设备的检修内容、范围及界线 1、电解槽 A、检修内容 电解槽短路口、阳极提升机构、出铝气缸、打壳气缸、氧化铝下料系统、氟化盐下料系统、不锈钢滤袋、气控柜及管路、槽上阀件、分格板

B、检修界线 短路口归检修综合分厂检修,包括短路口操作,短路口维护、日常清洁由电解分厂负责; 上述电解槽其他设备由电解分厂检修,其中提升机构电机拆、接线由计算机站负责,电解分厂负责操作、维护。 2、电解多功能天车、轨道、滑线 A、检修内容 电解多功能天车、轨道、滑线 B、检修界线 电解多功能天车、轨道及滑线由检修综合分厂负责检修、以及空压机、液压站、配电箱的维护,电解分厂负责操作、清洁及其他维护,各种仪器仪表、衡器由检控中心负责校检维护; 3、电解厂房内超浓相输送设备 A、检修内容 超浓相溜槽、管道及阀门。 B、检修界线 厂房内超浓相输送设备以软连接上连接口为界,以上部分归检修综合分厂检修,净化分厂操作、维护;以下部分归电解分厂检修、操作、维护。 4、电解厂房内电解烟气净化设备 A、检修内容 手动插板阀、绝缘管、电动碟阀及控制箱 B、检修界线

标准色彩名称与rgb值

如对你有帮助,请购买下载打赏,谢谢! 国际色彩标准名称与色值 LightPink 浅粉红#FFB6C1 255,182,193 Pink 粉红#FFC0CB 255,192,203 Crimson 猩红(深红) #DC143C 220,20,60 LavenderBlush 淡紫红#FFF0F5 255,240,245 PaleVioletRed 弱紫罗兰红#DB7093 219,112,147 HotPink 热情的粉红#FF69B4 255,105,180 DeepPink 深粉红#FF1493 255,20,147 MediumVioletRed 中紫罗兰红#C71585 199,21,133 Orchid 兰花紫#DA70D6 218,112,214 Thistle 蓟#D8BFD8 216,191,216 Plum 李子紫#DDA0DD 221,160,221 Violet 紫罗兰#EE82EE 238,130,238 Magenta 洋红(品红玫瑰红) #FF00FF 255,0,255 Fuchsia 灯笼海棠(紫红色) #FF00FF 255,0,255 DarkMagenta 深洋红#8B008B 139,0,139 Purple 紫色#800080 128,0,128 MediumOrchid 中兰花紫#BA55D3 186,85,211 DarkViolet 暗紫罗兰#9400D3 148,0,211 DarkOrchid 暗兰花紫#9932CC 153,50,204 Indigo 靛青(紫兰色) #4B0082 75,0,130 BlueViolet 蓝紫罗兰#8A2BE2 138,43,226 MediumPurple 中紫色#9370DB 147,112,219 MediumSlateBlue 中板岩蓝#7B68EE 123,104,238 SlateBlue 板岩蓝#6A5ACD 106,90,205 DarkSlateBlue 暗板岩蓝#483D8B 72,61,139 Lavender 熏衣草淡紫#E6E6FA 230,230,250 GhostWhite 幽灵白#F8F8FF 248,248,255 Blue 纯蓝#0000FF 0,0,255 MediumBlue 中蓝色#0000CD 0,0,205 MidnightBlue 午夜蓝#191970 25,25,112 DarkBlue 暗蓝色#00008B 0,0,139 Navy 海军蓝#000080 0,0,128 RoyalBlue 皇家蓝(宝蓝) #4169E1 65,105,225

5.4青年节年龄界限标准

5.4青年节年龄界限标准 5.4青年节关于青年年龄界限的划分标准 我国青年年龄划分标准 1.共青团 共青团章程第一条对团员的年龄作出了明确规定:年龄在14周岁以上,28周岁以下的中国青年,承认团的章程,愿意参加团组织并在其中积极工作、执行团的决议和按期交纳团费的,可以申请加入中国共产主义青年团。 团员年满28周岁,没有担任团内职务的,应该办理离团手续。这意味着,此次享受假期青年的年龄限制和团员恰好一致。 2.国家统计局 统计部门对青少年的划分是0岁至14岁。 对老年人的划分标准有两个,分别是60岁以上,65岁以上,但是对青年年龄段没有划分。 3.杰出青年 以国内非常权威的十大杰出青年评选来看,参评年龄段一般是18岁至40岁。比如,20xx年评出的第十八届全国十大杰出青年中,有两位是1968年出生的,今年正好40岁。

从各省市来看,对“十大杰出青年”的年龄上限更是各不相同,陕西省是39岁,江苏省是45岁,XX市是45岁,XX市是40岁。 国际上的“青年”划分标准 1.联合国 曾在一份文件中把14岁至25岁的人称为“青年人口” 2.世界卫生组织 44岁以下的人被列为青年;45~59岁的人被列为中年;60~74岁的人为较老年;75~89岁的人为老年;90岁以上为长寿者。5.4青年节的由来 五四青年节是为纪念1919年5月4日中国学生爱国运动而设立的节日。 1919年5月4日,北京的青年学生为了抗议帝国主义国家在巴黎和会上支持日本对我国的侵略行动,举行了声势浩大的游行示威,最后发展成为全国人民参加的反帝反封建的爱国运动。“五四”运动表现了中国人民保卫民族独立与争取民主自由的坚强意志,标志着中国新民主主义革命的开始。1949年政务院正式宣布每年的5月4日为“中国青年节”。 五四青年节的由来背景1918年11月11日,延续4 年之久的第一次世界大战以英、美、法等国的胜利和德、奥

