初中奥林匹克数学竞赛知识点总结及训练题目-最值

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学竞赛辅导讲义-求最值

在生活实践中,人们经常面对带有“最”字的问题,如在一定的方案中,花费最低、消耗最少、产值最高、获利最大等;解数学题时,我们也常常碰到求某个变量的最大值或最小值之类的问题,这就是我们要讨论的最值问题,求最值问题的方法归纳起来有如下几点: 1.运用配方法求最值;

2.构造一元二次方程,在方程有解的条件下,利用判别式求最值; 3.建立函数模型求最值;

4.利用基本不等式或不等分析法求最值.

注:数学中最大值、最小值问题,运用到社会实践、生活实际中所体现出来的就是最优化思 想,所谓最优,就是我们所期望的目标量能达到最大或最小.

一次函数、反比例函数并无最值,但当自变量取值范围有条件限制的,最值在图象的端点处取得;定义在全体实数上的二次函数最值在抛物线的顶点处取-得.即: 对于c bx ax y ++=2(0≠a )

(1)若a>0,则当a b

x 2-=时,a b ac y 442-=最小值;

(2)若a<0,则当a

b

x 2-=时, a b ac y 442-=最大值.

【例题求解】

【例1】 设a 、b 为实数,那么b a b ab a 222--++的最小值是 .

思路点拨 将原式整理成关于a 的二次多项式从配方法入手;亦可引入参数设t b a b ab a =--++222,将等式整理成关于a 的二次方程0)2()1(22=--+-+t b b a b a ,利用

判别式求最小值.

【例2】若3

2

211-=

+=

-z y x ,则222z y x ++可取得的最小值为( ) A .3 B .

1459 C .2

9

D .6 思路点拨 设k z y x =-=+=

-3

2211,则2

22z y x ++可用只含k 的代数式表示,通过配方求最

小值.

【例3】 设1x 、2x 是方程02324222=-++-m m mx x 的两个实根,当m 为何值时,2221x x +有最小值,并求这个最小值.

思路点拨 由韦达定理知2221x x +是关于m 的二次函数,是否是在抛物线的顶点处取得最小值,就要看自变量m 的取值范围,从判别式入手.

注:定义在某一区间的条件限制的二次函数最值问题,有下两种情形: (1)当抛物线的顶点在该区间内,顶点的纵坐标就是函数的最值;

(2)当抛物线的顶点不在该区间内,二次函数的最值在区间内两端点处取得.

【例4】 甲、乙两个蔬菜基地,分别向A 、B 、C 三个农贸市场提供同品种蔬菜,按签订的合同规定向A 提供45吨,向B 提供75吨,向C 提供40吨.甲基地可安排60吨,乙基地可安排100吨.甲、乙与A 、B 、C 的距离千米数如表,设运费为1元/(千米·吨).问如何安排使总运费最低?求出最小的总运费值.

思路点拨 设乙基地向A 提供x 吨,向B 提供y 吨,这样总运费就可用含x ,y 的代数式表示;因为1000≤+≤y x 0,450≤≤x ,所以问题转化为在约束条件下求多元函数的最值.

【例5】 某单位花50万元买回一台高科技设备,根据对这种型号设备的跟踪调查显示,该设备投入使用后,若将养护和维修的费用均摊到每一天,则有结论:第x 天应付的养护与维修费为[500)1(4

1

+-x ]元.

(1)如果将该设备从开始投入使用到报废共付的养护与维修费及购买该设备费用的和均摊到每一天,叫做每天的平均损耗,请你将每天的平均损耗y (元)表示为使用天数x (天)的函数; (2)按照此行业的技术和安全管理要求,当此设备的平均损耗达到最小值时,就应当报废,问该设备投入使用多少天应当报废?

思路点拨 在解本题时可能要用到以下数学知识点:对于确定的正常数a 、b 以及在正实数范围内取值的变量x ,一定有

b a xb ax b x x a 2

2=≥+,即当且仅当b x x a =时,b

x

x a +有最小值b

a

2.

注:不等式也是求最值的有效方法,常用的不等式有:

(1)02≥a ; (2)ab b a 222≥+;(3)若0>a ,0>b ,则ab b a 2≥+; (4)若0>a ,0>b ,0>x ,则

b

a

b x x a 2

≥+. 以上各式等号当且仅当b a = (或b

x

x a =)时成立.

学历训练

1.当x 变化时,分式12

15

632

2++++x x x x 的最小值为 .

2.如图,用12米长的木方,做一个有一条横档的矩形窗子,为使透进的光线最多,选择窗子的长、宽各为 、 米.

3.已知实数a 、b 、c 满足0=++c b a ,6222=++c b a ,则a 的最大值为 .

4.已知x 、y 、z 为三个非负实数,且满足523=++z y x ,2=-+z y x ,若z y x s -+=2,则s 的最大值与最小值的和为( ) A .

21 B .8

5

C .1

D .36

5.已知四边形ABCD 的对角线AC 与BD 相交于点O ,若S △AOB =4,S △COD =9,则四边形ABCD 的面积S 四边形ABCD 的最小值为( )

A .2l

B .25

C .26

D .36 6.正实数x 、y 满足1=xy ,那么4

4

411y x +的最小值为( )

A .

21 B .8

5

C .1

D .45

E .2

7.启明公司生产某种产品,每件产品成本是3元,售价是4元,年销售量为10万件.为了获得更好的效益,公司准备拿出一定的资金做广告.根据经验,每年投入的广告费是x (万元)时,产品的年销售量将是原销售量的y 倍,且10

7

107102++-=x x y ,如果把利润看作是销

售总额减去成本费和广告费:

(1)试写出年利润S (万元)与广告费x (万元)的函数关系式,并计算广告费是多少万元时,公司获得的年利润最大,最大年利润是多少万元?

(2)把(1)中的最大利润留出3万元作广告,其余的资金投资新项目,现有6个项目可供选择,

相关文档
最新文档