国际色彩标准名称与色值

国际色彩标准名称与色值 2007-08-11 Named Numeric Color Name Hex RGB Decimal LightPink 浅粉红#FFB6C1 255,182,193 Pink 粉红#FFC0CB 255,192,203 Crimson 猩红(深 红) #DC143C 220,20,60 LavenderBlush 淡紫红#FFF0F5 255,240,245 PaleVioletRed 弱紫罗兰 红 #DB7093 219,112,147 HotPink 热情的粉 红 #FF69B4 255,105,180 DeepPink 深粉红#FF1493 255,20,147 MediumVioletRed 中紫罗兰 红 #C71585 199,21,133 Orchid 兰花紫#DA70D6 218,112,214 Thistle 蓟#D8BFD8 216,191,216 Plum 李子紫#DDA0DD 221,160,221 Violet 紫罗兰#EE82EE 238,130,238

Magenta 洋红(品 红玫瑰 红) #FF00FF 255,0,255 Fuchsia 灯笼海棠 (紫红色) #FF00FF 255,0,255 DarkMagenta 深洋红#8B008B 139,0,139 Purple 紫色#800080 128,0,128 MediumOrchid 中兰花紫#BA55D3 186,85,211 DarkViolet 暗紫罗兰#9400D3 148,0,211 DarkOrchid 暗兰花紫#9932CC 153,50,204 Indigo 靛青(紫 兰色) #4B0082 75,0,130 BlueViolet 蓝紫罗兰#8A2BE2 138,43,226 MediumPurple 中紫色#9370DB 147,112,219 MediumSlateBlue 中板岩蓝#7B68EE 123,104,238 SlateBlue 板岩蓝#6A5ACD 106,90,205 DarkSlateBlue 暗板岩蓝#483D8B 72,61,139 Lavender 熏衣草淡 紫 #E6E6FA 230,230,250 GhostWhite 幽灵白#F8F8FF 248,248,255

Q345的焊接性能介绍

Q345的焊接性能介绍

Q345R 特点 Q345R 是钢板中的一大类--容器中板。 16Mng 和16MnR 、19Mng 合并为 Q345R 。 Q345R 是普通低合金钢,是锅炉压力容器常用钢材,交货状态分:热轧或正火。 属低合金钢,屈服强度为265-345MPa 级的压力容器专用板,抗拉强度为(510-640)之间,伸长率大于21%,零度V 型冲击功大于34J 。 Q345R 工艺参考标准GB713-2008。它具有良好的综合力学性能和工艺性能。磷、硫含量略低于低合金高强度钢板。 2、力学性能

3、规格尺寸

4. Q345钢的焊接性分析 4.1 碳当量(Ceq)的计算 Ceq=C+Mn/6+Ni/15+Cu/15+Cr/5+Mo/5+V/5 计算Ceq=0.49%,大于0. 45%,可见Q345钢焊接性能不是很好,需要在焊接时制定严格的工艺措施。 4.2 热裂纹 Q345含碳量低,含锰量较高,硫和磷控制严格,它的Mn/S较高,因而具有良好的抗结晶裂纹性能。所以在正常情况下,Q345是不会出现结晶裂纹。 4.3 冷裂纹 钢种的淬硬倾向、一定的含氢量和局够的拘束应力是焊接时产生冷裂纹的三大主要因素。Q345含碳量低,故在淬火时,就会得到低碳马氏体组织,或者铁素体+珠光体组织,由于这些组织的硬度不高,因而淬硬倾向小。焊缝中的氢主要来源于焊接材料中的水分、焊件坡口处的铁锈、油污,以及环境湿度等。而对Q345来说只要板厚不太大且冷却速度控制得当,就不会在焊缝中产生残余氢,所以也不易形成冷裂纹。拘束应力和板厚有关系,板厚越大,拘束应力越大。所以只要板厚不超过40mm,就不会产生冷裂纹。 4.4 再热裂纹 Q345不含强碳化物形成元素,在热轧状态下供货,焊后一般不进行热处理,因而对在热裂纹不敏感。 4.5 脆化 Q345当含碳量低于下限(0.12%-0.14%)时,由于本身含碳量少,又是通过固溶强化方式来获得较好的额强度和韧性,因而其脆化倾向小。只有当线能量过大时,会导致过热区奥氏体晶粒严重粗化,冷却时形成魏氏组织,这时才会出现脆化现象。当碳含量偏高时,不仅线能量过大会形成魏氏组织而脆化,在线能量偏低,冷却速度过大时也会形成脆化。只要控制Q345的成分和能量,就

标准色彩名称与rgb值

国际色彩标准名称与色值 Named Numeric Color Name Hex RGB Decimal LightPink 浅粉红#FFB6C1 255,182,193 Pink 粉红#FFC0CB 255,192,203 Crimson 猩红(深红) #DC143C 220,20,60 LavenderBlush 淡紫红#FFF0F5 255,240,245 PaleVioletRed 弱紫罗兰红#DB7093 219,112,147 HotPink 热情的粉红#FF69B4 255,105,180 DeepPink 深粉红#FF1493 255,20,147 MediumVioletRed 中紫罗兰红#C71585 199,21,133 Orchid 兰花紫#DA70D6 218,112,214 Thistle 蓟#D8BFD8 216,191,216 Plum 李子紫#DDA0DD 221,160,221 Violet 紫罗兰#EE82EE 238,130,238 Magenta 洋红(品红玫瑰红) #FF00FF 255,0,255 Fuchsia 灯笼海棠(紫红色) #FF00FF 255,0,255 DarkMagenta 深洋红#8B008B 139,0,139 Purple 紫色#800080 128,0,128 MediumOrchid 中兰花紫#BA55D3 186,85,211 DarkViolet 暗紫罗兰#9400D3 148,0,211 DarkOrchid 暗兰花紫#9932CC 153,50,204 Indigo 靛青(紫兰色) #4B0082 75,0,130 BlueViolet 蓝紫罗兰#8A2BE2 138,43,226 MediumPurple 中紫色#9370DB 147,112,219 MediumSlateBlue 中板岩蓝#7B68EE 123,104,238 SlateBlue 板岩蓝#6A5ACD 106,90,205 DarkSlateBlue 暗板岩蓝#483D8B 72,61,139 Lavender 熏衣草淡紫#E6E6FA 230,230,250 GhostWhite 幽灵白#F8F8FF 248,248,255 Blue 纯蓝#0000FF 0,0,255 MediumBlue 中蓝色#0000CD 0,0,205 MidnightBlue 午夜蓝#191970 25,25,112 DarkBlue 暗蓝色#00008B 0,0,139 Navy 海军蓝#000080 0,0,128 RoyalBlue 皇家蓝(宝蓝) #4169E1 65,105,225

常用钢管国家标准

常用钢管国家标准 常用钢管国家标准2010-04-20 09 :50 聊城市金德钢管贸易有限公司--- 0635-8884224 0635-2993006 常年经营无缝钢管,流体管,结构管,高压锅炉管。直缝焊管,离心浇铸 钢管 序号标准号标准名称主要牌号 国家标准 1 GB3087-1999低中压锅炉用无缝钢管10、20 2GB/T3090-2000 不锈钢小 直径无缝钢管0Cr18Ni9、00Cr19Ni10、0Cr18Ni10Ti 、0Cr17Ni12Mo2、 00Cr17Ni14Mo2、1Cr18Ni9Ti 3GB/T3094-2000 冷拔异型无缝钢管10、20、35、 45、Q295、Q345、Q390等 4 GB/T3639-2000 冷拔或冷轧精密无缝钢管10、20、35、4 5 5GB5310-1995 高压锅炉用无缝钢管20G、12CrMoG、15CrMoG、12Cr2MoG、12Cr1MoVG、 1Cr18Ni9 等 6 GB/T5312-1999 船舶用碳钢和碳锰钢无缝钢管320、360、410、460、490 7GB6479-2000 高压化肥设备用无缝钢管20、16Mn、15MnV、10MoWVN、b12CrMo、15CrMo、1Cr5Mo、12Cr2Mo、12SiMoVNb等 8 GB/T8162-1999 结构用无缝钢管20、45、Q345、40Cr、12CrMo、35CrMo、30CrMnSi等 9 GB/T8163-1999 输送流体用无缝钢管10、20、Q295、Q345 10 GB/T 9711.1-1997 石油天然气工业输送钢管交货技术条件第 1 部分:A 级钢管L210、 L245、L290、L320、L360等 11 GB/T 9711.2-1999 石油天然气工业输送钢管交货技术条件第 2 部分:B 级钢管L245NB、L290NB、L360NB、L415NB等

平面设计常用尺寸色值

平面设计常用尺寸&色值…… 2011.11.8阅读(1) C M Y K 银色 20 15 14 0 金色 5 15 65 0 米色 5 5 15 0 高亮灰 5 5 3 0 浅灰 25 16 16 0 中灰 50 37 37 0 深紫 100 68 10 25 深紫红 85 95 10 0 海水色 60 0 25 0 柠檬黄 5 18 75 0 暗红 20 100 80 5 橘红 5 100 100 5 橙色 5 50 100 0 深褐色 45 65 100 40 粉红色 5 40 5 0

平面设计常用制作尺寸 名片 横版:90*55mm 85*54mm 竖版:50*90mm 54*85mm 方版:90*90mm 90*95mm IC卡 85x54MM 三折页广告 标准尺寸: (A4)210mm x 285mm 普通宣传册 标准尺寸: (A4)210mm x 285mm 文件封套 标准尺寸:220mm x 305mm 招贴画 标准尺寸:540mm x 380mm 挂旗 标准尺寸:8开 376mm x 265mm 4开 540mm x 380mm 手提袋 标准尺寸:400mm x 285mm x 80mm

信纸便条 标准尺寸:185mm x 260mm 210mm x 285mm 正度纸张: 787×1092mm 开数(正度) 尺寸单位(mm) 全开781×1086 2开530×760 3开362×781 4开390×543 6开362×390 8开271×390 16开195×271 注:成品尺寸=纸张尺寸-修边尺寸 大度纸张: 850*1168mm 开数(正度) 尺寸单位(mm) 全开844×1162 2开581×844 3开387×844 4开422×581 6开387×422 8开290×422 注:成品尺寸=纸张尺寸-修边尺寸 常见开本尺寸 (单位:mm) 开本尺寸:787 x 1092

PS标准色值

PS标准色值 天蓝c60m23 偏暖c60m45 偏冷c60m15 典型的肤色值!!! 非洲人C35 m45 y53 亚洲人c15 m43 y53 典型记忆色及cmyk数值!!! C m y k 银色20 15 14 0 金色5 15 65 0 米色5 5 15 0 高亮灰5 5 3 0 浅灰25 16 16 0 中灰50 37 37 0 深紫100 68 10 25 深紫红85 95 10 0 海水色60 0 25 0 柠檬黄5 18 75 0 暗红20 100 80 5 橘红5 100 100 5 橙色5 50 100 0 深褐色45 65 100 40 粉红色5 40 5 0 1 白色#FFFFFF 2 红色#FF0000 3 绿色#00FF00 4 蓝色#0000FF 5 牡丹红#FF00FF 6 青色#00FFFF 7 黄色#FFFF00 8 黑色#000000 9 海蓝#70DB93 10 巧克力色#5C3317 11 蓝紫色#9F5F9F 12 黄铜色#B5A642 13 亮金色#D9D919 14 棕色#A67D3D

15 青铜色#8C7853 16 2号青铜色#A67D3D 17 士官服蓝色#5F9F9F 18 冷铜色#D98719 19 铜色#B87333 20 珊瑚红#FF7F00 21 紫蓝色#42426F 22 深棕#5C4033 23 深绿#2F4F2F 24 深铜绿色#4A766E 25 深橄榄绿#4F4F2F 26 深兰花色#9932CD 27 深紫色#871F78 28 深石板蓝#6B238E 29 深铅灰色#2F4F4F 30 深棕褐色#97694F 32 深绿松石色#7093DB 33 暗木色#855E42 34 淡灰色#****** 35 土灰玫瑰红色#856363 36 长石色#D19275 37 火砖色#8E2323 38 森林绿#238E23 39 金色#CD7F32 40 鲜黄色#DBDB70 41 灰色#C0C0C0 42 铜绿色#527F76 43 青黄色#93DB70 44 猎人绿#215E21 45 印度红#4E2F2F 46 土黄色#9F9F5F 47 浅蓝色#C0D9D9 48 浅灰色#A8A8A8 49 浅钢蓝色#8F8FBD 59 浅木色#E9C2A6 60 石灰绿色#32CD32 61 桔黄色#E47833 62 褐红色#8E236B 63 中海蓝色#32CD99 64 中蓝色#3232CD 65 中森林绿#6B8E23 66 中鲜黄色#EAEAAE 67 中兰花色#9370DB 68 中海绿色#426F42

Q345化学成分

牌号质量 等级 化学成分a.b(质量分数)/% C Si Mn P S Nb V Ti Cr Ni Cu N Mo B Ala 不大于不小于 Q345 A ≤0.20 ≤0.50≤1.70 0.035 0.035 0.07 0.15 0.20 0.30 0.50 0.30 0.012 0.10 - - B 0.035 0.035 C 0.030 0.030 0.015 D ≤0.18 0.030 0.025 E 0.025 0.020 Q390 A ≤0.20≤0.50≤1.70 0.035 0.035 0.07 0.20 0.20 0.30 0.50 0.30 0.015 0.10 - - B 0.035 0.035 C 0.030 0.030 0.015 D 0.030 0.025 E 0.025 0.020 Q420 A ≤0.20≤0.50≤1.70 0.035 0.035 0.07 0.20 0.20 0.30 0.80 0.30 0.015 0.20 - - B 0.035 0.035 C 0.030 0.030 0.015 D 0.030 0.025 E 0.025 0.020 Q460 C ≤0.20≤0.60≤1.80 0.030 0.030 0.11 0.20 0.20 0.30 0.80 0.55 0.015 0.20 0.004 0.015 D 0.030 0.025 E 0.025 0.020 Q500 C ≤0.18≤0.60≤1.80 0.030 0.030 0.11 0.12 0.20 0.60 0.80 0.55 0.015 0.20 0.004 0.015 D 0.030 0.025 E 0.025 0.020

标准化导则

标准化导则 【 标准化导则是标准化工作标准化的重要标准之一,它的实施将能够有效地保证标准的编写质量。该标准的规定用以指导如何起草我景区标准,它是编写标准的标准。 标准化导则的主要技术内容为:规定了编写标准的原则、标准的结构、起草标准中的各个要素的规则、要素中条款内容的表述、标准编写中涉及的各类问题的规则以及标准的编排格式。 一、编写标准的原则 编写标准的原则,是对这些原则的总体把握,能够更加深入地理解编写标准的具体规定,并能够将相应的规定更好地贯彻于标准编制的全过程。 1. 统一性 统一性是对标准编写及表达方式的最基本的要求。统一性强调的是标准内部(即标准的每个部分、每项标准或系列标准内)的统一,包括:标准结构的统一,即标准的章、条、段、表、图和附录的排列顺序的一致;文体的统一,即类似的条款应由类似的措辞来表达,相同的条款应由相同的措辞来表达;术语的统一,即同一个概念应使用同一个术语;形式的统一,即标准的表述形式,诸如标准中条标题、图表标题的有无应是统一的。 2. 协调性 协调性是针对标准之间的,它的目的是“为了达到所有标准的整体协调”。为了达到标准系统整体协调的目的,在制定标准时应注意和已经发布的标准进行协调。遵守基础标准和采取引用的方法是保证标准协调的有效途径。标准中的附

录A给出了最通用的部分基础标准清单。遵守这些标准将能够有效地提高标准的协调性。 ~ 3. 适用性 适用性指所制定的标准便于使用的特性,主要针对以下两个方面的内容。第一,适于直接使用。第二,便于被其他文件引用,对于层次设置、编号等的规定都是出于便于引用的考虑。 4. 一致性 一致性指起草的标准应以对应的公司文件为基础并尽可能与规范文件保持一致。起草标准时如有对应的公司文件,首先应考虑以这些规范文件为基础制定公司内部标准,在此基础上还应尽可能保持与规范文件的一致性,并确定一致性程度,即等同、修改或非等效。 5. 规范性 规范性指起草标准时要遵守与标准制定有关的基础标准以及相关的保障标准。 二、标准的结构 从内容和层次两个方面对标准的结构进行了规定。搭建标准的结构是正式起草标准之前必不可少的工作。 、 1. 按照内容划分 对标准的内容进行划分可以得到不同的要素,依据要素的性质、位置、必备和可选的状态可将标准中的要素归为不同的类别。 (1)按照要素的性质划分,可分为: ——规范性要素:声明符合标准而需要遵守的条款的要素;

平面设计颜色标准色值

淡粉Pale-pink(雅致)CMYK: C0 M30 Y10 K0 RGB: R247 G200 B207 贝壳粉Shell-pink(纯真)CMYK:C0 M30 Y25 K0 RGB:R248 G198 B181 淡粉,婴儿粉Baby-pink CMYK:C0 M15 Y10 K0 RGB:R252 G229 B223 鲑鱼粉Salmon-pink(有趣)CMYK:C0 M50 Y40 K0 RGB:R242 G155 B135 朱红Vermilion(积极)CMYK:C0 M85 Y85 K0 RGB:R233 G71 B41 绯红,绛红scarlet(生命力)CMYK:C0 M100 Y100 K0 RGB:R230 G0 B18 深红Strong-red(华丽)CMYK:C0 M100 Y100 K10 RGB:R216 G0 B15 绯红Cardinal-red(威严)CMYK:C0 M100 Y65 K40 RGB:R164 G0 B39 酒红Buraunby(充实)CMYK:C60 M100 Y80 K30 RGB:R102 G25 B45 土红Old-rose(柔软)CMYK:C15 M60 Y30 K15 RGB:R194 G115 B127 橙色Tangerine(生气勃勃)CMYK:C0 M80 Y90 K0 RGB:R234 G85 B32 柿子色Persimmom(开朗)CMYK:C0 M70 Y75 K0 RGB:R237 G110 B61 橘黄色Orange(美好)CMYK:C0 M70 Y100 K0 RGB:R237 G109 B0 黄色(yellow) 太阳橙Sun-orange(丰收)CMYK:C0 M55 Y100 K0 RGB:R241 G141 B0 热带橙Tropical-orange(幻想)CMYK:C0 M50 Y80 K0 RGB:R243 G152 B57 蜂蜜色Honey-orange(轻快)CMYK:C0 M30 Y60 K0 RGB:R249 G194 B112 杏黄色Apricot(无邪)CMYK:C10 M40 Y60 K0 RGB:R229 G169 B107 伪装沙Sandbeige(天真)CMYK:C0 M15 Y15 K10 RGB:R236 G214 B202 浅茶色、米色Beige(纯朴)CMYK:C0 M15 Y30 K15 RGB:R227 G204 B169 浅土色Pale-ocre(温和)CMYK:C20 M30 Y45 驼色Camel(质朴CMYK:C10 M40 Y60 K30 RGB:R181 G134 B84 椰棕色Coconets-brown CMYK:C50 M80 Y100 K40 RGB:R106 G51 B21 棕色、茶色Brown(安定)CMYK:C45 M75 Y100 K40 RGB:R113 G59 B18 咖啡Coffee(坚实)CMYK:C60 M70 Y100 K25 RGB:R106 G75 B35

非法狩猎罪的认定和界限标准

非法狩猎罪的认定和界限标准 本罪的概念 非法狩猎罪,是指违反狩猎法规,在禁猎区、禁猎期或者使用禁用的工具、方法进行狩猎,破坏野生动物资源,情节严重的行为。 本罪的认定 本罪与非法猎捕、杀害珍贵、濒危野生动物罪的界限 两罪的犯罪主体、主观方面都相同,皆属故意犯罪。两罪侵犯的客体不尽相同,其同类客体都是对环境资源保护和管理制度的侵犯,只是犯罪所侵犯的直接客体有所不同,非法狩猎罪所侵犯的客体为国家保护野生动物资源的管理制度;而非法猎捕、杀害珍贵、濒危野生动物罪所侵犯的客体为国家对珍贵、濒危野生资源的重点保护制度。两罪的主要区别是: (1)犯罪客观方面不同。非法狩猎罪主要表现为在禁猎区、禁猎期或使用禁用工具、方法实施的狩猎行为,且情节严重的才构成犯罪;而非法猎捕、杀害珍贵、濒危野生动物罪则表现为非法猎捕、杀害珍贵、濒危野生动物的行为,行为人只要客观上对国家重点保护的珍贵、濒危野生动物实施了非法捕杀行为,即可构成犯罪,不受任何“禁止性”条件和情节是否严重的限制。 (2)犯罪对象不同。非法狩猎罪的犯罪对象主要是指珍贵、濒危野生动物以外的一般陆生野物;而非法猎捕,杀害珍贵、濒危野生动物罪的犯罪对象为《国家重点保护野生动物名录》的珍贵、濒危野生动物,既包括陆生的野生动物,也包括水生的野生动物。 本罪与非法捕捞水产品罪的界限 非法捕捞水产品罪,是指违反保护水产资源法规,在禁渔区、禁渔期或者使用禁用的工具、方法捕捞水产品,情节严重的行为。两罪在犯罪主体、主观方面较为一致,都属于故意犯罪的范畴。区别在于: (1)客体不尽相同,其同类客体都是对环境资源保护和管理制度的侵犯,只是犯罪所侵犯的直接客体有所不同,非法狩猎罪所侵犯的直接客体为国家保护野生动物资源的管理制度;而非法捕捞水产品罪所侵犯的客体为国家保护水产资源的管理制度。 (2)犯罪对象不同。非法狩猎罪的对象是除国家重点保护的珍贵、濒危野生动物资源、水生野生动物资源以外的陆生野生动物资源;而非法捕捞水产品罪的犯罪对象则为除国家重点保护的珍贵、濒危陆生和水生野生动物资源以外的其他水产品资源,这些水产品资源不仅包括水生野生动物,还包括海藻类、淡水食用水生植物类等水产品。 (3)行为内容不同。非法狩猎罪在违反“四个禁止性规定”的前提下,突出了与危害陆生动物相关的“狩猎”行为;而非法捕捞水产品罪则在“四个禁止性规定”的前提

CMYK标准色值

CMYK标准色值 非洲人肤色:C35 M45 Y50 K30以上 亚洲人肤色:C15 M43 Y53 K0 白种人肤色:C15-18 M45 Y30 K0 天空的颜色: 天蓝:C60 M23 Y0 K0 偏暖:C60 M45 Y0 K0 偏冷:C60 M15 Y0 K0 深紫色:C100 M68 Y10 K45 深紫红:C85 M95 Y10 K0 海水蓝:C60 M20-28 柠檬黄:C5 M18 Y75 桔红:C5 M100 Y100 K5 橙色:C5 M50 Y100 K0 粉红色:C5 M40 Y5 K0 假金色(四色模拟而非专色): C5 M15 Y65 K0 假银色(四色模拟而非专色): C20 M15 Y14 K0 掌握了这些基本规律,再调图时就能把握主次了,知道改减什么色,加深什么色了。 人物肤色的调图规律: M、Y的量差不多,C是M的1/3至1/5 人脸数值规律:C8 M36 Y35 头发数值:C71 M82 Y73 K22 苹果:C7 M99 Y71 香蕉:C4 M54 Y93 橙子:M55 Y78 红色系列 M10淡粉红色 M20 Y10玉红色 M30粉红色 M30 Y10淡桃红色 M20 K10浅红色 C10 M30浅曙红色 M50樱红色 C20 M50玫红色 M70洋红色 M40 Y20 K10暗桃色 M60 Y20浅桃红色 C10 M30 Y30 K10水红色 M50 Y30 K10绯红色 C10 M70 Y20桃红色 M80猩红色 M70 Y50胭脂红色 M100品红色 M60 Y40 K10橘红色 M80 Y20淡艳红色 M70 Y4-0珊瑚红色 C30 M100玫瑰红色 M100 Y60艳红色 C20 M70 Y40 K10锈红色 M90 Y85朱红色 C20 M80 Y40 K10朱砂色 M100 Y100大红色 C50 M100紫红色 C20 M100 Y30 K10绛红色 C40 M70 Y60 K10土红色 C10 M100 K30曙红色 C20 M90 Y70 K20枣红色 C20 M100 Y100 K10石榴红色 C20 M80 Y60 K30酒红色 M90 Y50 K50深艳红色 M90 Y70 K50棕红色 C50 M100 Y90 K20酱红色 M100 Y100 K50深红色 M100 K80暗红色 C80 M100 Y30 K80深玫红色 橙(棕)色系列 M10 Y10蛋壳色 M20 Y20肤色 M30 Y30藕色 C10 M30 Y40木色 M50 Y50橙色 M30 Y30 K10奶咖色 M40 Y80杏色 M60 Y90橘色

Q345的焊接性能介绍

Q345R 特点 Q345R 是钢板中的一大类--容器中板。 16Mng 和16MnR 、19Mng 合并为 Q345R 。 Q345R 是普通低合金钢,是锅炉压力容器常用钢材,交货状态分:热轧或正火。 属低合金钢,屈服强度为265-345MPa 级的压力容器专用板,抗拉强度为(510-640)之间,伸长率大于21%,零度V 型冲击功大于34J 。 Q345R 工艺参考标准GB713-2008。它具有良好的综合力学性能和工艺性能。磷、硫含量略低于低合金高强度钢板。 2、力学性能

3、规格尺寸

4. Q345钢的焊接性分析 4.1 碳当量(Ceq)的计算 Ceq=C+Mn/6+Ni/15+Cu/15+Cr/5+Mo/5+V/5 计算Ceq=0.49%,大于0. 45%,可见Q345钢焊接性能不是很好,需要在焊接时制定严格的工艺措施。 4.2 热裂纹 Q345含碳量低,含锰量较高,硫和磷控制严格,它的Mn/S较高,因而具有良好的抗结晶裂纹性能。所以在正常情况下,Q345是不会出现结晶裂纹。 4.3 冷裂纹 钢种的淬硬倾向、一定的含氢量和局够的拘束应力是焊接时产生冷裂纹的三大主要因素。Q345含碳量低,故在淬火时,就会得到低碳马氏体组织,或者铁素体+珠光体组织,由于这些组织的硬度不高,因而淬硬倾向小。焊缝中的氢主要来源于焊接材料中的水分、焊件坡口处的铁锈、油污,以及环境湿度等。而对Q345来说只要板厚不太大且冷却速度控制得当,就不会在焊缝中产生残余氢,所以也不易形成冷裂纹。拘束应力和板厚有关系,板厚越大,拘束应力越大。所以只要板厚不超过40mm,就不会产生冷裂纹。 4.4 再热裂纹 Q345不含强碳化物形成元素,在热轧状态下供货,焊后一般不进行热处理,因而对在热裂纹不敏感。 4.5 脆化 Q345当含碳量低于下限(0.12%-0.14%)时,由于本身含碳量少,又是通过固溶强化方式来获得较好的额强度和韧性,因而其脆化倾向小。只有当线能量过大时,会导致过热区奥氏体晶粒严重粗化,冷却时形成魏氏组织,这时才会出现脆化现象。当碳含量偏高时,不仅线能量过大会形成魏氏组织而脆化,在线能量偏低,冷却速度过大时也会形成脆化。只要控制Q345的成分和能量,就可以减少过热区的脆化。Q345本身含有一定的固溶氮,化学成分中又没有强氮化合物形成元素,因而有一定的热应变脆化倾向,可以通过600℃,1h的退火处理来回复其性能。

2020年整理印刷的CMYK标准色值.doc

. 印刷的CMYK标准色值 C. 青色(Cyan) M. 洋红色(Magenta) Y. 黄色(Yellow) K. 黑色(blacK) 印刷肤色参考、常用印刷色值 非洲人肤色:C35 M45 Y50 K30以上 亚洲人肤色:C15 M43 Y53 K0 白种人肤色:C15-18 M45 Y30 K0 天空的颜色: 天蓝:C60 M23 Y0 K0 偏暖:C60 M45 Y0 K0 偏冷:C60 M15 Y0 K0 深紫色:C100 M68 Y10 K45 深紫红:C85 M95 Y10 K0 海水蓝:C60 M20-28 柠檬黄:C5 M18 Y75 桔红:C5 M100 Y100 K5 橙色:C5 M50 Y100 K0 粉红色:C5 M40 Y5 K0 假金色(四色模拟而非专色):C5 M15 Y65 K0 假银色(四色模拟而非专色):C20 M15 Y14 K0 掌握了这些基本规律,再调图时就能把握主次了,知道改减什么色,加深什么色了。 人物肤色的调图规律:M、Y的量差不多,C是M的1/3至1/5 人脸数值规律:C8 M36 Y35 头发数值:C71 M82 Y73 K22 苹果:C7 M99 Y71 香蕉:C4 M54 Y93 橙子:M55 Y78 红色系列 M10淡粉红色 M20 Y10玉红色 M30粉红色 M30 Y10淡桃红色 M20 K10浅红色 C10 M30浅曙红色 M50樱红色 C20 M50玫红色 M70洋红色 M40 Y20 K10暗桃色 M60 Y20浅桃红色 C10 M30 Y30 K10水红色 M50 Y30 K10绯红色

M80猩红色 M70 Y50胭脂红色 M100品红色 M60 Y40 K10橘红色 M80 Y20淡艳红色 M70 Y4-0珊瑚红色 C30 M100玫瑰红色 M100 Y60艳红色 C20 M70 Y40 K10锈红色 M90 Y85朱红色 C20 M80 Y40 K10朱砂色 M100 Y100大红色 C50 M100紫红色 C20 M100 Y30 K10绛红色 C40 M70 Y60 K10土红色 C10 M100 K30曙红色 C20 M90 Y70 K20枣红色 C20 M100 Y100 K10石榴红色 C20 M80 Y60 K30酒红色 M90 Y50 K50深艳红色 M90 Y70 K50棕红色 C50 M100 Y90 K20酱红色 M100 Y100 K50深红色 M100 K80暗红色 C80 M100 Y30 K80深玫红色 橙(棕)色系列 M10 Y10蛋壳色 M20 Y20肤色 M30 Y30藕色 C10 M30 Y40木色 M50 Y50橙色 M30 Y30 K10奶咖色 M40 Y80杏色 M60 Y90橘色 C10 M20 Y40 K30浅褐色 M80 Y60红橘色 C20 M40 Y40 K20浅棕色 C40 M50 Y60茶色 M80 Y90赤橙色 M50 Y80 K20土棕色 M70 Y90 K10黄棕色 C10 M80 Y90铁锈色

公务接待标准范围政策界限难把握

公务接待标准范围政策界限难把握。由于对禁止超标准接待中的“标准”政策界限难以把握,一些企业宁肯牺牲效益,害怕正常接待,使政策经营活动也受影响。如我省一些企业有因接待标准不高重要客户拂袖而去影响生意的,有重要批文或政策支持因关系处理不周迟迟未落实到,有因与征地拆迁户交流不深影响工程进度的等。我省省属企业大都处在竞争性行业中,完全依靠市场“找米下锅”要效益,对重要客户的商务应酬,对争取政府部门政策支持的沟通协调,对承建基础设施中与征地拆迁户的关系处理等,公务接待必不可少。但现在企业接待工作,新闻媒体紧盯暗访着,社会群众时刻监督着,稍有不慎便会置于风口浪尖。 公务用车标准管理政策界限难把握。我省省属企业董事长、总经理现属正厅级别,按照最新下发的《党政机关公务用车配备使用管理办法》,只能配备排气量1.8升(含)以下、价格18万元以内地轿车。如依此标准,我省省属企业领导公务用车大都超标。由于经营活动需要,企业公务用车不可能像政府机关一样,节假日可以停驶不用,但使用也会导致社会媒体非议。如我省一家企业副总,因周六出车与客户洽谈生意,结果被广州区伯拍摄举报公车私用,虽经调查澄清了事实,但一些企业领导对此现象深感忧虑。 办公用房使用标准政策界限难把握。中央最近引发的《关于党政机关停止新建楼堂馆所和清理办公用房的通知》,部署了党政机关超标准占有使用办公用房的清理工作,要求国有企业参照执行。我省企业领导办公用房主要依据企业实力、经营规模和营商环境而定,上级机关尚未做过多硬性标准要求。目前,如严格执行党政机关标准,省属企业领导办公用房大都超标;如不执行不坚决又会涉嫌违法

规定,可能成为社会媒体关注的焦点。 因公出国监管标准政策界限难把握。一方面,我省要求每年因公出国(境)经费压缩20%;另一方面,随着我省走出去战略的实施,国(境)外投资业务逐年增多,企业领导出入国(境)要求更加频繁。如严格执行党政机关标准,企业领导对境外投资和企业监管工作很难到位。加之,我省对企业领导因公出国(境)管理严格,程序繁杂,对企业正常境外经营活动也产生了影响。如我省航运集团在澳门与美国一家企业有一个合作项目,美方要求在澳门与我方企业主要领导洽谈业务,但因我省对赴澳公职人员严格控制且办理手续繁杂影响了与美方业务洽谈机会等。 产生的原因与析惑 将国有企业等同党政机关的廉政监管理念和现象比较普遍。国有企业具有国有性和企业性双重属性。国有性要求我们必须认识到企业资产属国家财产,企业领导只是授权经营者,必须接受国家和人民监督;企业性要求我们必须强调以经济效益为首要,在参与市场竞争活动中占领市场、赢取利润,同民营、外资企业一样需要纳税。而党政机关主要履行社会公共管理和服务职能,用的是财政钱,不需要参与市场竞争。两者性质和目标不同,决定着对国有企业监管理念必须有所区别。目前,国有企业体制机制是从计划经济时代脱胎而来,计划经济时代下的行政监管理念仍很严重,党政机关许多廉政规定与国有企业捆绑执行,使一些企业感到严格执行会影响经营发展,但“打擦边球”式的执行却又提心吊胆。

相关文档
最新文档